File size: 11,948 Bytes
2334d5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
import deepspeed
from torch import Tensor
from typing import Tuple
import torch.nn as nn
from typing import Dict, Callable, Union
from deepspeed.accelerator import get_accelerator
import functools
device = get_accelerator().device_name() if get_accelerator().is_available() else 'cpu'
quantizer_cuda_module = None
def get_quantizer_cuda_module():
global quantizer_cuda_module
if quantizer_cuda_module is None:
quantizer_cuda_module = deepspeed.ops.op_builder.QuantizerBuilder().load()
return quantizer_cuda_module
def tensor_clamp(tensor: Tensor, min, max) -> Tensor:
if tensor.device.type == 'cpu' and tensor.dtype == torch.float16:
# CPU does not support FP16 clamp
return tensor.to(dtype=torch.float32).clamp_(min, max).to(dtype=torch.float16)
else:
return tensor.clamp_(min, max)
def tensor_round(tensor: Tensor) -> Tensor:
if tensor.device.type == 'cpu' and tensor.dtype == torch.float16:
# CPU does not support FP16 round
return tensor.to(dtype=torch.float32).round_().to(dtype=torch.float16)
else:
return tensor.round_()
class Quantizer:
def __init__(self, config: Dict) -> None:
self.config = config
assert self.config['num_bits'] == 4 or self.config[
'num_bits'] == 8, 'Only INT4 and INT8 quantization is supported.'
assert self.config['symmetric'] == False, 'Only asymmetric quantization is supported at this moment.'
def quantize(self, tensor: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
assert tensor.shape[self.config['group_dim']] % self.config['group_size'] == 0 \
, f'Tensor shape: {tensor.shape} quantization config {self.config}'
tensor = torch.clone(tensor)
shape = tensor.shape
num_groups = shape[self.config['group_dim']] // self.config['group_size']
new_shape = (shape[:self.config['group_dim']] + (num_groups, self.config['group_size']) +
shape[self.config['group_dim'] + 1:])
tensor = tensor.view(new_shape)
quantized_tensor, scale, min_value = self._quantize_int8(tensor)
quantized_tensor = quantized_tensor.view(shape)
if self.config['num_bits'] == 4:
return self._compress_uint8_to_uint4(quantized_tensor), scale, min_value
if self.config['num_bits'] == 8:
return quantized_tensor, scale, min_value
assert False, 'Unsupported quantization bits {}'.format(self.config['num_bits'])
def _quantize_int8(self, tensor: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
q_range = 2**self.config['num_bits'] - 1
min_value = tensor.amin(dim=self.config['group_dim'] + 1, keepdim=True)
max_value = tensor.amax(dim=self.config['group_dim'] + 1, keepdim=True)
scale = q_range / (max_value - min_value)
tensor = tensor.sub_(min_value).mul_(scale)
tensor = tensor_round(tensor_clamp(tensor, 0, q_range)).to(torch.uint8)
return tensor, scale, min_value
def _compress_uint8_to_uint4(self, tensor: Tensor) -> Tensor:
assert tensor.shape[-1] % 2 == 0
new_data_shape = list(tensor.shape)
new_data_shape[-1] = new_data_shape[-1] // 2
data = torch.empty(new_data_shape, dtype=torch.uint8, device=tensor.device)
data = torch.bitwise_or(tensor[..., 0::2].bitwise_left_shift(4), tensor[..., 1::2])
return data
class DeQuantizer:
def __init__(self, config: Dict, dtype: torch.dtype) -> None:
self.config = config
self.dtype = dtype
assert self.config['num_bits'] == 4 or self.config[
'num_bits'] == 8, 'Only INT4 and INT8 quantization is supported.'
assert self.config['symmetric'] == False, 'Only asymmetric quantization is supported at this moment.'
def dequantize(self, tensor: Tensor, quant_scale: Tensor, quant_min: Tensor) -> Tensor:
# Use customized CUDA quantization kernel if possible.
if self.config['group_size'] % 8 == 0 and \
(self.config['num_bits'] == 4 or self.config['num_bits'] == 8) and \
self.config['group_dim'] == len(tensor.shape) - 1 and \
self.dtype == torch.float16 and device == 'cuda':
last_dimension_size = self.config['group_size']
if self.config['num_bits'] == 4:
last_dimension_size = last_dimension_size // 2
quantized_tensor = get_quantizer_cuda_module().dequantize_int4_to_half_experimental(
tensor.reshape(-1, last_dimension_size), quant_scale, quant_min,
tensor.numel() // last_dimension_size, self.config['group_size'])
shape = list(tensor.shape)
shape[-1] = shape[-1] * 2
elif self.config['num_bits'] == 8:
# last_dimension_size = last_dimension_size // 2
quantized_tensor = get_quantizer_cuda_module().dequantize_int8_to_half_experimental(
tensor.reshape(-1, last_dimension_size), quant_scale, quant_min,
tensor.numel() // last_dimension_size, self.config['group_size'])
shape = list(tensor.shape)
return quantized_tensor.reshape(shape)
if self.config['num_bits'] == 4:
tensor = self._decompress_uint4_to_uint8(tensor)
elif self.config['num_bits'] != 8:
assert False, 'Unsupported quantization bits {}'.format(self.config['num_bits'])
shape = tensor.shape
num_groups = shape[self.config['group_dim']] // self.config['group_size']
new_shape = (shape[:self.config['group_dim']] + (num_groups, self.config['group_size']) +
shape[self.config['group_dim'] + 1:])
tensor = tensor.view(new_shape)
dequantized_tensor = self._dequantize_int8(tensor, quant_scale, quant_min).view(shape)
return dequantized_tensor
def _dequantize_int8(self, tensor: Tensor, quant_scale: Tensor, quant_min: Tensor) -> Tensor:
assert tensor.dtype == torch.uint8
data = torch.zeros_like(tensor, dtype=self.dtype, device=tensor.device)
data = data.copy_(tensor)
data = data.div_(quant_scale).add_(quant_min)
return data
def _decompress_uint4_to_uint8(self, tensor: Tensor) -> Tensor:
new_data_shape = list(tensor.shape)
new_data_shape[-1] = new_data_shape[-1] * 2
data = torch.empty(new_data_shape, dtype=torch.uint8, device=tensor.device)
data[..., 0::2] = tensor.bitwise_right_shift(4)
data[..., 1::2] = tensor.bitwise_and(0xF)
return data
def get_AsyncPartitionedParameterSwapper(model: nn.Module):
for param_name, param in model.named_parameters():
if hasattr(param, 'nvme_swapper') and param.nvme_swapper is not None:
return param.nvme_swapper
return None
def recursive_setattr(model, module_name, module):
"""
Recursively set the attribute of a module.
Args:
model (`torch.nn.Module`)
The model to set the attribute in.
module_name (`str`)
The name of the module to set the attribute in.
module (`torch.nn.Module`)
The module to set the attribute to.
"""
split_list = module_name.split('.')
output = model
for name in split_list[:-1]:
output = getattr(output, name)
output.__setattr__(split_list[-1], module)
def concat_to_compat_param(quantized_weight: Tensor,
quant_scale: Tensor,
quant_min: Tensor,
return_param: bool = True) -> Union[nn.Parameter, Tensor]:
shape_wieght = quantized_weight.shape
shape_scale = quant_scale.shape
shape_min = quant_min.shape
quantized_weight = torch.flatten(quantized_weight)
quant_scale = torch.flatten(quant_scale)
quant_min = torch.flatten(quant_min)
def deconcat_individual_tensors(shape_wieght: torch.Size, shape_scale: torch.Size,
shape_min: torch.Size) -> Callable:
def fn(compat_tensor: nn.Parameter) -> Tuple[Tensor, Tensor, Tensor]:
weight = torch.narrow(compat_tensor, 0, 0, shape_wieght.numel()).view(shape_wieght)
scale = torch.narrow(compat_tensor, 0, shape_wieght.numel(), shape_scale.numel()).view(shape_scale)
min_val = torch.narrow(compat_tensor, 0,
shape_wieght.numel() + shape_scale.numel(), shape_min.numel()).view(shape_min)
return weight, scale, min_val
return fn
compat_tensor = torch.concat([quantized_weight, quant_scale, quant_min])
if return_param:
compat_tensor = nn.Parameter(compat_tensor, requires_grad=False)
compat_tensor.deconcat = deconcat_individual_tensors(shape_wieght, shape_scale, shape_min)
return compat_tensor
def _quantize_param(param: nn.Parameter, quant_config: Dict):
assert not hasattr(param, 'weight_quantized'), 'Parameter has already been quantized.'
quantizer = Quantizer(quant_config)
dequantizer = DeQuantizer(quant_config, param.dtype)
quantized_weight, quant_scale, quant_min = quantizer.quantize(param.data)
quantized_weight = quantized_weight.view(param.dtype)
quant_scale = quant_scale.view(param.dtype)
quant_min = quant_min.view(param.dtype)
quantized_compat_tensor = concat_to_compat_param(quantized_weight, quant_scale, quant_min)
param.data = quantized_compat_tensor
param.deconcat = quantized_compat_tensor.deconcat
param.quantizer = quantizer
param.dequantizer = dequantizer
setattr(param, 'weight_quantized', True)
def wrap_quantized_functional(f):
@functools.wraps(f)
def wrapper(input: Tensor, weight: nn.Parameter, *args, **kwargs) -> Tensor:
if hasattr(weight, 'weight_quantized') and getattr(weight, 'weight_quantized'):
quantized_weight, quant_scale, quant_min = weight.deconcat(weight)
temp_dequantized_weight = weight.dequantizer.dequantize(quantized_weight.view(torch.uint8), quant_scale,
quant_min)
return f(input, temp_dequantized_weight, *args, **kwargs)
else:
return f(input, weight, *args, **kwargs)
return wrapper
def wrap_load_from_state_dict(f):
@functools.wraps(f)
def wrapper(model, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
replaced_old_value = None
key = None
# We may have nested wrappers if we launch multiple initialization context.
# Use state_dict_quantized flag to quantize state_dict only once
if hasattr(model.weight, 'weight_quantized') and getattr(
model.weight, 'weight_quantized') and not hasattr(model.weight, 'state_dict_quantized'):
setattr(model.weight, 'state_dict_quantized', True)
key = prefix + 'weight'
if key in state_dict:
quantized_weight, quant_scale, quant_min = model.weight.quantizer.quantize(state_dict[key])
quantized_weight = quantized_weight.view(model.weight.dtype)
quant_scale = quant_scale.view(model.weight.dtype)
quant_min = quant_min.view(model.weight.dtype)
replaced_old_value = state_dict[key]
state_dict[key] = concat_to_compat_param(quantized_weight, quant_scale, quant_min)
f(model, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
if replaced_old_value is not None:
state_dict[key] = replaced_old_value
delattr(model.weight, 'state_dict_quantized')
return wrapper
WEIGHT_QUANTIZATION_LAYERS = (
nn.Linear,
nn.Embedding,
)
|