File size: 6,988 Bytes
359a939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0

// DeepSpeed Team

#include "ds_kernel_utils.h"
#include "memory_access_utils.h"
#include "quantization.h"
#include "quantization_utils.h"
#include "reduction_utils.h"

namespace cg = cooperative_groups;

/*
Pure quantization kernel with no fusion.
*/
template <int q_bits,
          quantize::Type quant_type,
          int UNROLL,
          int internal_unroll,
          int threads_per_group,
          int max_threads>
__global__ void cached_quantization(int8_t* __restrict__ output_data,
                                    float* __restrict__ params,
                                    const __half* __restrict__ input_data,
                                    int groups,
                                    int elems_per_group)
{
    cg::thread_block tb = cg::this_thread_block();
    cg::thread_block_tile<hw_warp_size> warp = cg::tiled_partition<hw_warp_size>(tb);

    // Indexing offsets
    const int block_offset =
        (tb.group_index().x * (max_threads / threads_per_group) * elems_per_group) +
        (tb.thread_index().y * elems_per_group);
    const int elem_offset = tb.thread_index().x * quantize::h_per_load;
    const int base_offset = block_offset + elem_offset;
    const int stride = tb.size() * quantize::h_per_load;

    const __half* input_base = input_data + base_offset;  //..

    __half2 local_buffer[UNROLL * internal_unroll * quantize::h2_per_load];

#pragma unroll
    for (int i = 0; i < UNROLL; i++) {
        // Convenience helper, should resolve to register indices and not realize.
        __half2* iteration_buffer = local_buffer + i * internal_unroll * quantize::h2_per_load;
#pragma unroll
        for (int j = 0; j < internal_unroll; j++) {
            const int iteration = i * internal_unroll + j;
            mem_access::load_global<quantize::granularity>(
                iteration_buffer + j * quantize::h2_per_load,
                input_base + iteration * stride,
                elem_offset + iteration * stride < elems_per_group);
        }
    }

    quantize::
        local_array<quant_type, q_bits, UNROLL * internal_unroll, threads_per_group, max_threads>(
            local_buffer, params, output_data, elems_per_group, groups);
}

/********* Launcher methods ***********/
#define LAUNCH_CACHED_QUANT_CALL(q_bits, quant_type) \
    cached_quantization<q_bits,                      \
                        quant_type,                  \
                        unroll_factor,               \
                        internal_unroll_l,           \
                        threads_per_group,           \
                        max_threads>                 \
        <<<grid, block, 0, stream>>>(output_data, params, input_data, groups, elems_per_group);

#define LAUNCH_CACHED_QUANT(                                                        \
    q_bits, quant_type, unroll_factor_in, internal_unroll_in, threads_per_group_in) \
    const int unroll_factor = unroll_factor_in;                                     \
    const int internal_unroll_l = internal_unroll_in;                               \
    const int threads_per_group = threads_per_group_in;                             \
    if (q_bits == 4) {                                                              \
        if (quant_type == quantize::Type::Asymmetric) {                             \
            LAUNCH_CACHED_QUANT_CALL(4, quantize::Type::Asymmetric)                 \
        } else {                                                                    \
            LAUNCH_CACHED_QUANT_CALL(4, quantize::Type::Symmetric)                  \
        }                                                                           \
    } else {                                                                        \
        if (quant_type == quantize::Type::Asymmetric) {                             \
            LAUNCH_CACHED_QUANT_CALL(8, quantize::Type::Asymmetric)                 \
        } else {                                                                    \
            LAUNCH_CACHED_QUANT_CALL(8, quantize::Type::Symmetric)                  \
        }                                                                           \
    }

void launch_quant(int8_t* output_data,
                  float* params,
                  const __half* input_data,
                  const int groups,
                  const int elems_per_group,
                  const int num_bits,
                  const quantize::Type quant_type,
                  cudaStream_t stream)
{
    constexpr int max_threads = 256;

    constexpr int internal_unroll = 2;

    const bool is_subblock_schedule = (elems_per_group <= 128) ? true : false;
    const int h_per_step = is_subblock_schedule ? quantize::h_per_load
                                                : quantize::h_per_load * internal_unroll;

    // Scheduling concern: may be slightly faster for some inputs to assign multiple stages of
    // warp-sized blocks rather than stepping up to 64/96 threads
    const int one_step_threads = next_pow2((elems_per_group + h_per_step - 1) / h_per_step);
    const int threads_per_group = (one_step_threads < max_threads) ? one_step_threads : max_threads;

    const int groups_per_block =
        is_subblock_schedule ? (max_threads + threads_per_group - 1) / threads_per_group : 1;
    const int groups_launch = (groups_per_block + groups - 1) / groups_per_block;

    dim3 block(threads_per_group, groups_per_block);
    dim3 grid(groups_launch);

    const int elems_per_step = threads_per_group * h_per_step;
    const int external_unroll = (elems_per_group + elems_per_step - 1) / elems_per_step;

    if (is_subblock_schedule) {
        // <=128
        if (threads_per_group == 1) {
            LAUNCH_CACHED_QUANT(num_bits, quant_type, 1, 1, 1);
        } else if (threads_per_group == 2) {
            LAUNCH_CACHED_QUANT(num_bits, quant_type, 1, 1, 2);
        } else if (threads_per_group == 4) {
            LAUNCH_CACHED_QUANT(num_bits, quant_type, 1, 1, 4);
        } else if (threads_per_group == 8) {
            LAUNCH_CACHED_QUANT(num_bits, quant_type, 1, 1, 8);
        } else if (threads_per_group == 16) {
            LAUNCH_CACHED_QUANT(num_bits, quant_type, 1, 1, 16);
        }
    } else if (external_unroll == 1) {
        // 129 - 4096 elems
        // (this can launch with 1-7 warps as well)
        LAUNCH_CACHED_QUANT(num_bits, quant_type, 1, internal_unroll, max_threads);
    } else if (external_unroll == 2) {
        // 4097 - 8192 elems
        LAUNCH_CACHED_QUANT(num_bits, quant_type, 2, internal_unroll, max_threads);
    } else if (external_unroll == 3) {
        // 8193 - 12288 elems
        LAUNCH_CACHED_QUANT(num_bits, quant_type, 3, internal_unroll, max_threads);
    } else if (external_unroll == 4) {
        // 12289 - 16384 elems
        LAUNCH_CACHED_QUANT(num_bits, quant_type, 4, internal_unroll, max_threads);
    }
}