File size: 20,765 Bytes
685344b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
# Natural Language Toolkit: IBM Model 4
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Tah Wei Hoon <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

"""

Translation model that reorders output words based on their type and

distance from other related words in the output sentence.



IBM Model 4 improves the distortion model of Model 3, motivated by the

observation that certain words tend to be re-ordered in a predictable

way relative to one another. For example, <adjective><noun> in English

usually has its order flipped as <noun><adjective> in French.



Model 4 requires words in the source and target vocabularies to be

categorized into classes. This can be linguistically driven, like parts

of speech (adjective, nouns, prepositions, etc). Word classes can also

be obtained by statistical methods. The original IBM Model 4 uses an

information theoretic approach to group words into 50 classes for each

vocabulary.



Terminology

-----------



:Cept:

    A source word with non-zero fertility i.e. aligned to one or more

    target words.

:Tablet:

    The set of target word(s) aligned to a cept.

:Head of cept:

    The first word of the tablet of that cept.

:Center of cept:

    The average position of the words in that cept's tablet. If the

    value is not an integer, the ceiling is taken.

    For example, for a tablet with words in positions 2, 5, 6 in the

    target sentence, the center of the corresponding cept is

    ceil((2 + 5 + 6) / 3) = 5

:Displacement:

    For a head word, defined as (position of head word - position of

    previous cept's center). Can be positive or negative.

    For a non-head word, defined as (position of non-head word -

    position of previous word in the same tablet). Always positive,

    because successive words in a tablet are assumed to appear to the

    right of the previous word.



In contrast to Model 3 which reorders words in a tablet independently of

other words, Model 4 distinguishes between three cases.



1. Words generated by NULL are distributed uniformly.

2. For a head word t, its position is modeled by the probability

   d_head(displacement | word_class_s(s),word_class_t(t)),

   where s is the previous cept, and word_class_s and word_class_t maps

   s and t to a source and target language word class respectively.

3. For a non-head word t, its position is modeled by the probability

   d_non_head(displacement | word_class_t(t))



The EM algorithm used in Model 4 is:



:E step: In the training data, collect counts, weighted by prior

         probabilities.



         - (a) count how many times a source language word is translated

               into a target language word

         - (b) for a particular word class, count how many times a head

               word is located at a particular displacement from the

               previous cept's center

         - (c) for a particular word class, count how many times a

               non-head word is located at a particular displacement from

               the previous target word

         - (d) count how many times a source word is aligned to phi number

               of target words

         - (e) count how many times NULL is aligned to a target word



:M step: Estimate new probabilities based on the counts from the E step



Like Model 3, there are too many possible alignments to consider. Thus,

a hill climbing approach is used to sample good candidates.



Notations

---------



:i: Position in the source sentence

     Valid values are 0 (for NULL), 1, 2, ..., length of source sentence

:j: Position in the target sentence

     Valid values are 1, 2, ..., length of target sentence

:l: Number of words in the source sentence, excluding NULL

:m: Number of words in the target sentence

:s: A word in the source language

:t: A word in the target language

:phi: Fertility, the number of target words produced by a source word

:p1: Probability that a target word produced by a source word is

     accompanied by another target word that is aligned to NULL

:p0: 1 - p1

:dj: Displacement, Δj



References

----------



Philipp Koehn. 2010. Statistical Machine Translation.

Cambridge University Press, New York.



Peter E Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and

Robert L. Mercer. 1993. The Mathematics of Statistical Machine

Translation: Parameter Estimation. Computational Linguistics, 19 (2),

263-311.

"""

import warnings
from collections import defaultdict
from math import factorial

from nltk.translate import AlignedSent, Alignment, IBMModel, IBMModel3
from nltk.translate.ibm_model import Counts, longest_target_sentence_length


class IBMModel4(IBMModel):
    """

    Translation model that reorders output words based on their type and

    their distance from other related words in the output sentence



    >>> bitext = []

    >>> bitext.append(AlignedSent(['klein', 'ist', 'das', 'haus'], ['the', 'house', 'is', 'small']))

    >>> bitext.append(AlignedSent(['das', 'haus', 'war', 'ja', 'groß'], ['the', 'house', 'was', 'big']))

    >>> bitext.append(AlignedSent(['das', 'buch', 'ist', 'ja', 'klein'], ['the', 'book', 'is', 'small']))

    >>> bitext.append(AlignedSent(['ein', 'haus', 'ist', 'klein'], ['a', 'house', 'is', 'small']))

    >>> bitext.append(AlignedSent(['das', 'haus'], ['the', 'house']))

    >>> bitext.append(AlignedSent(['das', 'buch'], ['the', 'book']))

    >>> bitext.append(AlignedSent(['ein', 'buch'], ['a', 'book']))

    >>> bitext.append(AlignedSent(['ich', 'fasse', 'das', 'buch', 'zusammen'], ['i', 'summarize', 'the', 'book']))

    >>> bitext.append(AlignedSent(['fasse', 'zusammen'], ['summarize']))

    >>> src_classes = {'the': 0, 'a': 0, 'small': 1, 'big': 1, 'house': 2, 'book': 2, 'is': 3, 'was': 3, 'i': 4, 'summarize': 5 }

    >>> trg_classes = {'das': 0, 'ein': 0, 'haus': 1, 'buch': 1, 'klein': 2, 'groß': 2, 'ist': 3, 'war': 3, 'ja': 4, 'ich': 5, 'fasse': 6, 'zusammen': 6 }



    >>> ibm4 = IBMModel4(bitext, 5, src_classes, trg_classes)



    >>> print(round(ibm4.translation_table['buch']['book'], 3))

    1.0

    >>> print(round(ibm4.translation_table['das']['book'], 3))

    0.0

    >>> print(round(ibm4.translation_table['ja'][None], 3))

    1.0



    >>> print(round(ibm4.head_distortion_table[1][0][1], 3))

    1.0

    >>> print(round(ibm4.head_distortion_table[2][0][1], 3))

    0.0

    >>> print(round(ibm4.non_head_distortion_table[3][6], 3))

    0.5



    >>> print(round(ibm4.fertility_table[2]['summarize'], 3))

    1.0

    >>> print(round(ibm4.fertility_table[1]['book'], 3))

    1.0



    >>> print(round(ibm4.p1, 3))

    0.033



    >>> test_sentence = bitext[2]

    >>> test_sentence.words

    ['das', 'buch', 'ist', 'ja', 'klein']

    >>> test_sentence.mots

    ['the', 'book', 'is', 'small']

    >>> test_sentence.alignment

    Alignment([(0, 0), (1, 1), (2, 2), (3, None), (4, 3)])



    """

    def __init__(

        self,

        sentence_aligned_corpus,

        iterations,

        source_word_classes,

        target_word_classes,

        probability_tables=None,

    ):
        """

        Train on ``sentence_aligned_corpus`` and create a lexical

        translation model, distortion models, a fertility model, and a

        model for generating NULL-aligned words.



        Translation direction is from ``AlignedSent.mots`` to

        ``AlignedSent.words``.



        :param sentence_aligned_corpus: Sentence-aligned parallel corpus

        :type sentence_aligned_corpus: list(AlignedSent)



        :param iterations: Number of iterations to run training algorithm

        :type iterations: int



        :param source_word_classes: Lookup table that maps a source word

            to its word class, the latter represented by an integer id

        :type source_word_classes: dict[str]: int



        :param target_word_classes: Lookup table that maps a target word

            to its word class, the latter represented by an integer id

        :type target_word_classes: dict[str]: int



        :param probability_tables: Optional. Use this to pass in custom

            probability values. If not specified, probabilities will be

            set to a uniform distribution, or some other sensible value.

            If specified, all the following entries must be present:

            ``translation_table``, ``alignment_table``,

            ``fertility_table``, ``p1``, ``head_distortion_table``,

            ``non_head_distortion_table``. See ``IBMModel`` and

            ``IBMModel4`` for the type and purpose of these tables.

        :type probability_tables: dict[str]: object

        """
        super().__init__(sentence_aligned_corpus)
        self.reset_probabilities()
        self.src_classes = source_word_classes
        self.trg_classes = target_word_classes

        if probability_tables is None:
            # Get probabilities from IBM model 3
            ibm3 = IBMModel3(sentence_aligned_corpus, iterations)
            self.translation_table = ibm3.translation_table
            self.alignment_table = ibm3.alignment_table
            self.fertility_table = ibm3.fertility_table
            self.p1 = ibm3.p1
            self.set_uniform_probabilities(sentence_aligned_corpus)
        else:
            # Set user-defined probabilities
            self.translation_table = probability_tables["translation_table"]
            self.alignment_table = probability_tables["alignment_table"]
            self.fertility_table = probability_tables["fertility_table"]
            self.p1 = probability_tables["p1"]
            self.head_distortion_table = probability_tables["head_distortion_table"]
            self.non_head_distortion_table = probability_tables[
                "non_head_distortion_table"
            ]

        for n in range(0, iterations):
            self.train(sentence_aligned_corpus)

    def reset_probabilities(self):
        super().reset_probabilities()
        self.head_distortion_table = defaultdict(
            lambda: defaultdict(lambda: defaultdict(lambda: self.MIN_PROB))
        )
        """

        dict[int][int][int]: float. Probability(displacement of head

        word | word class of previous cept,target word class).

        Values accessed as ``distortion_table[dj][src_class][trg_class]``.

        """

        self.non_head_distortion_table = defaultdict(
            lambda: defaultdict(lambda: self.MIN_PROB)
        )
        """

        dict[int][int]: float. Probability(displacement of non-head

        word | target word class).

        Values accessed as ``distortion_table[dj][trg_class]``.

        """

    def set_uniform_probabilities(self, sentence_aligned_corpus):
        """

        Set distortion probabilities uniformly to

        1 / cardinality of displacement values

        """
        max_m = longest_target_sentence_length(sentence_aligned_corpus)

        # The maximum displacement is m-1, when a word is in the last
        # position m of the target sentence and the previously placed
        # word is in the first position.
        # Conversely, the minimum displacement is -(m-1).
        # Thus, the displacement range is (m-1) - (-(m-1)). Note that
        # displacement cannot be zero and is not included in the range.
        if max_m <= 1:
            initial_prob = IBMModel.MIN_PROB
        else:
            initial_prob = 1 / (2 * (max_m - 1))
        if initial_prob < IBMModel.MIN_PROB:
            warnings.warn(
                "A target sentence is too long ("
                + str(max_m)
                + " words). Results may be less accurate."
            )

        for dj in range(1, max_m):
            self.head_distortion_table[dj] = defaultdict(
                lambda: defaultdict(lambda: initial_prob)
            )
            self.head_distortion_table[-dj] = defaultdict(
                lambda: defaultdict(lambda: initial_prob)
            )
            self.non_head_distortion_table[dj] = defaultdict(lambda: initial_prob)
            self.non_head_distortion_table[-dj] = defaultdict(lambda: initial_prob)

    def train(self, parallel_corpus):
        counts = Model4Counts()
        for aligned_sentence in parallel_corpus:
            m = len(aligned_sentence.words)

            # Sample the alignment space
            sampled_alignments, best_alignment = self.sample(aligned_sentence)
            # Record the most probable alignment
            aligned_sentence.alignment = Alignment(
                best_alignment.zero_indexed_alignment()
            )

            # E step (a): Compute normalization factors to weigh counts
            total_count = self.prob_of_alignments(sampled_alignments)

            # E step (b): Collect counts
            for alignment_info in sampled_alignments:
                count = self.prob_t_a_given_s(alignment_info)
                normalized_count = count / total_count

                for j in range(1, m + 1):
                    counts.update_lexical_translation(
                        normalized_count, alignment_info, j
                    )
                    counts.update_distortion(
                        normalized_count,
                        alignment_info,
                        j,
                        self.src_classes,
                        self.trg_classes,
                    )

                counts.update_null_generation(normalized_count, alignment_info)
                counts.update_fertility(normalized_count, alignment_info)

        # M step: Update probabilities with maximum likelihood estimates
        # If any probability is less than MIN_PROB, clamp it to MIN_PROB
        existing_alignment_table = self.alignment_table
        self.reset_probabilities()
        self.alignment_table = existing_alignment_table  # don't retrain

        self.maximize_lexical_translation_probabilities(counts)
        self.maximize_distortion_probabilities(counts)
        self.maximize_fertility_probabilities(counts)
        self.maximize_null_generation_probabilities(counts)

    def maximize_distortion_probabilities(self, counts):
        head_d_table = self.head_distortion_table
        for dj, src_classes in counts.head_distortion.items():
            for s_cls, trg_classes in src_classes.items():
                for t_cls in trg_classes:
                    estimate = (
                        counts.head_distortion[dj][s_cls][t_cls]
                        / counts.head_distortion_for_any_dj[s_cls][t_cls]
                    )
                    head_d_table[dj][s_cls][t_cls] = max(estimate, IBMModel.MIN_PROB)

        non_head_d_table = self.non_head_distortion_table
        for dj, trg_classes in counts.non_head_distortion.items():
            for t_cls in trg_classes:
                estimate = (
                    counts.non_head_distortion[dj][t_cls]
                    / counts.non_head_distortion_for_any_dj[t_cls]
                )
                non_head_d_table[dj][t_cls] = max(estimate, IBMModel.MIN_PROB)

    def prob_t_a_given_s(self, alignment_info):
        """

        Probability of target sentence and an alignment given the

        source sentence

        """
        return IBMModel4.model4_prob_t_a_given_s(alignment_info, self)

    @staticmethod  # exposed for Model 5 to use
    def model4_prob_t_a_given_s(alignment_info, ibm_model):
        probability = 1.0
        MIN_PROB = IBMModel.MIN_PROB

        def null_generation_term():
            # Binomial distribution: B(m - null_fertility, p1)
            value = 1.0
            p1 = ibm_model.p1
            p0 = 1 - p1
            null_fertility = alignment_info.fertility_of_i(0)
            m = len(alignment_info.trg_sentence) - 1
            value *= pow(p1, null_fertility) * pow(p0, m - 2 * null_fertility)
            if value < MIN_PROB:
                return MIN_PROB

            # Combination: (m - null_fertility) choose null_fertility
            for i in range(1, null_fertility + 1):
                value *= (m - null_fertility - i + 1) / i
            return value

        def fertility_term():
            value = 1.0
            src_sentence = alignment_info.src_sentence
            for i in range(1, len(src_sentence)):
                fertility = alignment_info.fertility_of_i(i)
                value *= (
                    factorial(fertility)
                    * ibm_model.fertility_table[fertility][src_sentence[i]]
                )
                if value < MIN_PROB:
                    return MIN_PROB
            return value

        def lexical_translation_term(j):
            t = alignment_info.trg_sentence[j]
            i = alignment_info.alignment[j]
            s = alignment_info.src_sentence[i]
            return ibm_model.translation_table[t][s]

        def distortion_term(j):
            t = alignment_info.trg_sentence[j]
            i = alignment_info.alignment[j]
            if i == 0:
                # case 1: t is aligned to NULL
                return 1.0
            if alignment_info.is_head_word(j):
                # case 2: t is the first word of a tablet
                previous_cept = alignment_info.previous_cept(j)
                src_class = None
                if previous_cept is not None:
                    previous_s = alignment_info.src_sentence[previous_cept]
                    src_class = ibm_model.src_classes[previous_s]
                trg_class = ibm_model.trg_classes[t]
                dj = j - alignment_info.center_of_cept(previous_cept)
                return ibm_model.head_distortion_table[dj][src_class][trg_class]

            # case 3: t is a subsequent word of a tablet
            previous_position = alignment_info.previous_in_tablet(j)
            trg_class = ibm_model.trg_classes[t]
            dj = j - previous_position
            return ibm_model.non_head_distortion_table[dj][trg_class]

        # end nested functions

        # Abort computation whenever probability falls below MIN_PROB at
        # any point, since MIN_PROB can be considered as zero
        probability *= null_generation_term()
        if probability < MIN_PROB:
            return MIN_PROB

        probability *= fertility_term()
        if probability < MIN_PROB:
            return MIN_PROB

        for j in range(1, len(alignment_info.trg_sentence)):
            probability *= lexical_translation_term(j)
            if probability < MIN_PROB:
                return MIN_PROB

            probability *= distortion_term(j)
            if probability < MIN_PROB:
                return MIN_PROB

        return probability


class Model4Counts(Counts):
    """

    Data object to store counts of various parameters during training.

    Includes counts for distortion.

    """

    def __init__(self):
        super().__init__()
        self.head_distortion = defaultdict(
            lambda: defaultdict(lambda: defaultdict(lambda: 0.0))
        )
        self.head_distortion_for_any_dj = defaultdict(lambda: defaultdict(lambda: 0.0))
        self.non_head_distortion = defaultdict(lambda: defaultdict(lambda: 0.0))
        self.non_head_distortion_for_any_dj = defaultdict(lambda: 0.0)

    def update_distortion(self, count, alignment_info, j, src_classes, trg_classes):
        i = alignment_info.alignment[j]
        t = alignment_info.trg_sentence[j]
        if i == 0:
            # case 1: t is aligned to NULL
            pass
        elif alignment_info.is_head_word(j):
            # case 2: t is the first word of a tablet
            previous_cept = alignment_info.previous_cept(j)
            if previous_cept is not None:
                previous_src_word = alignment_info.src_sentence[previous_cept]
                src_class = src_classes[previous_src_word]
            else:
                src_class = None
            trg_class = trg_classes[t]
            dj = j - alignment_info.center_of_cept(previous_cept)
            self.head_distortion[dj][src_class][trg_class] += count
            self.head_distortion_for_any_dj[src_class][trg_class] += count
        else:
            # case 3: t is a subsequent word of a tablet
            previous_j = alignment_info.previous_in_tablet(j)
            trg_class = trg_classes[t]
            dj = j - previous_j
            self.non_head_distortion[dj][trg_class] += count
            self.non_head_distortion_for_any_dj[trg_class] += count