File size: 18,440 Bytes
a605e33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from datetime import datetime as dt
import numpy as np
import pyarrow as pa
from pyarrow.vendored.version import Version
import pytest
import pyarrow.interchange as pi
from pyarrow.interchange.column import (
_PyArrowColumn,
ColumnNullType,
DtypeKind,
)
from pyarrow.interchange.from_dataframe import _from_dataframe
try:
import pandas as pd
# import pandas.testing as tm
except ImportError:
pass
@pytest.mark.parametrize("unit", ['s', 'ms', 'us', 'ns'])
@pytest.mark.parametrize("tz", ['', 'America/New_York', '+07:30', '-04:30'])
def test_datetime(unit, tz):
dt_arr = [dt(2007, 7, 13), dt(2007, 7, 14), None]
table = pa.table({"A": pa.array(dt_arr, type=pa.timestamp(unit, tz=tz))})
col = table.__dataframe__().get_column_by_name("A")
assert col.size() == 3
assert col.offset == 0
assert col.null_count == 1
assert col.dtype[0] == DtypeKind.DATETIME
assert col.describe_null == (ColumnNullType.USE_BITMASK, 0)
@pytest.mark.parametrize(
["test_data", "kind"],
[
(["foo", "bar"], 21),
([1.5, 2.5, 3.5], 2),
([1, 2, 3, 4], 0),
],
)
def test_array_to_pyarrowcolumn(test_data, kind):
arr = pa.array(test_data)
arr_column = _PyArrowColumn(arr)
assert arr_column._col == arr
assert arr_column.size() == len(test_data)
assert arr_column.dtype[0] == kind
assert arr_column.num_chunks() == 1
assert arr_column.null_count == 0
assert arr_column.get_buffers()["validity"] is None
assert len(list(arr_column.get_chunks())) == 1
for chunk in arr_column.get_chunks():
assert chunk == arr_column
def test_offset_of_sliced_array():
arr = pa.array([1, 2, 3, 4])
arr_sliced = arr.slice(2, 2)
table = pa.table([arr], names=["arr"])
table_sliced = pa.table([arr_sliced], names=["arr_sliced"])
col = table_sliced.__dataframe__().get_column(0)
assert col.offset == 2
result = _from_dataframe(table_sliced.__dataframe__())
assert table_sliced.equals(result)
assert not table.equals(result)
# pandas hardcodes offset to 0:
# https://github.com/pandas-dev/pandas/blob/5c66e65d7b9fef47ccb585ce2fd0b3ea18dc82ea/pandas/core/interchange/from_dataframe.py#L247
# so conversion to pandas can't be tested currently
# df = pandas_from_dataframe(table)
# df_sliced = pandas_from_dataframe(table_sliced)
# tm.assert_series_equal(df["arr"][2:4], df_sliced["arr_sliced"],
# check_index=False, check_names=False)
@pytest.mark.pandas
@pytest.mark.parametrize(
"uint", [pa.uint8(), pa.uint16(), pa.uint32()]
)
@pytest.mark.parametrize(
"int", [pa.int8(), pa.int16(), pa.int32(), pa.int64()]
)
@pytest.mark.parametrize(
"float, np_float", [
# (pa.float16(), np.float16), #not supported by pandas
(pa.float32(), np.float32),
(pa.float64(), np.float64)
]
)
def test_pandas_roundtrip(uint, int, float, np_float):
if Version(pd.__version__) < Version("1.5.0"):
pytest.skip("__dataframe__ added to pandas in 1.5.0")
arr = [1, 2, 3]
table = pa.table(
{
"a": pa.array(arr, type=uint),
"b": pa.array(arr, type=int),
"c": pa.array(np.array(arr, dtype=np_float), type=float),
"d": [True, False, True],
}
)
from pandas.api.interchange import (
from_dataframe as pandas_from_dataframe
)
pandas_df = pandas_from_dataframe(table)
result = pi.from_dataframe(pandas_df)
assert table.equals(result)
table_protocol = table.__dataframe__()
result_protocol = result.__dataframe__()
assert table_protocol.num_columns() == result_protocol.num_columns()
assert table_protocol.num_rows() == result_protocol.num_rows()
assert table_protocol.num_chunks() == result_protocol.num_chunks()
assert table_protocol.column_names() == result_protocol.column_names()
@pytest.mark.pandas
def test_pandas_roundtrip_string():
# See https://github.com/pandas-dev/pandas/issues/50554
if Version(pd.__version__) < Version("1.6"):
pytest.skip("Column.size() bug in pandas")
arr = ["a", "", "c"]
table = pa.table({"a": pa.array(arr)})
from pandas.api.interchange import (
from_dataframe as pandas_from_dataframe
)
pandas_df = pandas_from_dataframe(table)
result = pi.from_dataframe(pandas_df)
assert result["a"].to_pylist() == table["a"].to_pylist()
assert pa.types.is_string(table["a"].type)
assert pa.types.is_large_string(result["a"].type)
table_protocol = table.__dataframe__()
result_protocol = result.__dataframe__()
assert table_protocol.num_columns() == result_protocol.num_columns()
assert table_protocol.num_rows() == result_protocol.num_rows()
assert table_protocol.num_chunks() == result_protocol.num_chunks()
assert table_protocol.column_names() == result_protocol.column_names()
@pytest.mark.pandas
def test_pandas_roundtrip_large_string():
# See https://github.com/pandas-dev/pandas/issues/50554
if Version(pd.__version__) < Version("1.6"):
pytest.skip("Column.size() bug in pandas")
arr = ["a", "", "c"]
table = pa.table({"a_large": pa.array(arr, type=pa.large_string())})
from pandas.api.interchange import (
from_dataframe as pandas_from_dataframe
)
if Version(pd.__version__) >= Version("2.0.1"):
pandas_df = pandas_from_dataframe(table)
result = pi.from_dataframe(pandas_df)
assert result["a_large"].to_pylist() == table["a_large"].to_pylist()
assert pa.types.is_large_string(table["a_large"].type)
assert pa.types.is_large_string(result["a_large"].type)
table_protocol = table.__dataframe__()
result_protocol = result.__dataframe__()
assert table_protocol.num_columns() == result_protocol.num_columns()
assert table_protocol.num_rows() == result_protocol.num_rows()
assert table_protocol.num_chunks() == result_protocol.num_chunks()
assert table_protocol.column_names() == result_protocol.column_names()
else:
# large string not supported by pandas implementation for
# older versions of pandas
# https://github.com/pandas-dev/pandas/issues/52795
with pytest.raises(AssertionError):
pandas_from_dataframe(table)
@pytest.mark.pandas
def test_pandas_roundtrip_string_with_missing():
# See https://github.com/pandas-dev/pandas/issues/50554
if Version(pd.__version__) < Version("1.6"):
pytest.skip("Column.size() bug in pandas")
arr = ["a", "", "c", None]
table = pa.table({"a": pa.array(arr),
"a_large": pa.array(arr, type=pa.large_string())})
from pandas.api.interchange import (
from_dataframe as pandas_from_dataframe
)
if Version(pd.__version__) >= Version("2.0.2"):
pandas_df = pandas_from_dataframe(table)
result = pi.from_dataframe(pandas_df)
assert result["a"].to_pylist() == table["a"].to_pylist()
assert pa.types.is_string(table["a"].type)
assert pa.types.is_large_string(result["a"].type)
assert result["a_large"].to_pylist() == table["a_large"].to_pylist()
assert pa.types.is_large_string(table["a_large"].type)
assert pa.types.is_large_string(result["a_large"].type)
else:
# older versions of pandas do not have bitmask support
# https://github.com/pandas-dev/pandas/issues/49888
with pytest.raises(NotImplementedError):
pandas_from_dataframe(table)
@pytest.mark.pandas
def test_pandas_roundtrip_categorical():
if Version(pd.__version__) < Version("2.0.2"):
pytest.skip("Bitmasks not supported in pandas interchange implementation")
arr = ["Mon", "Tue", "Mon", "Wed", "Mon", "Thu", "Fri", "Sat", None]
table = pa.table(
{"weekday": pa.array(arr).dictionary_encode()}
)
from pandas.api.interchange import (
from_dataframe as pandas_from_dataframe
)
pandas_df = pandas_from_dataframe(table)
result = pi.from_dataframe(pandas_df)
assert result["weekday"].to_pylist() == table["weekday"].to_pylist()
assert pa.types.is_dictionary(table["weekday"].type)
assert pa.types.is_dictionary(result["weekday"].type)
assert pa.types.is_string(table["weekday"].chunk(0).dictionary.type)
assert pa.types.is_large_string(result["weekday"].chunk(0).dictionary.type)
assert pa.types.is_int32(table["weekday"].chunk(0).indices.type)
assert pa.types.is_int8(result["weekday"].chunk(0).indices.type)
table_protocol = table.__dataframe__()
result_protocol = result.__dataframe__()
assert table_protocol.num_columns() == result_protocol.num_columns()
assert table_protocol.num_rows() == result_protocol.num_rows()
assert table_protocol.num_chunks() == result_protocol.num_chunks()
assert table_protocol.column_names() == result_protocol.column_names()
col_table = table_protocol.get_column(0)
col_result = result_protocol.get_column(0)
assert col_result.dtype[0] == DtypeKind.CATEGORICAL
assert col_result.dtype[0] == col_table.dtype[0]
assert col_result.size() == col_table.size()
assert col_result.offset == col_table.offset
desc_cat_table = col_result.describe_categorical
desc_cat_result = col_result.describe_categorical
assert desc_cat_table["is_ordered"] == desc_cat_result["is_ordered"]
assert desc_cat_table["is_dictionary"] == desc_cat_result["is_dictionary"]
assert isinstance(desc_cat_result["categories"]._col, pa.Array)
@pytest.mark.pandas
@pytest.mark.parametrize("unit", ['s', 'ms', 'us', 'ns'])
def test_pandas_roundtrip_datetime(unit):
if Version(pd.__version__) < Version("1.5.0"):
pytest.skip("__dataframe__ added to pandas in 1.5.0")
from datetime import datetime as dt
# timezones not included as they are not yet supported in
# the pandas implementation
dt_arr = [dt(2007, 7, 13), dt(2007, 7, 14), dt(2007, 7, 15)]
table = pa.table({"a": pa.array(dt_arr, type=pa.timestamp(unit))})
if Version(pd.__version__) < Version("1.6"):
# pandas < 2.0 always creates datetime64 in "ns"
# resolution
expected = pa.table({"a": pa.array(dt_arr, type=pa.timestamp('ns'))})
else:
expected = table
from pandas.api.interchange import (
from_dataframe as pandas_from_dataframe
)
pandas_df = pandas_from_dataframe(table)
result = pi.from_dataframe(pandas_df)
assert expected.equals(result)
expected_protocol = expected.__dataframe__()
result_protocol = result.__dataframe__()
assert expected_protocol.num_columns() == result_protocol.num_columns()
assert expected_protocol.num_rows() == result_protocol.num_rows()
assert expected_protocol.num_chunks() == result_protocol.num_chunks()
assert expected_protocol.column_names() == result_protocol.column_names()
@pytest.mark.pandas
@pytest.mark.parametrize(
"np_float", [np.float32, np.float64]
)
def test_pandas_to_pyarrow_with_missing(np_float):
if Version(pd.__version__) < Version("1.5.0"):
pytest.skip("__dataframe__ added to pandas in 1.5.0")
np_array = np.array([0, np.nan, 2], dtype=np_float)
datetime_array = [None, dt(2007, 7, 14), dt(2007, 7, 15)]
df = pd.DataFrame({
"a": np_array, # float, ColumnNullType.USE_NAN
"dt": datetime_array # ColumnNullType.USE_SENTINEL
})
expected = pa.table({
"a": pa.array(np_array, from_pandas=True),
"dt": pa.array(datetime_array, type=pa.timestamp("ns"))
})
result = pi.from_dataframe(df)
assert result.equals(expected)
@pytest.mark.pandas
def test_pandas_to_pyarrow_float16_with_missing():
if Version(pd.__version__) < Version("1.5.0"):
pytest.skip("__dataframe__ added to pandas in 1.5.0")
# np.float16 errors if ps.is_nan is used
# pyarrow.lib.ArrowNotImplementedError: Function 'is_nan' has no kernel
# matching input types (halffloat)
np_array = np.array([0, np.nan, 2], dtype=np.float16)
df = pd.DataFrame({"a": np_array})
with pytest.raises(NotImplementedError):
pi.from_dataframe(df)
@pytest.mark.parametrize(
"uint", [pa.uint8(), pa.uint16(), pa.uint32()]
)
@pytest.mark.parametrize(
"int", [pa.int8(), pa.int16(), pa.int32(), pa.int64()]
)
@pytest.mark.parametrize(
"float, np_float", [
(pa.float16(), np.float16),
(pa.float32(), np.float32),
(pa.float64(), np.float64)
]
)
@pytest.mark.parametrize("unit", ['s', 'ms', 'us', 'ns'])
@pytest.mark.parametrize("tz", ['America/New_York', '+07:30', '-04:30'])
@pytest.mark.parametrize("offset, length", [(0, 3), (0, 2), (1, 2), (2, 1)])
def test_pyarrow_roundtrip(uint, int, float, np_float,
unit, tz, offset, length):
from datetime import datetime as dt
arr = [1, 2, None]
dt_arr = [dt(2007, 7, 13), None, dt(2007, 7, 15)]
table = pa.table(
{
"a": pa.array(arr, type=uint),
"b": pa.array(arr, type=int),
"c": pa.array(np.array(arr, dtype=np_float),
type=float, from_pandas=True),
"d": [True, False, True],
"e": [True, False, None],
"f": ["a", None, "c"],
"g": pa.array(dt_arr, type=pa.timestamp(unit, tz=tz))
}
)
table = table.slice(offset, length)
result = _from_dataframe(table.__dataframe__())
assert table.equals(result)
table_protocol = table.__dataframe__()
result_protocol = result.__dataframe__()
assert table_protocol.num_columns() == result_protocol.num_columns()
assert table_protocol.num_rows() == result_protocol.num_rows()
assert table_protocol.num_chunks() == result_protocol.num_chunks()
assert table_protocol.column_names() == result_protocol.column_names()
@pytest.mark.parametrize("offset, length", [(0, 10), (0, 2), (7, 3), (2, 1)])
def test_pyarrow_roundtrip_categorical(offset, length):
arr = ["Mon", "Tue", "Mon", "Wed", "Mon", "Thu", "Fri", None, "Sun"]
table = pa.table(
{"weekday": pa.array(arr).dictionary_encode()}
)
table = table.slice(offset, length)
result = _from_dataframe(table.__dataframe__())
assert table.equals(result)
table_protocol = table.__dataframe__()
result_protocol = result.__dataframe__()
assert table_protocol.num_columns() == result_protocol.num_columns()
assert table_protocol.num_rows() == result_protocol.num_rows()
assert table_protocol.num_chunks() == result_protocol.num_chunks()
assert table_protocol.column_names() == result_protocol.column_names()
col_table = table_protocol.get_column(0)
col_result = result_protocol.get_column(0)
assert col_result.dtype[0] == DtypeKind.CATEGORICAL
assert col_result.dtype[0] == col_table.dtype[0]
assert col_result.size() == col_table.size()
assert col_result.offset == col_table.offset
desc_cat_table = col_table.describe_categorical
desc_cat_result = col_result.describe_categorical
assert desc_cat_table["is_ordered"] == desc_cat_result["is_ordered"]
assert desc_cat_table["is_dictionary"] == desc_cat_result["is_dictionary"]
assert isinstance(desc_cat_result["categories"]._col, pa.Array)
@pytest.mark.large_memory
def test_pyarrow_roundtrip_large_string():
data = np.array([b'x'*1024]*(3*1024**2), dtype='object') # 3GB bytes data
arr = pa.array(data, type=pa.large_string())
table = pa.table([arr], names=["large_string"])
result = _from_dataframe(table.__dataframe__())
col = result.__dataframe__().get_column(0)
assert col.size() == 3*1024**2
assert pa.types.is_large_string(table[0].type)
assert pa.types.is_large_string(result[0].type)
assert table.equals(result)
def test_nan_as_null():
table = pa.table({"a": [1, 2, 3, 4]})
with pytest.raises(RuntimeError):
table.__dataframe__(nan_as_null=True)
@pytest.mark.pandas
def test_allow_copy_false():
if Version(pd.__version__) < Version("1.5.0"):
pytest.skip("__dataframe__ added to pandas in 1.5.0")
# Test that an error is raised when a copy is needed
# to create a bitmask
df = pd.DataFrame({"a": [0, 1.0, 2.0]})
with pytest.raises(RuntimeError):
pi.from_dataframe(df, allow_copy=False)
df = pd.DataFrame({
"dt": [None, dt(2007, 7, 14), dt(2007, 7, 15)]
})
with pytest.raises(RuntimeError):
pi.from_dataframe(df, allow_copy=False)
@pytest.mark.pandas
def test_allow_copy_false_bool_categorical():
if Version(pd.__version__) < Version("1.5.0"):
pytest.skip("__dataframe__ added to pandas in 1.5.0")
# Test that an error is raised for boolean
# and categorical dtype (copy is always made)
df = pd.DataFrame({"a": [None, False, True]})
with pytest.raises(RuntimeError):
pi.from_dataframe(df, allow_copy=False)
df = pd.DataFrame({"a": [True, False, True]})
with pytest.raises(RuntimeError):
pi.from_dataframe(df, allow_copy=False)
df = pd.DataFrame({"weekday": ["a", "b", None]})
df = df.astype("category")
with pytest.raises(RuntimeError):
pi.from_dataframe(df, allow_copy=False)
df = pd.DataFrame({"weekday": ["a", "b", "c"]})
df = df.astype("category")
with pytest.raises(RuntimeError):
pi.from_dataframe(df, allow_copy=False)
def test_empty_dataframe():
schema = pa.schema([('col1', pa.int8())])
df = pa.table([[]], schema=schema)
dfi = df.__dataframe__()
assert pi.from_dataframe(dfi) == df
|