File size: 31,271 Bytes
e19ef9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import os
import sys
import time
import importlib
from pathlib import Path
import subprocess
import shlex
import shutil
import tempfile
import distutils.ccompiler
import distutils.log
import distutils.sysconfig
from distutils.errors import CompileError, LinkError
from abc import ABC, abstractmethod
from typing import List

YELLOW = '\033[93m'
END = '\033[0m'
WARNING = f"{YELLOW} [WARNING] {END}"

DEFAULT_TORCH_EXTENSION_PATH = "/tmp/torch_extensions"
DEFAULT_COMPUTE_CAPABILITIES = "6.0;6.1;7.0"

try:
    import torch
except ImportError:
    print(f"{WARNING} unable to import torch, please install it if you want to pre-compile any deepspeed ops.")
else:
    TORCH_MAJOR = int(torch.__version__.split('.')[0])
    TORCH_MINOR = int(torch.__version__.split('.')[1])


class MissingCUDAException(Exception):
    pass


class CUDAMismatchException(Exception):
    pass


def installed_cuda_version(name=""):
    import torch.utils.cpp_extension
    cuda_home = torch.utils.cpp_extension.CUDA_HOME
    if cuda_home is None:
        raise MissingCUDAException("CUDA_HOME does not exist, unable to compile CUDA op(s)")
    # Ensure there is not a cuda version mismatch between torch and nvcc compiler
    output = subprocess.check_output([cuda_home + "/bin/nvcc", "-V"], universal_newlines=True)
    output_split = output.split()
    release_idx = output_split.index("release")
    release = output_split[release_idx + 1].replace(',', '').split(".")
    # Ignore patch versions, only look at major + minor
    cuda_major, cuda_minor = release[:2]
    return int(cuda_major), int(cuda_minor)


def get_default_compute_capabilities():
    compute_caps = DEFAULT_COMPUTE_CAPABILITIES
    import torch.utils.cpp_extension
    if torch.utils.cpp_extension.CUDA_HOME is not None and installed_cuda_version()[0] >= 11:
        if installed_cuda_version()[0] == 11 and installed_cuda_version()[1] == 0:
            # Special treatment of CUDA 11.0 because compute_86 is not supported.
            compute_caps += ";8.0"
        else:
            compute_caps += ";8.0;8.6"
    return compute_caps


# list compatible minor CUDA versions - so that for example pytorch built with cuda-11.0 can be used
# to build deepspeed and system-wide installed cuda 11.2
cuda_minor_mismatch_ok = {
    10: ["10.0", "10.1", "10.2"],
    11: ["11.0", "11.1", "11.2", "11.3", "11.4", "11.5", "11.6", "11.7", "11.8"],
    12: ["12.0", "12.1", "12.2", "12.3"],
}


def assert_no_cuda_mismatch(name=""):
    cuda_major, cuda_minor = installed_cuda_version(name)
    sys_cuda_version = f'{cuda_major}.{cuda_minor}'
    torch_cuda_version = ".".join(torch.version.cuda.split('.')[:2])
    # This is a show-stopping error, should probably not proceed past this
    if sys_cuda_version != torch_cuda_version:
        if (cuda_major in cuda_minor_mismatch_ok and sys_cuda_version in cuda_minor_mismatch_ok[cuda_major]
                and torch_cuda_version in cuda_minor_mismatch_ok[cuda_major]):
            print(f"Installed CUDA version {sys_cuda_version} does not match the "
                  f"version torch was compiled with {torch.version.cuda} "
                  "but since the APIs are compatible, accepting this combination")
            return True
        elif os.getenv("DS_SKIP_CUDA_CHECK", "0") == "1":
            print(
                f"{WARNING} DeepSpeed Op Builder: Installed CUDA version {sys_cuda_version} does not match the "
                f"version torch was compiled with {torch.version.cuda}."
                "Detected `DS_SKIP_CUDA_CHECK=1`: Allowing this combination of CUDA, but it may result in unexpected behavior."
            )
            return True
        raise CUDAMismatchException(
            f">- DeepSpeed Op Builder: Installed CUDA version {sys_cuda_version} does not match the "
            f"version torch was compiled with {torch.version.cuda}, unable to compile "
            "cuda/cpp extensions without a matching cuda version.")
    return True


class OpBuilder(ABC):
    _rocm_version = None
    _is_rocm_pytorch = None
    _is_sycl_enabled = None
    _loaded_ops = {}

    def __init__(self, name):
        self.name = name
        self.jit_mode = False
        self.build_for_cpu = False
        self.enable_bf16 = False
        self.error_log = None

    @abstractmethod
    def absolute_name(self):
        '''
        Returns absolute build path for cases where the op is pre-installed, e.g., deepspeed.ops.adam.cpu_adam
        will be installed as something like: deepspeed/ops/adam/cpu_adam.so
        '''
        pass

    @abstractmethod
    def sources(self):
        '''
        Returns list of source files for your op, relative to root of deepspeed package (i.e., DeepSpeed/deepspeed)
        '''
        pass

    def hipify_extension(self):
        pass

    def sycl_extension(self):
        pass

    @staticmethod
    def validate_torch_version(torch_info):
        install_torch_version = torch_info['version']
        current_torch_version = ".".join(torch.__version__.split('.')[:2])
        if install_torch_version != current_torch_version:
            raise RuntimeError("PyTorch version mismatch! DeepSpeed ops were compiled and installed "
                               "with a different version than what is being used at runtime. "
                               f"Please re-install DeepSpeed or switch torch versions. "
                               f"Install torch version={install_torch_version}, "
                               f"Runtime torch version={current_torch_version}")

    @staticmethod
    def validate_torch_op_version(torch_info):
        if not OpBuilder.is_rocm_pytorch():
            current_cuda_version = ".".join(torch.version.cuda.split('.')[:2])
            install_cuda_version = torch_info['cuda_version']
            if install_cuda_version != current_cuda_version:
                raise RuntimeError("CUDA version mismatch! DeepSpeed ops were compiled and installed "
                                   "with a different version than what is being used at runtime. "
                                   f"Please re-install DeepSpeed or switch torch versions. "
                                   f"Install CUDA version={install_cuda_version}, "
                                   f"Runtime CUDA version={current_cuda_version}")
        else:
            current_hip_version = ".".join(torch.version.hip.split('.')[:2])
            install_hip_version = torch_info['hip_version']
            if install_hip_version != current_hip_version:
                raise RuntimeError("HIP version mismatch! DeepSpeed ops were compiled and installed "
                                   "with a different version than what is being used at runtime. "
                                   f"Please re-install DeepSpeed or switch torch versions. "
                                   f"Install HIP version={install_hip_version}, "
                                   f"Runtime HIP version={current_hip_version}")

    @staticmethod
    def is_rocm_pytorch():
        if OpBuilder._is_rocm_pytorch is not None:
            return OpBuilder._is_rocm_pytorch

        _is_rocm_pytorch = False
        try:
            import torch
        except ImportError:
            pass
        else:
            if TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 5):
                _is_rocm_pytorch = hasattr(torch.version, 'hip') and torch.version.hip is not None
                if _is_rocm_pytorch:
                    from torch.utils.cpp_extension import ROCM_HOME
                    _is_rocm_pytorch = ROCM_HOME is not None
        OpBuilder._is_rocm_pytorch = _is_rocm_pytorch
        return OpBuilder._is_rocm_pytorch

    @staticmethod
    def is_sycl_enabled():
        if OpBuilder._is_sycl_enabled is not None:
            return OpBuilder._is_sycl_enabled

        _is_sycl_enabled = False
        try:
            result = subprocess.run(["c2s", "--version"], capture_output=True)
        except:
            pass
        else:
            _is_sycl_enabled = True

        OpBuilder._is_sycl_enabled = _is_sycl_enabled
        return OpBuilder._is_sycl_enabled

    @staticmethod
    def installed_rocm_version():
        if OpBuilder._rocm_version:
            return OpBuilder._rocm_version

        ROCM_MAJOR = '0'
        ROCM_MINOR = '0'
        if OpBuilder.is_rocm_pytorch():
            from torch.utils.cpp_extension import ROCM_HOME
            rocm_ver_file = Path(ROCM_HOME).joinpath(".info/version-dev")
            if rocm_ver_file.is_file():
                with open(rocm_ver_file, 'r') as file:
                    ROCM_VERSION_DEV_RAW = file.read()
            elif "rocm" in torch.__version__:
                ROCM_VERSION_DEV_RAW = torch.__version__.split("rocm")[1]
            else:
                assert False, "Could not detect ROCm version"
            assert ROCM_VERSION_DEV_RAW != "", "Could not detect ROCm version"
            ROCM_MAJOR = ROCM_VERSION_DEV_RAW.split('.')[0]
            ROCM_MINOR = ROCM_VERSION_DEV_RAW.split('.')[1]
        OpBuilder._rocm_version = (int(ROCM_MAJOR), int(ROCM_MINOR))
        return OpBuilder._rocm_version

    def include_paths(self):
        '''
        Returns list of include paths, relative to root of deepspeed package (i.e., DeepSpeed/deepspeed)
        '''
        return []

    def nvcc_args(self):
        '''
        Returns optional list of compiler flags to forward to nvcc when building CUDA sources
        '''
        return []

    def cxx_args(self):
        '''
        Returns optional list of compiler flags to forward to the build
        '''
        return []

    def is_compatible(self, verbose=True):
        '''
        Check if all non-python dependencies are satisfied to build this op
        '''
        return True

    def extra_ldflags(self):
        return []

    def has_function(self, funcname, libraries, verbose=False):
        '''
        Test for existence of a function within a tuple of libraries.

        This is used as a smoke test to check whether a certain library is available.
        As a test, this creates a simple C program that calls the specified function,
        and then distutils is used to compile that program and link it with the specified libraries.
        Returns True if both the compile and link are successful, False otherwise.
        '''
        tempdir = None  # we create a temporary directory to hold various files
        filestderr = None  # handle to open file to which we redirect stderr
        oldstderr = None  # file descriptor for stderr
        try:
            # Echo compile and link commands that are used.
            if verbose:
                distutils.log.set_verbosity(1)

            # Create a compiler object.
            compiler = distutils.ccompiler.new_compiler(verbose=verbose)

            # Configure compiler and linker to build according to Python install.
            distutils.sysconfig.customize_compiler(compiler)

            # Create a temporary directory to hold test files.
            tempdir = tempfile.mkdtemp()

            # Define a simple C program that calls the function in question
            prog = "void %s(void); int main(int argc, char** argv) { %s(); return 0; }" % (funcname, funcname)

            # Write the test program to a file.
            filename = os.path.join(tempdir, 'test.c')
            with open(filename, 'w') as f:
                f.write(prog)

            # Redirect stderr file descriptor to a file to silence compile/link warnings.
            if not verbose:
                filestderr = open(os.path.join(tempdir, 'stderr.txt'), 'w')
                oldstderr = os.dup(sys.stderr.fileno())
                os.dup2(filestderr.fileno(), sys.stderr.fileno())

            # Workaround for behavior in distutils.ccompiler.CCompiler.object_filenames()
            # Otherwise, a local directory will be used instead of tempdir
            drive, driveless_filename = os.path.splitdrive(filename)
            root_dir = driveless_filename[0] if os.path.isabs(driveless_filename) else ''
            output_dir = os.path.join(drive, root_dir)

            # Attempt to compile the C program into an object file.
            cflags = shlex.split(os.environ.get('CFLAGS', ""))
            objs = compiler.compile([filename], output_dir=output_dir, extra_preargs=self.strip_empty_entries(cflags))

            # Attempt to link the object file into an executable.
            # Be sure to tack on any libraries that have been specified.
            ldflags = shlex.split(os.environ.get('LDFLAGS', ""))
            compiler.link_executable(objs,
                                     os.path.join(tempdir, 'a.out'),
                                     extra_preargs=self.strip_empty_entries(ldflags),
                                     libraries=libraries)

            # Compile and link succeeded
            return True

        except CompileError:
            return False

        except LinkError:
            return False

        except:
            return False

        finally:
            # Restore stderr file descriptor and close the stderr redirect file.
            if oldstderr is not None:
                os.dup2(oldstderr, sys.stderr.fileno())
            if filestderr is not None:
                filestderr.close()

            # Delete the temporary directory holding the test program and stderr files.
            if tempdir is not None:
                shutil.rmtree(tempdir)

    def strip_empty_entries(self, args):
        '''
        Drop any empty strings from the list of compile and link flags
        '''
        return [x for x in args if len(x) > 0]

    def cpu_arch(self):
        try:
            from cpuinfo import get_cpu_info
        except ImportError as e:
            cpu_info = self._backup_cpuinfo()
            if cpu_info is None:
                return "-march=native"

        try:
            cpu_info = get_cpu_info()
        except Exception as e:
            self.warning(f"{self.name} attempted to use `py-cpuinfo` but failed (exception type: {type(e)}, {e}), "
                         "falling back to `lscpu` to get this information.")
            cpu_info = self._backup_cpuinfo()
            if cpu_info is None:
                return "-march=native"

        if cpu_info['arch'].startswith('PPC_'):
            # gcc does not provide -march on PowerPC, use -mcpu instead
            return '-mcpu=native'
        return '-march=native'

    def is_cuda_enable(self):
        try:
            assert_no_cuda_mismatch(self.name)
            return '-D__ENABLE_CUDA__'
        except MissingCUDAException:
            print(f"{WARNING} {self.name} cuda is missing or is incompatible with installed torch, "
                  "only cpu ops can be compiled!")
            return '-D__DISABLE_CUDA__'
        return '-D__DISABLE_CUDA__'

    def _backup_cpuinfo(self):
        # Construct cpu_info dict from lscpu that is similar to what py-cpuinfo provides
        if not self.command_exists('lscpu'):
            self.warning(f"{self.name} attempted to query 'lscpu' after failing to use py-cpuinfo "
                         "to detect the CPU architecture. 'lscpu' does not appear to exist on "
                         "your system, will fall back to use -march=native and non-vectorized execution.")
            return None
        result = subprocess.check_output('lscpu', shell=True)
        result = result.decode('utf-8').strip().lower()

        cpu_info = {}
        cpu_info['arch'] = None
        cpu_info['flags'] = ""
        if 'genuineintel' in result or 'authenticamd' in result:
            cpu_info['arch'] = 'X86_64'
            if 'avx512' in result:
                cpu_info['flags'] += 'avx512,'
            elif 'avx512f' in result:
                cpu_info['flags'] += 'avx512f,'
            if 'avx2' in result:
                cpu_info['flags'] += 'avx2'
        elif 'ppc64le' in result:
            cpu_info['arch'] = "PPC_"

        return cpu_info

    def simd_width(self):
        try:
            from cpuinfo import get_cpu_info
        except ImportError as e:
            cpu_info = self._backup_cpuinfo()
            if cpu_info is None:
                return '-D__SCALAR__'

        try:
            cpu_info = get_cpu_info()
        except Exception as e:
            self.warning(f"{self.name} attempted to use `py-cpuinfo` but failed (exception type: {type(e)}, {e}), "
                         "falling back to `lscpu` to get this information.")
            cpu_info = self._backup_cpuinfo()
            if cpu_info is None:
                return '-D__SCALAR__'

        if cpu_info['arch'] == 'X86_64':
            if 'avx512' in cpu_info['flags'] or 'avx512f' in cpu_info['flags']:
                return '-D__AVX512__'
            elif 'avx2' in cpu_info['flags']:
                return '-D__AVX256__'
        return '-D__SCALAR__'

    def command_exists(self, cmd):
        if '|' in cmd:
            cmds = cmd.split("|")
        else:
            cmds = [cmd]
        valid = False
        for cmd in cmds:
            result = subprocess.Popen(f'type {cmd}', stdout=subprocess.PIPE, shell=True)
            valid = valid or result.wait() == 0

        if not valid and len(cmds) > 1:
            print(f"{WARNING} {self.name} requires one of the following commands '{cmds}', but it does not exist!")
        elif not valid and len(cmds) == 1:
            print(f"{WARNING} {self.name} requires the '{cmd}' command, but it does not exist!")
        return valid

    def warning(self, msg):
        self.error_log = f"{msg}"
        print(f"{WARNING} {msg}")

    def deepspeed_src_path(self, code_path):
        if os.path.isabs(code_path):
            return code_path
        else:
            return os.path.join(Path(__file__).parent.parent.absolute(), code_path)

    def builder(self):
        from torch.utils.cpp_extension import CppExtension
        include_dirs = [os.path.abspath(x) for x in self.strip_empty_entries(self.include_paths())]
        return CppExtension(name=self.absolute_name(),
                            sources=self.strip_empty_entries(self.sources()),
                            include_dirs=include_dirs,
                            extra_compile_args={'cxx': self.strip_empty_entries(self.cxx_args())},
                            extra_link_args=self.strip_empty_entries(self.extra_ldflags()))

    def load(self, verbose=True):
        if self.name in __class__._loaded_ops:
            return __class__._loaded_ops[self.name]

        from deepspeed.git_version_info import installed_ops, torch_info, accelerator_name
        from deepspeed.accelerator import get_accelerator
        if installed_ops.get(self.name, False) and accelerator_name == get_accelerator()._name:
            # Ensure the op we're about to load was compiled with the same
            # torch/cuda versions we are currently using at runtime.
            self.validate_torch_version(torch_info)
            if torch.cuda.is_available() and isinstance(self, CUDAOpBuilder):
                self.validate_torch_op_version(torch_info)

            op_module = importlib.import_module(self.absolute_name())
            __class__._loaded_ops[self.name] = op_module
            return op_module
        else:
            return self.jit_load(verbose)

    def jit_load(self, verbose=True):
        if not self.is_compatible(verbose):
            raise RuntimeError(
                f"Unable to JIT load the {self.name} op due to it not being compatible due to hardware/software issue. {self.error_log}"
            )
        try:
            import ninja  # noqa: F401 # type: ignore
        except ImportError:
            raise RuntimeError(f"Unable to JIT load the {self.name} op due to ninja not being installed.")

        if isinstance(self, CUDAOpBuilder) and not self.is_rocm_pytorch():
            self.build_for_cpu = not torch.cuda.is_available()

        self.jit_mode = True
        from torch.utils.cpp_extension import load

        start_build = time.time()
        sources = [os.path.abspath(self.deepspeed_src_path(path)) for path in self.sources()]
        extra_include_paths = [os.path.abspath(self.deepspeed_src_path(path)) for path in self.include_paths()]

        # Torch will try and apply whatever CCs are in the arch list at compile time,
        # we have already set the intended targets ourselves we know that will be
        # needed at runtime. This prevents CC collisions such as multiple __half
        # implementations. Stash arch list to reset after build.
        torch_arch_list = None
        if "TORCH_CUDA_ARCH_LIST" in os.environ:
            torch_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST")
            os.environ["TORCH_CUDA_ARCH_LIST"] = ""

        nvcc_args = self.strip_empty_entries(self.nvcc_args())
        cxx_args = self.strip_empty_entries(self.cxx_args())

        if isinstance(self, CUDAOpBuilder):
            if not self.build_for_cpu and self.enable_bf16:
                cxx_args.append("-DBF16_AVAILABLE")
                nvcc_args.append("-DBF16_AVAILABLE")
                nvcc_args.append("-U__CUDA_NO_BFLOAT16_OPERATORS__")
                nvcc_args.append("-U__CUDA_NO_BFLOAT162_OPERATORS__")

        if self.is_rocm_pytorch():
            cxx_args.append("-D__HIP_PLATFORM_AMD__=1")

        op_module = load(name=self.name,
                         sources=self.strip_empty_entries(sources),
                         extra_include_paths=self.strip_empty_entries(extra_include_paths),
                         extra_cflags=cxx_args,
                         extra_cuda_cflags=nvcc_args,
                         extra_ldflags=self.strip_empty_entries(self.extra_ldflags()),
                         verbose=verbose)

        build_duration = time.time() - start_build
        if verbose:
            print(f"Time to load {self.name} op: {build_duration} seconds")

        # Reset arch list so we are not silently removing it for other possible use cases
        if torch_arch_list:
            os.environ["TORCH_CUDA_ARCH_LIST"] = torch_arch_list

        __class__._loaded_ops[self.name] = op_module

        return op_module


class CUDAOpBuilder(OpBuilder):

    def compute_capability_args(self, cross_compile_archs=None):
        """
        Returns nvcc compute capability compile flags.

        1. `TORCH_CUDA_ARCH_LIST` takes priority over `cross_compile_archs`.
        2. If neither is set default compute capabilities will be used
        3. Under `jit_mode` compute capabilities of all visible cards will be used plus PTX

        Format:

        - `TORCH_CUDA_ARCH_LIST` may use ; or whitespace separators. Examples:

        TORCH_CUDA_ARCH_LIST="6.1;7.5;8.6" pip install ...
        TORCH_CUDA_ARCH_LIST="6.0 6.1 7.0 7.5 8.0 8.6+PTX" pip install ...

        - `cross_compile_archs` uses ; separator.

        """
        ccs = []
        if self.jit_mode:
            # Compile for underlying architectures since we know those at runtime
            for i in range(torch.cuda.device_count()):
                CC_MAJOR, CC_MINOR = torch.cuda.get_device_capability(i)
                cc = f"{CC_MAJOR}.{CC_MINOR}"
                if cc not in ccs:
                    ccs.append(cc)
            ccs = sorted(ccs)
            ccs[-1] += '+PTX'
        else:
            # Cross-compile mode, compile for various architectures
            # env override takes priority
            cross_compile_archs_env = os.environ.get('TORCH_CUDA_ARCH_LIST', None)
            if cross_compile_archs_env is not None:
                if cross_compile_archs is not None:
                    print(
                        f"{WARNING} env var `TORCH_CUDA_ARCH_LIST={cross_compile_archs_env}` overrides `cross_compile_archs={cross_compile_archs}`"
                    )
                cross_compile_archs = cross_compile_archs_env.replace(' ', ';')
            else:
                if cross_compile_archs is None:
                    cross_compile_archs = get_default_compute_capabilities()
            ccs = cross_compile_archs.split(';')

        ccs = self.filter_ccs(ccs)
        if len(ccs) == 0:
            raise RuntimeError(
                f"Unable to load {self.name} op due to no compute capabilities remaining after filtering")

        args = []
        self.enable_bf16 = True
        for cc in ccs:
            num = cc[0] + cc[2]
            args.append(f'-gencode=arch=compute_{num},code=sm_{num}')
            if cc.endswith('+PTX'):
                args.append(f'-gencode=arch=compute_{num},code=compute_{num}')

            if int(cc[0]) <= 7:
                self.enable_bf16 = False

        return args

    def filter_ccs(self, ccs: List[str]):
        """
        Prune any compute capabilities that are not compatible with the builder. Should log
        which CCs have been pruned.
        """
        return ccs

    def version_dependent_macros(self):
        # Fix from apex that might be relevant for us as well, related to https://github.com/NVIDIA/apex/issues/456
        version_ge_1_1 = []
        if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 0):
            version_ge_1_1 = ['-DVERSION_GE_1_1']
        version_ge_1_3 = []
        if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 2):
            version_ge_1_3 = ['-DVERSION_GE_1_3']
        version_ge_1_5 = []
        if (TORCH_MAJOR > 1) or (TORCH_MAJOR == 1 and TORCH_MINOR > 4):
            version_ge_1_5 = ['-DVERSION_GE_1_5']
        return version_ge_1_1 + version_ge_1_3 + version_ge_1_5

    def is_compatible(self, verbose=True):
        return super().is_compatible(verbose)

    def builder(self):
        try:
            if not self.is_rocm_pytorch():
                assert_no_cuda_mismatch(self.name)
            self.build_for_cpu = False
        except MissingCUDAException:
            self.build_for_cpu = True

        if self.build_for_cpu:
            from torch.utils.cpp_extension import CppExtension as ExtensionBuilder
        else:
            from torch.utils.cpp_extension import CUDAExtension as ExtensionBuilder
        include_dirs = [os.path.abspath(x) for x in self.strip_empty_entries(self.include_paths())]
        compile_args = {'cxx': self.strip_empty_entries(self.cxx_args())} if self.build_for_cpu else \
                       {'cxx': self.strip_empty_entries(self.cxx_args()), \
                        'nvcc': self.strip_empty_entries(self.nvcc_args())}

        if not self.build_for_cpu and self.enable_bf16:
            compile_args['cxx'].append("-DBF16_AVAILABLE")

        if self.is_rocm_pytorch():
            compile_args['cxx'].append("-D__HIP_PLATFORM_AMD__=1")

        cuda_ext = ExtensionBuilder(name=self.absolute_name(),
                                    sources=self.strip_empty_entries(self.sources()),
                                    include_dirs=include_dirs,
                                    libraries=self.strip_empty_entries(self.libraries_args()),
                                    extra_compile_args=compile_args,
                                    extra_link_args=self.strip_empty_entries(self.extra_ldflags()))

        if self.is_rocm_pytorch():
            # hip converts paths to absolute, this converts back to relative
            sources = cuda_ext.sources
            curr_file = Path(__file__).parent.parent  # ds root
            for i in range(len(sources)):
                src = Path(sources[i])
                if src.is_absolute():
                    sources[i] = str(src.relative_to(curr_file))
                else:
                    sources[i] = str(src)
            cuda_ext.sources = sources
        return cuda_ext

    def hipify_extension(self):
        if self.is_rocm_pytorch():
            from torch.utils.hipify import hipify_python
            hipify_python.hipify(
                project_directory=os.getcwd(),
                output_directory=os.getcwd(),
                header_include_dirs=self.include_paths(),
                includes=[os.path.join(os.getcwd(), '*')],
                extra_files=[os.path.abspath(s) for s in self.sources()],
                show_detailed=True,
                is_pytorch_extension=True,
                hipify_extra_files_only=True,
            )

    def cxx_args(self):
        if sys.platform == "win32":
            return ['-O2']
        else:
            return ['-O3', '-std=c++17', '-g', '-Wno-reorder']

    def nvcc_args(self):
        if self.build_for_cpu:
            return []
        args = ['-O3']
        if self.is_rocm_pytorch():
            ROCM_MAJOR, ROCM_MINOR = self.installed_rocm_version()
            args += [
                '-std=c++17', '-U__HIP_NO_HALF_OPERATORS__', '-U__HIP_NO_HALF_CONVERSIONS__',
                '-U__HIP_NO_HALF2_OPERATORS__',
                '-DROCM_VERSION_MAJOR=%s' % ROCM_MAJOR,
                '-DROCM_VERSION_MINOR=%s' % ROCM_MINOR
            ]
        else:
            try:
                nvcc_threads = int(os.getenv("DS_NVCC_THREADS", ""))
                if nvcc_threads <= 0:
                    raise ValueError("")
            except ValueError:
                nvcc_threads = min(os.cpu_count(), 8)

            cuda_major, _ = installed_cuda_version()
            args += [
                '-allow-unsupported-compiler' if sys.platform == "win32" else '', '--use_fast_math',
                '-std=c++17' if cuda_major > 10 else '-std=c++14', '-U__CUDA_NO_HALF_OPERATORS__',
                '-U__CUDA_NO_HALF_CONVERSIONS__', '-U__CUDA_NO_HALF2_OPERATORS__', f'--threads={nvcc_threads}'
            ]
            if os.environ.get('DS_DEBUG_CUDA_BUILD', '0') == '1':
                args.append('--ptxas-options=-v')
            args += self.compute_capability_args()
        return args

    def libraries_args(self):
        if self.build_for_cpu:
            return []

        if sys.platform == "win32":
            return ['cublas', 'curand']
        else:
            return []


class TorchCPUOpBuilder(CUDAOpBuilder):

    def extra_ldflags(self):
        if self.build_for_cpu:
            return ['-fopenmp']

        if not self.is_rocm_pytorch():
            return ['-lcurand']

        return []

    def cxx_args(self):
        import torch
        args = []
        if not self.build_for_cpu:
            if not self.is_rocm_pytorch():
                CUDA_LIB64 = os.path.join(torch.utils.cpp_extension.CUDA_HOME, "lib64")
                if not os.path.exists(CUDA_LIB64):
                    CUDA_LIB64 = os.path.join(torch.utils.cpp_extension.CUDA_HOME, "lib")
            else:
                CUDA_LIB64 = os.path.join(torch.utils.cpp_extension.ROCM_HOME, "lib")

            args += super().cxx_args()
            args += [
                f'-L{CUDA_LIB64}',
                '-lcudart',
                '-lcublas',
                '-g',
            ]

        CPU_ARCH = self.cpu_arch()
        SIMD_WIDTH = self.simd_width()
        CUDA_ENABLE = self.is_cuda_enable()
        args += [
            CPU_ARCH,
            '-fopenmp',
            SIMD_WIDTH,
            CUDA_ENABLE,
        ]

        return args