File size: 5,115 Bytes
a605e33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from collections import OrderedDict
from datetime import date, time
import numpy as np
import pandas as pd
import pyarrow as pa
def dataframe_with_arrays(include_index=False):
"""
Dataframe with numpy arrays columns of every possible primitive type.
Returns
-------
df: pandas.DataFrame
schema: pyarrow.Schema
Arrow schema definition that is in line with the constructed df.
"""
dtypes = [('i1', pa.int8()), ('i2', pa.int16()),
('i4', pa.int32()), ('i8', pa.int64()),
('u1', pa.uint8()), ('u2', pa.uint16()),
('u4', pa.uint32()), ('u8', pa.uint64()),
('f4', pa.float32()), ('f8', pa.float64())]
arrays = OrderedDict()
fields = []
for dtype, arrow_dtype in dtypes:
fields.append(pa.field(dtype, pa.list_(arrow_dtype)))
arrays[dtype] = [
np.arange(10, dtype=dtype),
np.arange(5, dtype=dtype),
None,
np.arange(1, dtype=dtype)
]
fields.append(pa.field('str', pa.list_(pa.string())))
arrays['str'] = [
np.array(["1", "ä"], dtype="object"),
None,
np.array(["1"], dtype="object"),
np.array(["1", "2", "3"], dtype="object")
]
fields.append(pa.field('datetime64', pa.list_(pa.timestamp('ms'))))
arrays['datetime64'] = [
np.array(['2007-07-13T01:23:34.123456789',
None,
'2010-08-13T05:46:57.437699912'],
dtype='datetime64[ms]'),
None,
None,
np.array(['2007-07-13T02',
None,
'2010-08-13T05:46:57.437699912'],
dtype='datetime64[ms]'),
]
if include_index:
fields.append(pa.field('__index_level_0__', pa.int64()))
df = pd.DataFrame(arrays)
schema = pa.schema(fields)
return df, schema
def dataframe_with_lists(include_index=False, parquet_compatible=False):
"""
Dataframe with list columns of every possible primitive type.
Returns
-------
df: pandas.DataFrame
schema: pyarrow.Schema
Arrow schema definition that is in line with the constructed df.
parquet_compatible: bool
Exclude types not supported by parquet
"""
arrays = OrderedDict()
fields = []
fields.append(pa.field('int64', pa.list_(pa.int64())))
arrays['int64'] = [
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[0, 1, 2, 3, 4],
None,
[],
np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9] * 2,
dtype=np.int64)[::2]
]
fields.append(pa.field('double', pa.list_(pa.float64())))
arrays['double'] = [
[0., 1., 2., 3., 4., 5., 6., 7., 8., 9.],
[0., 1., 2., 3., 4.],
None,
[],
np.array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.] * 2)[::2],
]
fields.append(pa.field('bytes_list', pa.list_(pa.binary())))
arrays['bytes_list'] = [
[b"1", b"f"],
None,
[b"1"],
[b"1", b"2", b"3"],
[],
]
fields.append(pa.field('str_list', pa.list_(pa.string())))
arrays['str_list'] = [
["1", "ä"],
None,
["1"],
["1", "2", "3"],
[],
]
date_data = [
[],
[date(2018, 1, 1), date(2032, 12, 30)],
[date(2000, 6, 7)],
None,
[date(1969, 6, 9), date(1972, 7, 3)]
]
time_data = [
[time(23, 11, 11), time(1, 2, 3), time(23, 59, 59)],
[],
[time(22, 5, 59)],
None,
[time(0, 0, 0), time(18, 0, 2), time(12, 7, 3)]
]
temporal_pairs = [
(pa.date32(), date_data),
(pa.date64(), date_data),
(pa.time32('s'), time_data),
(pa.time32('ms'), time_data),
(pa.time64('us'), time_data)
]
if not parquet_compatible:
temporal_pairs += [
(pa.time64('ns'), time_data),
]
for value_type, data in temporal_pairs:
field_name = '{}_list'.format(value_type)
field_type = pa.list_(value_type)
field = pa.field(field_name, field_type)
fields.append(field)
arrays[field_name] = data
if include_index:
fields.append(pa.field('__index_level_0__', pa.int64()))
df = pd.DataFrame(arrays)
schema = pa.schema(fields)
return df, schema
|