File size: 3,056 Bytes
19a3898
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import torch
from deepspeed.accelerator import get_accelerator
from ..features.cuda_graph import CUDAGraph


class DSUNet(CUDAGraph, torch.nn.Module):

    def __init__(self, unet, enable_cuda_graph=True):
        super().__init__(enable_cuda_graph=enable_cuda_graph)
        self.unet = unet
        # SD pipeline accesses this attribute
        self.in_channels = unet.in_channels
        self.device = self.unet.device
        self.dtype = self.unet.dtype
        self.config = self.unet.config
        self.fwd_count = 0
        self.unet.requires_grad_(requires_grad=False)
        self.unet.to(memory_format=torch.channels_last)
        self.cuda_graph_created = False

    def _graph_replay(self, *inputs, **kwargs):
        for i in range(len(inputs)):
            if torch.is_tensor(inputs[i]):
                self.static_inputs[i].copy_(inputs[i])
        for k in kwargs:
            if torch.is_tensor(kwargs[k]):
                self.static_kwargs[k].copy_(kwargs[k])
        get_accelerator().replay_graph(self._cuda_graphs)
        return self.static_output

    def forward(self, *inputs, **kwargs):
        if self.enable_cuda_graph:
            if self.cuda_graph_created:
                outputs = self._graph_replay(*inputs, **kwargs)
            else:
                self._create_cuda_graph(*inputs, **kwargs)
                outputs = self._graph_replay(*inputs, **kwargs)
            return outputs
        else:
            return self._forward(*inputs, **kwargs)

    def _create_cuda_graph(self, *inputs, **kwargs):
        # warmup to create the workspace and cublas handle
        cuda_stream = torch.cuda.Stream()
        cuda_stream.wait_stream(torch.cuda.current_stream())
        with torch.cuda.stream(cuda_stream):
            for i in range(3):
                ret = self._forward(*inputs, **kwargs)
        torch.cuda.current_stream().wait_stream(cuda_stream)

        # create cuda_graph and assign static_inputs and static_outputs
        self._cuda_graphs = get_accelerator().create_graph()
        self.static_inputs = inputs
        self.static_kwargs = kwargs

        with get_accelerator().capture_to_graph(self._cuda_graphs):
            self.static_output = self._forward(*self.static_inputs, **self.static_kwargs)

        self.cuda_graph_created = True

    def _forward(self,
                 sample,
                 timestamp,
                 encoder_hidden_states,
                 return_dict=True,
                 cross_attention_kwargs=None,
                 timestep_cond=None,
                 added_cond_kwargs=None):
        if cross_attention_kwargs:
            return self.unet(sample,
                             timestamp,
                             encoder_hidden_states,
                             return_dict,
                             cross_attention_kwargs=cross_attention_kwargs)
        else:
            return self.unet(sample, timestamp, encoder_hidden_states, return_dict)