Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- venv/lib/python3.10/site-packages/deepspeed/comm/__pycache__/backend.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/comm/__pycache__/ccl.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/comm/__pycache__/config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/comm/__pycache__/torch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/linear/__init__.py +7 -0
- venv/lib/python3.10/site-packages/deepspeed/linear/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/linear/__pycache__/config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/linear/__pycache__/optimized_linear.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/linear/__pycache__/quantization.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/linear/config.py +39 -0
- venv/lib/python3.10/site-packages/deepspeed/linear/optimized_linear.py +150 -0
- venv/lib/python3.10/site-packages/deepspeed/linear/quantization.py +137 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/__init__.py +7 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/diffusers/__init__.py +5 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/diffusers/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/diffusers/__pycache__/unet.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/diffusers/__pycache__/vae.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/diffusers/unet.py +81 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/diffusers/vae.py +151 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/features/__init__.py +5 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/features/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/features/__pycache__/cuda_graph.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/features/cuda_graph.py +27 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__init__.py +5 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/clip_encoder.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/ds_base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/ds_bert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/ds_bloom.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/ds_gpt.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/ds_llama2.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/ds_megatron_gpt.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/ds_opt.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/ds_transformer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/clip_encoder.py +77 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/ds_base.py +15 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/ds_bert.py +20 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/ds_bloom.py +20 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/ds_gpt.py +20 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/ds_llama2.py +69 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/ds_megatron_gpt.py +20 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/ds_opt.py +20 -0
- venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/ds_transformer.py +199 -0
- venv/lib/python3.10/site-packages/deepspeed/module_inject/__init__.py +10 -0
- venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/auto_tp_model_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/fusedqkv_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/module_quantize.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/deepspeed/module_inject/auto_tp.py +491 -0
- venv/lib/python3.10/site-packages/deepspeed/module_inject/auto_tp_model_utils.py +104 -0
venv/lib/python3.10/site-packages/deepspeed/comm/__pycache__/backend.cpython-310.pyc
ADDED
Binary file (1.61 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/comm/__pycache__/ccl.cpython-310.pyc
ADDED
Binary file (6.81 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/comm/__pycache__/config.cpython-310.pyc
ADDED
Binary file (1.5 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/comm/__pycache__/torch.cpython-310.pyc
ADDED
Binary file (13 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/linear/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .optimized_linear import OptimizedLinear
|
7 |
+
from .config import LoRAConfig, QuantizationConfig
|
venv/lib/python3.10/site-packages/deepspeed/linear/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (310 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/linear/__pycache__/config.cpython-310.pyc
ADDED
Binary file (1.75 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/linear/__pycache__/optimized_linear.cpython-310.pyc
ADDED
Binary file (4.97 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/linear/__pycache__/quantization.cpython-310.pyc
ADDED
Binary file (5.72 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/linear/config.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from dataclasses import dataclass
|
7 |
+
|
8 |
+
|
9 |
+
@dataclass
|
10 |
+
class LoRAConfig:
|
11 |
+
"""
|
12 |
+
Configuration settings for LoRAOptimizedLinear.
|
13 |
+
|
14 |
+
Attributes:
|
15 |
+
lora_r (int): LoRA attention dimension, also know as the rank. Defaults is 64.
|
16 |
+
lora_alpha (float): LoRA scaling factor, default is 16.
|
17 |
+
base_weight_sharding (int): The degree to which the base weights are sharded,
|
18 |
+
should typically be set to the data-parallel world size to maximize the memory
|
19 |
+
reduction benefits. Defaults to 1, which means this feature is disabled.
|
20 |
+
"""
|
21 |
+
lora_r: int = 64
|
22 |
+
lora_alpha: float = 16.
|
23 |
+
base_weight_sharding: int = 1
|
24 |
+
|
25 |
+
|
26 |
+
@dataclass
|
27 |
+
class QuantizationConfig:
|
28 |
+
"""
|
29 |
+
Configuration settings for quantization for LoRAOptimizedLinear, QuantizedLinear,
|
30 |
+
and QuantizedParameter
|
31 |
+
|
32 |
+
Attributes:
|
33 |
+
q_bits (int): The number of bits used for quantization. Default is 8.
|
34 |
+
mantissa_bits (int): The number of bits reserved for the mantissa in fixed-point quantization. Default is 3.
|
35 |
+
group_size (int): The size of the group used for quantization. Default is 512.
|
36 |
+
"""
|
37 |
+
q_bits: int = 8
|
38 |
+
mantissa_bits: int = 3
|
39 |
+
group_size: int = 512
|
venv/lib/python3.10/site-packages/deepspeed/linear/optimized_linear.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import math
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from dataclasses import is_dataclass
|
11 |
+
from deepspeed.accelerator import get_accelerator
|
12 |
+
import deepspeed.comm as dist
|
13 |
+
|
14 |
+
from .config import LoRAConfig, QuantizationConfig
|
15 |
+
from .quantization import QuantizedParameter, QuantizedLinear
|
16 |
+
|
17 |
+
|
18 |
+
class OptimizedLinear(nn.Module):
|
19 |
+
"""
|
20 |
+
Optimized version of nn.Linear that adds features such as:
|
21 |
+
* LoRA w. base weight sharding
|
22 |
+
* FP [6,8,12] quantization
|
23 |
+
|
24 |
+
Arguments:
|
25 |
+
input_dim: Required: size of each input sample
|
26 |
+
output_dim: Required: size of each output sample
|
27 |
+
bias: Optional: If set to False, the layer will not learn an additive bias. Default: False
|
28 |
+
lora_config: Optional: LoRAConfig defining lora features and base-weight-sharding degree
|
29 |
+
quantization_config: Optional: QuantizationConfig defining quantization features
|
30 |
+
dtype: Optional: parameter dtype, only supports bfloat16 currently
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
Returns a new nn.Module depending on the input config. Either native
|
34 |
+
torch.nn.Linear, QuantizedLinear, or the full-featured DSOptimizedLinear.
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __new__(self,
|
38 |
+
input_dim: int,
|
39 |
+
output_dim: int,
|
40 |
+
bias: bool = False,
|
41 |
+
lora_config: LoRAConfig = None,
|
42 |
+
quantization_config: QuantizationConfig = None,
|
43 |
+
dtype=torch.bfloat16):
|
44 |
+
|
45 |
+
if quantization_config is not None and not is_dataclass(quantization_config):
|
46 |
+
raise ValueError(f"Expecting QuantizationConfig but received {type(quantization_config)}")
|
47 |
+
if lora_config is not None and not is_dataclass(lora_config):
|
48 |
+
raise ValueError(f"Expecting LoRAConfig but received {type(lora_config)}")
|
49 |
+
if lora_config is None and quantization_config is None:
|
50 |
+
# Everything disabled, fall back to normal nn.Linear
|
51 |
+
self = nn.Linear(input_dim, output_dim, bias=bias, dtype=dtype)
|
52 |
+
|
53 |
+
elif lora_config:
|
54 |
+
# lora enabled, quantization may or may not be
|
55 |
+
self = LoRAOptimizedLinear(input_dim=input_dim,
|
56 |
+
output_dim=output_dim,
|
57 |
+
bias=bias,
|
58 |
+
lora_config=lora_config,
|
59 |
+
quantization_config=quantization_config,
|
60 |
+
dtype=dtype)
|
61 |
+
|
62 |
+
elif quantization_config:
|
63 |
+
# only quantization enabled, no lora
|
64 |
+
self = QuantizedLinear(input_dim=input_dim,
|
65 |
+
output_dim=output_dim,
|
66 |
+
bias=bias,
|
67 |
+
quantization_config=quantization_config,
|
68 |
+
dtype=dtype)
|
69 |
+
return self
|
70 |
+
|
71 |
+
|
72 |
+
class LoRAOptimizedLinear(nn.Module):
|
73 |
+
|
74 |
+
def __init__(self,
|
75 |
+
input_dim: int,
|
76 |
+
output_dim: int,
|
77 |
+
bias: bool = False,
|
78 |
+
lora_config: LoRAConfig = None,
|
79 |
+
quantization_config: QuantizationConfig = None,
|
80 |
+
device=None,
|
81 |
+
dtype=torch.bfloat16):
|
82 |
+
super().__init__()
|
83 |
+
self.input_dim = input_dim
|
84 |
+
self.output_dim = output_dim
|
85 |
+
self.bias = bias
|
86 |
+
self.lora_config = lora_config
|
87 |
+
self.quantization_config = quantization_config
|
88 |
+
device = get_accelerator().current_device() if device is None else device
|
89 |
+
assert self.lora_config is not None, "DSOptimizedLinear requires a LoRA config"
|
90 |
+
|
91 |
+
self.zero_shards = self.lora_config.base_weight_sharding
|
92 |
+
self.sharded_weight_size = int(float(self.input_dim) // self.zero_shards)
|
93 |
+
w = torch.nn.Parameter(torch.empty((self.output_dim, self.sharded_weight_size), dtype=dtype))
|
94 |
+
torch.nn.init.xavier_uniform_(w)
|
95 |
+
|
96 |
+
if self.quantization_config is not None:
|
97 |
+
assert dtype == torch.bfloat16, "only bfloat16 is supported when using quantization"
|
98 |
+
self.base_weight = QuantizedParameter(w, quantization_config=quantization_config)
|
99 |
+
else:
|
100 |
+
self.base_weight = w
|
101 |
+
|
102 |
+
self.base_weight.requires_grad = False
|
103 |
+
|
104 |
+
# Use RS lora for now.
|
105 |
+
self.lora_scaling_factor = self.lora_config.lora_alpha / math.sqrt(self.lora_config.lora_r)
|
106 |
+
# Keeping lora weights in bf16 precision for ease of training.
|
107 |
+
self.lora_weight_1 = nn.Linear(self.input_dim,
|
108 |
+
self.lora_config.lora_r,
|
109 |
+
bias=self.bias,
|
110 |
+
device=device,
|
111 |
+
dtype=dtype)
|
112 |
+
self.lora_weight_2 = nn.Linear(self.lora_config.lora_r,
|
113 |
+
self.output_dim,
|
114 |
+
bias=self.bias,
|
115 |
+
device=device,
|
116 |
+
dtype=dtype)
|
117 |
+
self.lora_weight_1.weight.requires_grad = True
|
118 |
+
self.lora_weight_2.weight.requires_grad = True
|
119 |
+
|
120 |
+
def full_weight(self):
|
121 |
+
# This assumes weights are evenly sharded across gpus. which might not be correct.
|
122 |
+
# in that case, we should flatten before all_gather.
|
123 |
+
local_weight = self.base_weight.dequantized() if isinstance(self.base_weight,
|
124 |
+
QuantizedParameter) else self.base_weight
|
125 |
+
tensor_list = [
|
126 |
+
torch.zeros_like(local_weight, device=local_weight.device, dtype=local_weight.dtype)
|
127 |
+
for _ in range(self.zero_shards)
|
128 |
+
]
|
129 |
+
dist.all_gather(tensor_list, local_weight)
|
130 |
+
weight = nn.Parameter(torch.cat([tensor for tensor in tensor_list], dim=1))
|
131 |
+
return weight
|
132 |
+
|
133 |
+
def linear_without_F_linear(self, input, weight):
|
134 |
+
output = torch.mm(input.reshape(-1, input.shape[-1]), weight)
|
135 |
+
output = output.view(*input.shape[:-1], weight.shape[1])
|
136 |
+
return output
|
137 |
+
|
138 |
+
def forward(self, input_tensor):
|
139 |
+
# Gather the sharded base weight
|
140 |
+
if self.zero_shards > 1:
|
141 |
+
with torch.no_grad():
|
142 |
+
base_weight = self.full_weight()
|
143 |
+
elif self.quantization_config:
|
144 |
+
base_weight = self.base_weight.dequantized()
|
145 |
+
else:
|
146 |
+
base_weight = self.base_weight
|
147 |
+
|
148 |
+
base_weight_output = F.linear(input_tensor, base_weight)
|
149 |
+
lora_output = self.lora_weight_2(self.lora_weight_1(input_tensor))
|
150 |
+
return base_weight_output + self.lora_scaling_factor * lora_output
|
venv/lib/python3.10/site-packages/deepspeed/linear/quantization.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import copy
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
from typing import Optional
|
12 |
+
|
13 |
+
from deepspeed.accelerator import get_accelerator
|
14 |
+
from deepspeed.ops.fp_quantizer import Quantizer, FP_Quantize
|
15 |
+
from .config import QuantizationConfig
|
16 |
+
|
17 |
+
|
18 |
+
class QuantizedParameter(nn.Parameter):
|
19 |
+
"""
|
20 |
+
Quantized parameter class that implements weight quantization. Weights
|
21 |
+
are stored in quantized form on GPUs, and can be dequantized on-the-fly when
|
22 |
+
needed by the model. The weights are actually quantized during any `.to(device)`.
|
23 |
+
|
24 |
+
Arguments:
|
25 |
+
data (Tensor): parameter tensor.
|
26 |
+
requires_grad (bool, optional): if the parameter requires gradient. Defaults
|
27 |
+
to False and is not supported to be True. Argument provided only for interface
|
28 |
+
compatibility with torch.nn.Parameter.
|
29 |
+
quantization_config (QuantizationConfig, optional):
|
30 |
+
quantizer (Quantizer, optional): Defaults to FP_Quantize but can be any quantizer
|
31 |
+
that implements deepspeed.ops.fp_quantizer.Quantizer. This argument is also
|
32 |
+
required since the quantizer is stashed in the Parameter itself, some models
|
33 |
+
may clone the Parameter by passing an attribute __dict__. For an example, see
|
34 |
+
tests/unit/linear/test_quant_param.py::TestQuantParam::test_hf_clone
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __new__(
|
38 |
+
cls,
|
39 |
+
data: Optional[torch.Tensor] = None,
|
40 |
+
requires_grad: bool = False, # quantized weights must be frozen
|
41 |
+
quantization_config: QuantizationConfig = None,
|
42 |
+
quantizer: Quantizer = None,
|
43 |
+
):
|
44 |
+
if requires_grad:
|
45 |
+
raise ValueError(f"requires_grad=True is not supported with QuantizedParameter")
|
46 |
+
if data is None:
|
47 |
+
data = torch.empty(0)
|
48 |
+
self = torch.Tensor._make_subclass(cls, data, requires_grad)
|
49 |
+
self.quantization_config = QuantizationConfig() if quantization_config is None else quantization_config
|
50 |
+
if quantizer is not None:
|
51 |
+
self.quantizer = quantizer
|
52 |
+
else:
|
53 |
+
# if FPQuantizerBuilder is not compatible in this env this init will fail
|
54 |
+
self.quantizer = FP_Quantize(group_size=self.quantization_config.group_size)
|
55 |
+
self._ensure_quantized(self)
|
56 |
+
return self
|
57 |
+
|
58 |
+
def _ensure_quantized(self, tensor: torch.Tensor):
|
59 |
+
# If the tensor is on the accelerator and is not quantized, then quantize it in-place.
|
60 |
+
if get_accelerator().on_accelerator(tensor) and tensor.dtype != torch.int8:
|
61 |
+
with get_accelerator().stream(get_accelerator().current_stream(tensor.device)):
|
62 |
+
tensor.data = self.quantizer.quantize(tensor.data,
|
63 |
+
q_bits=self.quantization_config.q_bits,
|
64 |
+
q_mantisa_bits=self.quantization_config.mantissa_bits)
|
65 |
+
assert tensor.dtype == torch.int8
|
66 |
+
|
67 |
+
def dequantized(self) -> torch.Tensor:
|
68 |
+
"""
|
69 |
+
Return a tensor containing the dequantized weights of this parameter.
|
70 |
+
"""
|
71 |
+
if get_accelerator().on_accelerator(self.data) and self.data.dtype == torch.int8:
|
72 |
+
with get_accelerator().stream(get_accelerator().current_stream(self.data.device)):
|
73 |
+
return self.quantizer.dequantize(self.data,
|
74 |
+
q_bits=self.quantization_config.q_bits,
|
75 |
+
q_mantisa_bits=self.quantization_config.mantissa_bits)
|
76 |
+
return self.data
|
77 |
+
|
78 |
+
def __getstate__(self):
|
79 |
+
state = self.__dict__
|
80 |
+
state["data"] = self.data
|
81 |
+
state["quantization_config"] = self.quantization_config
|
82 |
+
state["requires_grad"] = self.requires_grad
|
83 |
+
return state
|
84 |
+
|
85 |
+
def __setstate__(self, state):
|
86 |
+
self.quantizer = state["quantizer"]
|
87 |
+
self.quantization_config = state["quantization_config"]
|
88 |
+
self.data = state["data"]
|
89 |
+
self.requires_grad = state["requires_grad"]
|
90 |
+
|
91 |
+
def __deepcopy__(self, memo):
|
92 |
+
new_instance = type(self).__new__(type(self))
|
93 |
+
state = self.__getstate__()
|
94 |
+
new_instance.__setstate__(state)
|
95 |
+
new_instance.quantizer = copy.deepcopy(state["quantizer"])
|
96 |
+
new_instance.quantization_config = copy.deepcopy(state["quantization_config"])
|
97 |
+
new_instance.data = copy.deepcopy(state["data"])
|
98 |
+
return new_instance
|
99 |
+
|
100 |
+
def __copy__(self):
|
101 |
+
new_instance = type(self).__new__(type(self))
|
102 |
+
state = self.__getstate__()
|
103 |
+
new_instance.__setstate__(state)
|
104 |
+
return new_instance
|
105 |
+
|
106 |
+
def cuda(self, device=None, non_blocking=False):
|
107 |
+
return self.to(device="cuda" if device is None else device, non_blocking=non_blocking)
|
108 |
+
|
109 |
+
def to(self, *args, **kwargs):
|
110 |
+
"""
|
111 |
+
Move the parameter to the given device. Then, if the device is a cuda device,
|
112 |
+
quantize it.
|
113 |
+
"""
|
114 |
+
tensor = super().to(*args, **kwargs)
|
115 |
+
self._ensure_quantized(tensor)
|
116 |
+
return tensor
|
117 |
+
|
118 |
+
|
119 |
+
class QuantizedLinear(nn.Linear):
|
120 |
+
"""
|
121 |
+
Linear layer that implements weight quantization. Parameters
|
122 |
+
are stored via `QuantizedParameter` and are dequantized on-the-fly during any
|
123 |
+
forward pass.
|
124 |
+
"""
|
125 |
+
|
126 |
+
def __init__(self,
|
127 |
+
input_dim: int,
|
128 |
+
output_dim: int,
|
129 |
+
bias: bool = False,
|
130 |
+
quantization_config: QuantizationConfig = None,
|
131 |
+
dtype=torch.bfloat16):
|
132 |
+
super().__init__(input_dim, output_dim, bias=bias, dtype=dtype)
|
133 |
+
assert dtype == torch.bfloat16, "currently only supports bfloat16 dtype"
|
134 |
+
self.weight = QuantizedParameter(self.weight.data, quantization_config=quantization_config)
|
135 |
+
|
136 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
137 |
+
return F.linear(input, self.weight.dequantized(), self.bias)
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .transformers.ds_transformer import DeepSpeedTransformerInference
|
7 |
+
from .transformers.clip_encoder import DSClipEncoder
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (343 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/diffusers/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
'''Copyright The Microsoft DeepSpeed Team'''
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/diffusers/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (259 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/diffusers/__pycache__/unet.cpython-310.pyc
ADDED
Binary file (2.48 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/diffusers/__pycache__/vae.cpython-310.pyc
ADDED
Binary file (3.84 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/diffusers/unet.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from deepspeed.accelerator import get_accelerator
|
8 |
+
from ..features.cuda_graph import CUDAGraph
|
9 |
+
|
10 |
+
|
11 |
+
class DSUNet(CUDAGraph, torch.nn.Module):
|
12 |
+
|
13 |
+
def __init__(self, unet, enable_cuda_graph=True):
|
14 |
+
super().__init__(enable_cuda_graph=enable_cuda_graph)
|
15 |
+
self.unet = unet
|
16 |
+
# SD pipeline accesses this attribute
|
17 |
+
self.in_channels = unet.in_channels
|
18 |
+
self.device = self.unet.device
|
19 |
+
self.dtype = self.unet.dtype
|
20 |
+
self.config = self.unet.config
|
21 |
+
self.fwd_count = 0
|
22 |
+
self.unet.requires_grad_(requires_grad=False)
|
23 |
+
self.unet.to(memory_format=torch.channels_last)
|
24 |
+
self.cuda_graph_created = False
|
25 |
+
|
26 |
+
def _graph_replay(self, *inputs, **kwargs):
|
27 |
+
for i in range(len(inputs)):
|
28 |
+
if torch.is_tensor(inputs[i]):
|
29 |
+
self.static_inputs[i].copy_(inputs[i])
|
30 |
+
for k in kwargs:
|
31 |
+
if torch.is_tensor(kwargs[k]):
|
32 |
+
self.static_kwargs[k].copy_(kwargs[k])
|
33 |
+
get_accelerator().replay_graph(self._cuda_graphs)
|
34 |
+
return self.static_output
|
35 |
+
|
36 |
+
def forward(self, *inputs, **kwargs):
|
37 |
+
if self.enable_cuda_graph:
|
38 |
+
if self.cuda_graph_created:
|
39 |
+
outputs = self._graph_replay(*inputs, **kwargs)
|
40 |
+
else:
|
41 |
+
self._create_cuda_graph(*inputs, **kwargs)
|
42 |
+
outputs = self._graph_replay(*inputs, **kwargs)
|
43 |
+
return outputs
|
44 |
+
else:
|
45 |
+
return self._forward(*inputs, **kwargs)
|
46 |
+
|
47 |
+
def _create_cuda_graph(self, *inputs, **kwargs):
|
48 |
+
# warmup to create the workspace and cublas handle
|
49 |
+
cuda_stream = torch.cuda.Stream()
|
50 |
+
cuda_stream.wait_stream(torch.cuda.current_stream())
|
51 |
+
with torch.cuda.stream(cuda_stream):
|
52 |
+
for i in range(3):
|
53 |
+
ret = self._forward(*inputs, **kwargs)
|
54 |
+
torch.cuda.current_stream().wait_stream(cuda_stream)
|
55 |
+
|
56 |
+
# create cuda_graph and assign static_inputs and static_outputs
|
57 |
+
self._cuda_graphs = get_accelerator().create_graph()
|
58 |
+
self.static_inputs = inputs
|
59 |
+
self.static_kwargs = kwargs
|
60 |
+
|
61 |
+
with get_accelerator().capture_to_graph(self._cuda_graphs):
|
62 |
+
self.static_output = self._forward(*self.static_inputs, **self.static_kwargs)
|
63 |
+
|
64 |
+
self.cuda_graph_created = True
|
65 |
+
|
66 |
+
def _forward(self,
|
67 |
+
sample,
|
68 |
+
timestamp,
|
69 |
+
encoder_hidden_states,
|
70 |
+
return_dict=True,
|
71 |
+
cross_attention_kwargs=None,
|
72 |
+
timestep_cond=None,
|
73 |
+
added_cond_kwargs=None):
|
74 |
+
if cross_attention_kwargs:
|
75 |
+
return self.unet(sample,
|
76 |
+
timestamp,
|
77 |
+
encoder_hidden_states,
|
78 |
+
return_dict,
|
79 |
+
cross_attention_kwargs=cross_attention_kwargs)
|
80 |
+
else:
|
81 |
+
return self.unet(sample, timestamp, encoder_hidden_states, return_dict)
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/diffusers/vae.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from deepspeed.accelerator import get_accelerator
|
8 |
+
from ..features.cuda_graph import CUDAGraph
|
9 |
+
|
10 |
+
|
11 |
+
class DSVAE(CUDAGraph, torch.nn.Module):
|
12 |
+
|
13 |
+
def __init__(self, vae, enable_cuda_graph=True):
|
14 |
+
super().__init__(enable_cuda_graph=enable_cuda_graph)
|
15 |
+
self.vae = vae
|
16 |
+
self.config = vae.config
|
17 |
+
self.device = self.vae.device
|
18 |
+
self.dtype = self.vae.dtype
|
19 |
+
self.vae.requires_grad_(requires_grad=False)
|
20 |
+
self.decoder_cuda_graph_created = False
|
21 |
+
self.encoder_cuda_graph_created = False
|
22 |
+
self.all_cuda_graph_created = False
|
23 |
+
|
24 |
+
def _graph_replay_decoder(self, *inputs, **kwargs):
|
25 |
+
for i in range(len(inputs)):
|
26 |
+
if torch.is_tensor(inputs[i]):
|
27 |
+
self.static_decoder_inputs[i].copy_(inputs[i])
|
28 |
+
for k in kwargs:
|
29 |
+
if torch.is_tensor(kwargs[k]):
|
30 |
+
self.static_decoder_kwargs[k].copy_(kwargs[k])
|
31 |
+
get_accelerator().replay_graph(self._decoder_cuda_graph)
|
32 |
+
return self.static_decoder_output
|
33 |
+
|
34 |
+
def _decode(self, x, return_dict=True, generator=None):
|
35 |
+
return self.vae.decode(x, return_dict=return_dict)
|
36 |
+
|
37 |
+
def _create_cuda_graph_decoder(self, *inputs, **kwargs):
|
38 |
+
# warmup to create the workspace and cublas handle
|
39 |
+
cuda_stream = torch.cuda.Stream()
|
40 |
+
cuda_stream.wait_stream(torch.cuda.current_stream())
|
41 |
+
with torch.cuda.stream(cuda_stream):
|
42 |
+
for i in range(3):
|
43 |
+
ret = self._decode(*inputs, **kwargs)
|
44 |
+
torch.cuda.current_stream().wait_stream(cuda_stream)
|
45 |
+
|
46 |
+
# create cuda_graph and assign static_inputs and static_outputs
|
47 |
+
self._decoder_cuda_graph = get_accelerator().create_graph()
|
48 |
+
self.static_decoder_inputs = inputs
|
49 |
+
self.static_decoder_kwargs = kwargs
|
50 |
+
|
51 |
+
with get_accelerator().capture_to_graph(self._decoder_cuda_graph):
|
52 |
+
self.static_decoder_output = self._decode(*self.static_decoder_inputs, **self.static_decoder_kwargs)
|
53 |
+
|
54 |
+
self.decoder_cuda_graph_created = True
|
55 |
+
|
56 |
+
def decode(self, *inputs, **kwargs):
|
57 |
+
if self.enable_cuda_graph:
|
58 |
+
if self.decoder_cuda_graph_created:
|
59 |
+
outputs = self._graph_replay_decoder(*inputs, **kwargs)
|
60 |
+
else:
|
61 |
+
self._create_cuda_graph_decoder(*inputs, **kwargs)
|
62 |
+
outputs = self._graph_replay_decoder(*inputs, **kwargs)
|
63 |
+
return outputs
|
64 |
+
else:
|
65 |
+
return self._decode(*inputs, **kwargs)
|
66 |
+
|
67 |
+
def _graph_replay_encoder(self, *inputs, **kwargs):
|
68 |
+
for i in range(len(inputs)):
|
69 |
+
if torch.is_tensor(inputs[i]):
|
70 |
+
self.static_encoder_inputs[i].copy_(inputs[i])
|
71 |
+
for k in kwargs:
|
72 |
+
if torch.is_tensor(kwargs[k]):
|
73 |
+
self.static_encoder_kwargs[k].copy_(kwargs[k])
|
74 |
+
get_accelerator().replay_graph(self._encoder_cuda_graph)
|
75 |
+
return self.static_encoder_output
|
76 |
+
|
77 |
+
def _encode(self, x, return_dict=True):
|
78 |
+
return self.vae.encode(x, return_dict=return_dict)
|
79 |
+
|
80 |
+
def _create_cuda_graph_encoder(self, *inputs, **kwargs):
|
81 |
+
# warmup to create the workspace and cublas handle
|
82 |
+
cuda_stream = torch.cuda.Stream()
|
83 |
+
cuda_stream.wait_stream(torch.cuda.current_stream())
|
84 |
+
with torch.cuda.stream(cuda_stream):
|
85 |
+
for i in range(3):
|
86 |
+
ret = self._encode(*inputs, **kwargs)
|
87 |
+
torch.cuda.current_stream().wait_stream(cuda_stream)
|
88 |
+
|
89 |
+
# create cuda_graph and assign static_inputs and static_outputs
|
90 |
+
self._encoder_cuda_graph = get_accelerator().create_graph()
|
91 |
+
self.static_encoder_inputs = inputs
|
92 |
+
self.static_encoder_kwargs = kwargs
|
93 |
+
|
94 |
+
with get_accelerator().capture_to_graph(self._encoder_cuda_graph):
|
95 |
+
self.static_encoder_output = self._encode(*self.static_encoder_inputs, **self.static_encoder_kwargs)
|
96 |
+
|
97 |
+
self.encoder_cuda_graph_created = True
|
98 |
+
|
99 |
+
def encode(self, *inputs, **kwargs):
|
100 |
+
if self.enable_cuda_graph:
|
101 |
+
if self.encoder_cuda_graph_created:
|
102 |
+
outputs = self._graph_replay_encoder(*inputs, **kwargs)
|
103 |
+
else:
|
104 |
+
self._create_cuda_graph_encoder(*inputs, **kwargs)
|
105 |
+
outputs = self._graph_replay_encoder(*inputs, **kwargs)
|
106 |
+
return outputs
|
107 |
+
else:
|
108 |
+
return self._encode(*inputs, **kwargs)
|
109 |
+
|
110 |
+
def _graph_replay(self, *inputs, **kwargs):
|
111 |
+
for i in range(len(inputs)):
|
112 |
+
if torch.is_tensor(inputs[i]):
|
113 |
+
self.static_inputs[i].copy_(inputs[i])
|
114 |
+
for k in kwargs:
|
115 |
+
if torch.is_tensor(kwargs[k]):
|
116 |
+
self.static_kwargs[k].copy_(kwargs[k])
|
117 |
+
get_accelerator().replay_graph(self._all_cuda_graph)
|
118 |
+
return self.static_output
|
119 |
+
|
120 |
+
def forward(self, *inputs, **kwargs):
|
121 |
+
if self.enable_cuda_graph:
|
122 |
+
if self.cuda_graph_created:
|
123 |
+
outputs = self._graph_replay(*inputs, **kwargs)
|
124 |
+
else:
|
125 |
+
self._create_cuda_graph(*inputs, **kwargs)
|
126 |
+
outputs = self._graph_replay(*inputs, **kwargs)
|
127 |
+
return outputs
|
128 |
+
else:
|
129 |
+
return self._forward(*inputs, **kwargs)
|
130 |
+
|
131 |
+
def _create_cuda_graph(self, *inputs, **kwargs):
|
132 |
+
# warmup to create the workspace and cublas handle
|
133 |
+
cuda_stream = torch.cuda.Stream()
|
134 |
+
cuda_stream.wait_stream(torch.cuda.current_stream())
|
135 |
+
with torch.cuda.stream(cuda_stream):
|
136 |
+
for i in range(3):
|
137 |
+
ret = self._forward(*inputs, **kwargs)
|
138 |
+
torch.cuda.current_stream().wait_stream(cuda_stream)
|
139 |
+
|
140 |
+
# create cuda_graph and assign static_inputs and static_outputs
|
141 |
+
self._all_cuda_graph = get_accelerator().create_graph()
|
142 |
+
self.static_inputs = inputs
|
143 |
+
self.static_kwargs = kwargs
|
144 |
+
|
145 |
+
with get_accelerator().capture_to_graph(self._all_cuda_graph):
|
146 |
+
self.static_output = self._forward(*self.static_inputs, **self.static_kwargs)
|
147 |
+
|
148 |
+
self.all_cuda_graph_created = True
|
149 |
+
|
150 |
+
def _forward(self, sample, timestamp, encoder_hidden_states, return_dict=True):
|
151 |
+
return self.vae(sample, timestamp, encoder_hidden_states, return_dict)
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/features/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
'''Copyright The Microsoft DeepSpeed Team'''
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/features/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (258 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/features/__pycache__/cuda_graph.cpython-310.pyc
ADDED
Binary file (1.01 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/features/cuda_graph.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from abc import ABC, abstractmethod
|
7 |
+
|
8 |
+
|
9 |
+
class CUDAGraph(ABC):
|
10 |
+
|
11 |
+
def __init__(self, enable_cuda_graph=False):
|
12 |
+
super().__init__()
|
13 |
+
self.enable_cuda_graph = enable_cuda_graph
|
14 |
+
|
15 |
+
@abstractmethod
|
16 |
+
def _create_cuda_graph(self):
|
17 |
+
"""
|
18 |
+
Create CUDA graph(s)
|
19 |
+
"""
|
20 |
+
raise NotImplementedError
|
21 |
+
|
22 |
+
@abstractmethod
|
23 |
+
def _graph_replay(self):
|
24 |
+
"""
|
25 |
+
Replay CUDA graph(s)
|
26 |
+
"""
|
27 |
+
raise NotImplementedError
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
'''Copyright The Microsoft DeepSpeed Team'''
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (262 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/clip_encoder.cpython-310.pyc
ADDED
Binary file (2.81 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/ds_base.cpython-310.pyc
ADDED
Binary file (558 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/ds_bert.cpython-310.pyc
ADDED
Binary file (889 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/ds_bloom.cpython-310.pyc
ADDED
Binary file (893 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/ds_gpt.cpython-310.pyc
ADDED
Binary file (885 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/ds_llama2.cpython-310.pyc
ADDED
Binary file (2 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/ds_megatron_gpt.cpython-310.pyc
ADDED
Binary file (919 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/ds_opt.cpython-310.pyc
ADDED
Binary file (885 Bytes). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/__pycache__/ds_transformer.cpython-310.pyc
ADDED
Binary file (5.47 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/clip_encoder.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from deepspeed.accelerator import get_accelerator
|
8 |
+
from ..features.cuda_graph import CUDAGraph
|
9 |
+
|
10 |
+
|
11 |
+
class DSClipEncoder(CUDAGraph, torch.nn.Module):
|
12 |
+
|
13 |
+
def __init__(self, enc, enable_cuda_graph=False):
|
14 |
+
super().__init__(enable_cuda_graph=enable_cuda_graph)
|
15 |
+
enc.text_model._build_causal_attention_mask = self._build_causal_attention_mask
|
16 |
+
self.enc = enc
|
17 |
+
self.device = self.enc.device
|
18 |
+
self.dtype = self.enc.dtype
|
19 |
+
self.cuda_graph_created = [False, False]
|
20 |
+
self.static_inputs = [None, None]
|
21 |
+
self.static_kwargs = [None, None]
|
22 |
+
self.static_output = [None, None]
|
23 |
+
self._cuda_graphs = [None, None]
|
24 |
+
self.iter = 0
|
25 |
+
self.config = self.enc.config
|
26 |
+
|
27 |
+
def _build_causal_attention_mask(self, bsz, seq_len, dtype):
|
28 |
+
mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype, device=get_accelerator().current_device_name())
|
29 |
+
mask.fill_(torch.tensor(torch.finfo(dtype).min))
|
30 |
+
mask.triu_(1)
|
31 |
+
mask = mask.unsqueeze(1)
|
32 |
+
return mask
|
33 |
+
|
34 |
+
def _graph_replay(self, *inputs, **kwargs):
|
35 |
+
for i in range(len(inputs)):
|
36 |
+
if torch.is_tensor(inputs[i]):
|
37 |
+
self.static_inputs[self.iter][i].copy_(inputs[i])
|
38 |
+
for k in kwargs:
|
39 |
+
if torch.is_tensor(kwargs[k]):
|
40 |
+
self.static_kwargs[self.iter][k].copy_(kwargs[k])
|
41 |
+
get_accelerator().replay_graph(self._cuda_graphs[self.iter])
|
42 |
+
return self.static_output[self.iter]
|
43 |
+
|
44 |
+
def forward(self, *inputs, **kwargs):
|
45 |
+
if self.enable_cuda_graph:
|
46 |
+
if self.cuda_graph_created[self.iter]:
|
47 |
+
outputs = self._graph_replay(*inputs, **kwargs)
|
48 |
+
else:
|
49 |
+
self._create_cuda_graph(*inputs, **kwargs)
|
50 |
+
outputs = self._graph_replay(*inputs, **kwargs)
|
51 |
+
self.iter = (self.iter + 1) % 2
|
52 |
+
return outputs
|
53 |
+
else:
|
54 |
+
return self.enc(*inputs, **kwargs)
|
55 |
+
|
56 |
+
def _create_cuda_graph(self, *inputs, **kwargs):
|
57 |
+
# warmup to create the workspace and cublas handle
|
58 |
+
cuda_stream = torch.cuda.Stream()
|
59 |
+
cuda_stream.wait_stream(torch.cuda.current_stream())
|
60 |
+
with torch.cuda.stream(cuda_stream):
|
61 |
+
for i in range(3):
|
62 |
+
ret = self._forward(*inputs, **kwargs)
|
63 |
+
torch.cuda.current_stream().wait_stream(cuda_stream)
|
64 |
+
|
65 |
+
# create cuda_graph and assign static_inputs and static_outputs
|
66 |
+
self._cuda_graphs[self.iter] = get_accelerator().create_graph()
|
67 |
+
self.static_inputs[self.iter] = inputs
|
68 |
+
self.static_kwargs[self.iter] = kwargs
|
69 |
+
|
70 |
+
with get_accelerator().capture_to_graph(self._cuda_graphs[self.iter]):
|
71 |
+
self.static_output[self.iter] = self._forward(*self.static_inputs[self.iter],
|
72 |
+
**self.static_kwargs[self.iter])
|
73 |
+
|
74 |
+
self.cuda_graph_created[self.iter] = True
|
75 |
+
|
76 |
+
def _forward(self, *inputs, **kwargs):
|
77 |
+
return self.enc(*inputs, **kwargs)
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/ds_base.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch.nn as nn
|
7 |
+
|
8 |
+
|
9 |
+
class DeepSpeedTransformerBase(nn.module):
|
10 |
+
|
11 |
+
def __init__(self):
|
12 |
+
pass
|
13 |
+
|
14 |
+
# this would be the new clean base class that will replace DeepSpeedTransformerInference.
|
15 |
+
# we currently don't know how this will look like but keeping it here as a placeholder.
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/ds_bert.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from deepspeed.model_implementations.transformers.ds_transformer import DeepSpeedTransformerInference
|
7 |
+
|
8 |
+
|
9 |
+
class DeepSpeedBERTInference(DeepSpeedTransformerInference):
|
10 |
+
"""Initialize the DeepSpeed BERT Transformer Layer.
|
11 |
+
"""
|
12 |
+
|
13 |
+
def __init__(self,
|
14 |
+
config,
|
15 |
+
mp_group=None,
|
16 |
+
quantize_scales=None,
|
17 |
+
quantize_groups=1,
|
18 |
+
merge_count=1,
|
19 |
+
mlp_extra_grouping=False):
|
20 |
+
super().__init__(config, mp_group, quantize_scales, quantize_groups, merge_count, mlp_extra_grouping)
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/ds_bloom.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from deepspeed.model_implementations.transformers.ds_transformer import DeepSpeedTransformerInference
|
7 |
+
|
8 |
+
|
9 |
+
class DeepSpeedBloomInference(DeepSpeedTransformerInference):
|
10 |
+
"""Initialize the DeepSpeed Bloom Transformer Layer.
|
11 |
+
"""
|
12 |
+
|
13 |
+
def __init__(self,
|
14 |
+
config,
|
15 |
+
mp_group=None,
|
16 |
+
quantize_scales=None,
|
17 |
+
quantize_groups=1,
|
18 |
+
merge_count=1,
|
19 |
+
mlp_extra_grouping=False):
|
20 |
+
super().__init__(config, mp_group, quantize_scales, quantize_groups, merge_count, mlp_extra_grouping)
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/ds_gpt.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from deepspeed.model_implementations.transformers.ds_transformer import DeepSpeedTransformerInference
|
7 |
+
|
8 |
+
|
9 |
+
class DeepSpeedGPTInference(DeepSpeedTransformerInference):
|
10 |
+
"""Initialize the DeepSpeed GPT Transformer Layer.
|
11 |
+
"""
|
12 |
+
|
13 |
+
def __init__(self,
|
14 |
+
config,
|
15 |
+
mp_group=None,
|
16 |
+
quantize_scales=None,
|
17 |
+
quantize_groups=1,
|
18 |
+
merge_count=1,
|
19 |
+
mlp_extra_grouping=False):
|
20 |
+
super().__init__(config, mp_group, quantize_scales, quantize_groups, merge_count, mlp_extra_grouping)
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/ds_llama2.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from deepspeed import comm as dist
|
8 |
+
from deepspeed.model_implementations.transformers.ds_transformer import DeepSpeedTransformerInference
|
9 |
+
|
10 |
+
inference_module = None
|
11 |
+
|
12 |
+
|
13 |
+
class DeepSpeedLlama2Inference(DeepSpeedTransformerInference):
|
14 |
+
"""Initialize the DeepSpeed OPT Transformer Layer.
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(self,
|
18 |
+
config,
|
19 |
+
mp_group=None,
|
20 |
+
quantize_scales=None,
|
21 |
+
quantize_groups=1,
|
22 |
+
merge_count=1,
|
23 |
+
mlp_extra_grouping=False):
|
24 |
+
super().__init__(config, mp_group, quantize_scales, quantize_groups, merge_count, mlp_extra_grouping)
|
25 |
+
|
26 |
+
def forward(self, *args, **kwargs):
|
27 |
+
|
28 |
+
input = args[0]
|
29 |
+
input_mask = None
|
30 |
+
# Allocate memory only on first layer forward
|
31 |
+
if self.config.layer_id == 0 and self._alloc_workspace:
|
32 |
+
self.allocate_workspace(self.config.hidden_size, self.config.heads,
|
33 |
+
input.size()[1],
|
34 |
+
input.size()[0], DeepSpeedTransformerInference.layer_id, self.config.mp_size,
|
35 |
+
self.config.bigscience_bloom,
|
36 |
+
dist.get_rank() if dist.is_initialized() else 0, self.config.max_out_tokens,
|
37 |
+
self.config.min_out_tokens)
|
38 |
+
self._alloc_workspace = False
|
39 |
+
|
40 |
+
get_present = True
|
41 |
+
|
42 |
+
# We set the prev key/value to None when there is a prompt
|
43 |
+
if input.shape[1] > 1:
|
44 |
+
self.layer_past = None
|
45 |
+
layer_past = self.layer_past
|
46 |
+
|
47 |
+
input_type = input.dtype
|
48 |
+
|
49 |
+
if (self.config.dtype in [torch.float16, torch.bfloat16, torch.int8]) \
|
50 |
+
and input.dtype == torch.float:
|
51 |
+
target_dtype = torch.half if self.dtype == torch.int8 else self.dtype
|
52 |
+
input = input.to(target_dtype)
|
53 |
+
|
54 |
+
with torch.no_grad():
|
55 |
+
attention_output, key, value, context_outputtn_ctx, inp_norm = \
|
56 |
+
self.attention(input,
|
57 |
+
input_mask,
|
58 |
+
None,
|
59 |
+
layer_past,
|
60 |
+
get_present,
|
61 |
+
None, None, None,
|
62 |
+
self.norm_w,
|
63 |
+
self.norm_b,
|
64 |
+
None)
|
65 |
+
self.layer_past = (key, value)
|
66 |
+
output = self.mlp(attention_output, input, inp_norm, self.attention.attn_ob)
|
67 |
+
|
68 |
+
output = output.to(input_type)
|
69 |
+
return output
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/ds_megatron_gpt.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from deepspeed.model_implementations.transformers.ds_transformer import DeepSpeedTransformerInference
|
7 |
+
|
8 |
+
|
9 |
+
class DeepSpeedMegatronGPTInference(DeepSpeedTransformerInference):
|
10 |
+
"""Initialize the DeepSpeed Megatron GPT Transformer Layer.
|
11 |
+
"""
|
12 |
+
|
13 |
+
def __init__(self,
|
14 |
+
config,
|
15 |
+
mp_group=None,
|
16 |
+
quantize_scales=None,
|
17 |
+
quantize_groups=1,
|
18 |
+
merge_count=1,
|
19 |
+
mlp_extra_grouping=False):
|
20 |
+
super().__init__(config, mp_group, quantize_scales, quantize_groups, merge_count, mlp_extra_grouping)
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/ds_opt.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from deepspeed.model_implementations.transformers.ds_transformer import DeepSpeedTransformerInference
|
7 |
+
|
8 |
+
|
9 |
+
class DeepSpeedOPTInference(DeepSpeedTransformerInference):
|
10 |
+
"""Initialize the DeepSpeed OPT Transformer Layer.
|
11 |
+
"""
|
12 |
+
|
13 |
+
def __init__(self,
|
14 |
+
config,
|
15 |
+
mp_group=None,
|
16 |
+
quantize_scales=None,
|
17 |
+
quantize_groups=1,
|
18 |
+
merge_count=1,
|
19 |
+
mlp_extra_grouping=False):
|
20 |
+
super().__init__(config, mp_group, quantize_scales, quantize_groups, merge_count, mlp_extra_grouping)
|
venv/lib/python3.10/site-packages/deepspeed/model_implementations/transformers/ds_transformer.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from deepspeed import comm as dist
|
9 |
+
from deepspeed.utils.logging import log_dist
|
10 |
+
|
11 |
+
from deepspeed.ops.transformer.inference.ds_mlp import DeepSpeedMLP
|
12 |
+
from deepspeed.ops.transformer.inference.ds_attention import DeepSpeedSelfAttention, BloomSelfAttention
|
13 |
+
from deepspeed.accelerator import get_accelerator
|
14 |
+
from deepspeed.ops.op_builder import InferenceBuilder
|
15 |
+
import deepspeed
|
16 |
+
if deepspeed.HAS_TRITON:
|
17 |
+
from deepspeed.ops.transformer.inference.triton.mlp import TritonMLP
|
18 |
+
from deepspeed.ops.transformer.inference.triton.attention import TritonSelfAttention
|
19 |
+
|
20 |
+
inference_module = None
|
21 |
+
|
22 |
+
|
23 |
+
class DeepSpeedTransformerInference(nn.Module):
|
24 |
+
"""Initialize the DeepSpeed Transformer Layer.
|
25 |
+
Arguments:
|
26 |
+
layer_id: The layer index starting from 0, e.g. if model has 24 transformer layers,
|
27 |
+
layer_id will be 0,1,2...23 when each layer object is instantiated
|
28 |
+
config: An object of DeepSpeedInferenceConfig
|
29 |
+
mp_group: Model parallelism group initialized on the modeling side.
|
30 |
+
quantize_scales: This argument groups all the layers' scales used for quantization
|
31 |
+
quantize_groups: Number of groups used for quantizing the model
|
32 |
+
merge_count: Shows the number of model-parallel checkpoints merged before running inference.
|
33 |
+
We use this argument to control the quantization scale for the model parameters if a bigger
|
34 |
+
quantize-grouping than 1 is used.
|
35 |
+
mlp_extra_grouping: This flag is used to show a 2x higher number of groups used for the MLP part
|
36 |
+
of a Transformer layer. We use this feature for quantization to reduce the convergence impact
|
37 |
+
for specific downstream tasks.
|
38 |
+
"""
|
39 |
+
layer_id = 0
|
40 |
+
|
41 |
+
def __init__(self,
|
42 |
+
config,
|
43 |
+
mp_group=None,
|
44 |
+
quantize_scales=None,
|
45 |
+
quantize_groups=1,
|
46 |
+
merge_count=1,
|
47 |
+
mlp_extra_grouping=False):
|
48 |
+
super(DeepSpeedTransformerInference, self).__init__()
|
49 |
+
|
50 |
+
self.config = config
|
51 |
+
self.config.layer_id = DeepSpeedTransformerInference.layer_id
|
52 |
+
DeepSpeedTransformerInference.layer_id += 1
|
53 |
+
|
54 |
+
data_type = torch.half if self.config.dtype == torch.int8 else self.config.dtype
|
55 |
+
global inference_module
|
56 |
+
if inference_module is None:
|
57 |
+
builder = InferenceBuilder()
|
58 |
+
inference_module = builder.load()
|
59 |
+
|
60 |
+
if DeepSpeedTransformerInference.layer_id == 1:
|
61 |
+
log_dist(f"DeepSpeed-Inference config: {self.config.__dict__}", [0])
|
62 |
+
if deepspeed.HAS_TRITON and self.config.use_triton:
|
63 |
+
log_dist(f"Injecting Triton kernels ...", [0])
|
64 |
+
|
65 |
+
if self.config.bigscience_bloom:
|
66 |
+
self.attention = BloomSelfAttention(self.config, mp_group, quantize_scales, quantize_groups, merge_count)
|
67 |
+
assert not self.config.use_triton
|
68 |
+
else:
|
69 |
+
if deepspeed.HAS_TRITON and self.config.use_triton:
|
70 |
+
self.attention = TritonSelfAttention(self.config)
|
71 |
+
else:
|
72 |
+
self.attention = DeepSpeedSelfAttention(self.config, mp_group, quantize_scales, quantize_groups,
|
73 |
+
merge_count)
|
74 |
+
|
75 |
+
if deepspeed.HAS_TRITON and self.config.use_triton:
|
76 |
+
self.mlp = TritonMLP(self.config)
|
77 |
+
else:
|
78 |
+
self.mlp = DeepSpeedMLP(self.config, mp_group, quantize_scales, quantize_groups, merge_count,
|
79 |
+
mlp_extra_grouping)
|
80 |
+
|
81 |
+
device = get_accelerator().current_device_name() # if config.bigscience_bloom else 'cpu'
|
82 |
+
if self.config.set_empty_params:
|
83 |
+
self.norm_w = None
|
84 |
+
self.norm_b = None
|
85 |
+
else:
|
86 |
+
self.norm_w = nn.Parameter(torch.empty(self.config.hidden_size, dtype=data_type, device=device),
|
87 |
+
requires_grad=False)
|
88 |
+
self.norm_b = nn.Parameter(torch.empty(self.config.hidden_size, dtype=data_type, device=device),
|
89 |
+
requires_grad=False)
|
90 |
+
self.layer_past = None
|
91 |
+
try:
|
92 |
+
if config.dtype == torch.float32:
|
93 |
+
self.allocate_workspace = inference_module.allocate_workspace_fp32
|
94 |
+
elif config.dtype == torch.bfloat16:
|
95 |
+
self.allocate_workspace = inference_module.allocate_workspace_bf16
|
96 |
+
else:
|
97 |
+
self.allocate_workspace = inference_module.allocate_workspace_fp32
|
98 |
+
self._alloc_workspace = True
|
99 |
+
except AttributeError:
|
100 |
+
self.allocate_workspace = None
|
101 |
+
self._alloc_workspace = False
|
102 |
+
|
103 |
+
@classmethod
|
104 |
+
def reset_cache(cls):
|
105 |
+
if inference_module is not None:
|
106 |
+
inference_module.reset_cache()
|
107 |
+
|
108 |
+
def forward(
|
109 |
+
self,
|
110 |
+
input=None,
|
111 |
+
input_mask=None,
|
112 |
+
attention_mask=None,
|
113 |
+
attn_mask=None,
|
114 |
+
head_mask=None,
|
115 |
+
layer_past=None,
|
116 |
+
get_key_value=False,
|
117 |
+
get_present=False,
|
118 |
+
encoder_output=None,
|
119 |
+
enc_dec_attn_mask=None,
|
120 |
+
x=None,
|
121 |
+
encoder_hidden_states=None,
|
122 |
+
encoder_attention_mask=None,
|
123 |
+
use_cache=False,
|
124 |
+
alibi=None,
|
125 |
+
output_attentions=False,
|
126 |
+
# TODO(arashb): 'layer_head_mask' and 'past_key_value' are only added to satisfy the OPT models API.
|
127 |
+
# This needs to be redesigned later!
|
128 |
+
layer_head_mask=None,
|
129 |
+
past_key_value=None,
|
130 |
+
**kwargs):
|
131 |
+
|
132 |
+
if x is not None:
|
133 |
+
input = x
|
134 |
+
if "hidden_states" in kwargs:
|
135 |
+
input = kwargs["hidden_states"]
|
136 |
+
|
137 |
+
input_mask = (input_mask if attn_mask is None else attn_mask) if attention_mask is None else attention_mask
|
138 |
+
|
139 |
+
# Allocate memory only on first layer forward
|
140 |
+
if self.config.layer_id == 0 and self._alloc_workspace:
|
141 |
+
self.allocate_workspace(self.config.hidden_size, self.config.heads,
|
142 |
+
input.size()[1],
|
143 |
+
input.size()[0], DeepSpeedTransformerInference.layer_id, self.config.mp_size,
|
144 |
+
self.config.bigscience_bloom,
|
145 |
+
dist.get_rank() if dist.is_initialized() else 0, self.config.max_out_tokens,
|
146 |
+
self.config.min_out_tokens)
|
147 |
+
self._alloc_workspace = False
|
148 |
+
|
149 |
+
get_present = (get_present or get_key_value or use_cache)
|
150 |
+
input_mask = input_mask if attention_mask is None else attention_mask
|
151 |
+
|
152 |
+
# We set the prev key/value to None when there is a prompt
|
153 |
+
if input.shape[1] > 1:
|
154 |
+
self.layer_past = None
|
155 |
+
layer_past = layer_past if layer_past is not None else self.layer_past
|
156 |
+
head_mask = layer_head_mask if layer_head_mask is not None else head_mask
|
157 |
+
|
158 |
+
attn_mask = None
|
159 |
+
if isinstance(input, tuple):
|
160 |
+
attn_mask = input[1]
|
161 |
+
input = input[0]
|
162 |
+
input_type = input.dtype
|
163 |
+
|
164 |
+
if (self.config.dtype in [torch.float16, torch.bfloat16, torch.int8]) \
|
165 |
+
and input.dtype == torch.float:
|
166 |
+
target_dtype = torch.half if self.config.dtype == torch.int8 else self.config.dtype
|
167 |
+
input = input.to(target_dtype)
|
168 |
+
|
169 |
+
with torch.no_grad():
|
170 |
+
attention_output, key, value, context_outputtn_ctx, inp_norm = \
|
171 |
+
self.attention(input,
|
172 |
+
input_mask,
|
173 |
+
head_mask,
|
174 |
+
layer_past,
|
175 |
+
get_present,
|
176 |
+
encoder_hidden_states,
|
177 |
+
encoder_attention_mask,
|
178 |
+
output_attentions,
|
179 |
+
self.norm_w,
|
180 |
+
self.norm_b,
|
181 |
+
alibi)
|
182 |
+
|
183 |
+
presents = (key, value)
|
184 |
+
self.layer_past = presents if layer_past is None else None
|
185 |
+
output = self.mlp(attention_output, input, inp_norm, self.attention.attn_ob)
|
186 |
+
|
187 |
+
if not self.config.pre_layer_norm:
|
188 |
+
output = inference_module.layer_norm(output, self.norm_w, self.norm_b, self.config.epsilon)
|
189 |
+
|
190 |
+
output = output.to(input_type)
|
191 |
+
if get_present:
|
192 |
+
output = (output, presents)
|
193 |
+
|
194 |
+
if self.config.return_single_tuple:
|
195 |
+
return (output, )
|
196 |
+
elif self.config.return_tuple:
|
197 |
+
return output if type(output) is tuple else (output, attn_mask)
|
198 |
+
else:
|
199 |
+
return output
|
venv/lib/python3.10/site-packages/deepspeed/module_inject/__init__.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from .replace_module import replace_transformer_layer, revert_transformer_layer, ReplaceWithTensorSlicing, GroupQuantizer, generic_injection
|
7 |
+
from .module_quantize import quantize_transformer_layer
|
8 |
+
from .replace_policy import HFBertLayerPolicy
|
9 |
+
from .layers import LinearAllreduce, LinearLayer, EmbeddingLayer, Normalize
|
10 |
+
from .policy import DSPolicy
|
venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/auto_tp_model_utils.cpython-310.pyc
ADDED
Binary file (4.04 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/fusedqkv_utils.cpython-310.pyc
ADDED
Binary file (4.82 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/module_quantize.cpython-310.pyc
ADDED
Binary file (2.84 kB). View file
|
|
venv/lib/python3.10/site-packages/deepspeed/module_inject/auto_tp.py
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
# Automatic Tensor Parallelism
|
7 |
+
import re
|
8 |
+
|
9 |
+
from torch import nn
|
10 |
+
from .replace_policy import replace_policies
|
11 |
+
from typing import Optional
|
12 |
+
import torch
|
13 |
+
from deepspeed import comm as dist
|
14 |
+
from .layers import LinearAllreduce, LinearLayer, LmHeadLinearAllreduce
|
15 |
+
from deepspeed.accelerator import get_accelerator
|
16 |
+
from .fusedqkv_utils import require_tp_fused_qkvw, prepare_tp_fused_qkvw
|
17 |
+
from deepspeed.module_inject.tp_shard import get_shard_size, get_shard_size_list
|
18 |
+
|
19 |
+
|
20 |
+
def move(tensor, device):
|
21 |
+
if tensor.is_meta:
|
22 |
+
return torch.empty_like(tensor, device=device)
|
23 |
+
else:
|
24 |
+
# Using new tensors help in freeing memory (after split for example) was done before by calling clone().
|
25 |
+
# Using copy=True instead of clone() will help in case of cpu --> cpu.
|
26 |
+
# Otherwise to() will not create a new copy for the view of the full tensor, and it will not be de-referenced.
|
27 |
+
return tensor.to(device, copy=True)
|
28 |
+
|
29 |
+
|
30 |
+
class ReplaceWithTensorSlicing:
|
31 |
+
|
32 |
+
def __init__(self, mp_group=None, mp_size=1, out_dim=1, in_dim=0):
|
33 |
+
if mp_group is not None:
|
34 |
+
self.gpu_index = dist.get_rank(group=mp_group)
|
35 |
+
else:
|
36 |
+
self.gpu_index = 0
|
37 |
+
self.out_dim = out_dim
|
38 |
+
self.in_dim = in_dim
|
39 |
+
self.mp_size = mp_size
|
40 |
+
|
41 |
+
def merge_assert(self, dim1, dim2):
|
42 |
+
assert dim1 > dim2, \
|
43 |
+
'Merging tensors is not allowed here! Please use deepspeed load_checkpoint\
|
44 |
+
for merging your checkpoints before replacing the transformer layer with\
|
45 |
+
inference-kernels'
|
46 |
+
|
47 |
+
def strided_copy(self,
|
48 |
+
dst: Optional[torch.Tensor],
|
49 |
+
src: Optional[torch.Tensor],
|
50 |
+
num_splits: int,
|
51 |
+
int8: bool = False,
|
52 |
+
allocate_tensor: bool = False):
|
53 |
+
if src is None:
|
54 |
+
return src
|
55 |
+
src_shape = src.shape
|
56 |
+
dst_shape = dst.shape
|
57 |
+
|
58 |
+
outer_dim = 0 if int8 else -1
|
59 |
+
|
60 |
+
if allocate_tensor:
|
61 |
+
dst = torch.empty_like(dst)
|
62 |
+
|
63 |
+
src_split = torch.split(src.data, src.shape[outer_dim] // num_splits, dim=outer_dim)
|
64 |
+
if (len(src_shape) == 2 and len(dst_shape) == 2):
|
65 |
+
if src_shape[outer_dim] == dst_shape[self.out_dim]:
|
66 |
+
try:
|
67 |
+
dst = dst.reshape(-1).data.copy_(src.data.reshape(-1)).reshape(src.shape)
|
68 |
+
except:
|
69 |
+
print(dst.shape, src.shape)
|
70 |
+
exit()
|
71 |
+
dst = torch.nn.parameter.Parameter(dst, requires_grad=False)
|
72 |
+
if hasattr(src, 'scale'):
|
73 |
+
dst.scale = src.scale
|
74 |
+
return dst
|
75 |
+
self.merge_assert(src_shape[outer_dim], dst_shape[self.out_dim])
|
76 |
+
qkv_size = dst_shape[self.out_dim] // num_splits
|
77 |
+
qkv_split = [torch.split(src_s, qkv_size, dim=outer_dim) for src_s in src_split]
|
78 |
+
weight_split = [
|
79 |
+
torch.cat([qkv_s[i] for qkv_s in qkv_split], axis=outer_dim) for i in range(len(qkv_split[0]))
|
80 |
+
]
|
81 |
+
dst = dst.reshape(-1).data.copy_(weight_split[self.gpu_index].contiguous().reshape(-1)).reshape(
|
82 |
+
weight_split[self.gpu_index].shape)
|
83 |
+
else:
|
84 |
+
if src_shape[0] == dst_shape[0]:
|
85 |
+
return torch.nn.parameter.Parameter(src)
|
86 |
+
qkv_size = dst_shape[0] // num_splits
|
87 |
+
qkv_split = [torch.split(src_s, qkv_size, dim=0) for src_s in src_split]
|
88 |
+
bias_split = [torch.cat([qkv_s[i] for qkv_s in qkv_split], axis=0) for i in range(len(qkv_split[0]))]
|
89 |
+
dst.data.copy_(bias_split[self.gpu_index].contiguous())
|
90 |
+
|
91 |
+
dst = torch.nn.parameter.Parameter(dst, requires_grad=False)
|
92 |
+
if hasattr(src, 'scale'):
|
93 |
+
dst.scale = src.scale
|
94 |
+
return dst
|
95 |
+
|
96 |
+
def copy(self, dst, src, int8=False, allocate_tensor=False):
|
97 |
+
if src is None:
|
98 |
+
return src
|
99 |
+
assert not dst.data.is_meta # the torch.Tensor.copy_ method used below will silently fail on meta tensors
|
100 |
+
if allocate_tensor:
|
101 |
+
dst = torch.empty_like(dst)
|
102 |
+
outer_dim = 0 if int8 else 1
|
103 |
+
inner_dim = 1 if int8 else 0
|
104 |
+
src_shape = src.shape
|
105 |
+
dst_shape = dst.shape
|
106 |
+
if (len(src_shape) == 2 and len(dst_shape) == 2):
|
107 |
+
|
108 |
+
if src_shape[inner_dim] == dst_shape[self.in_dim] and src_shape[outer_dim] == dst_shape[self.out_dim]:
|
109 |
+
dst = dst.reshape(-1).data.copy_(src.data.reshape(-1)).reshape(src.shape)
|
110 |
+
else:
|
111 |
+
if src_shape[inner_dim] != dst_shape[self.in_dim]:
|
112 |
+
self.merge_assert(src_shape[inner_dim], dst_shape[self.in_dim])
|
113 |
+
dst.data.copy_(src[:, self.gpu_index * dst_shape[self.in_dim]: (self.gpu_index + 1) * dst_shape[self.in_dim]] if inner_dim == 1 else \
|
114 |
+
src[self.gpu_index * dst_shape[self.in_dim]: (self.gpu_index + 1) * dst_shape[self.in_dim], :])
|
115 |
+
else:
|
116 |
+
self.merge_assert(src_shape[outer_dim], dst_shape[self.out_dim])
|
117 |
+
dst.data.copy_(src[:, self.gpu_index * dst_shape[self.out_dim]: (self.gpu_index + 1) * dst_shape[self.out_dim]] if outer_dim == 1 else \
|
118 |
+
src[self.gpu_index * dst_shape[self.out_dim]: (self.gpu_index + 1) * dst_shape[self.out_dim], :])
|
119 |
+
else:
|
120 |
+
if src_shape[0] == dst_shape[0]:
|
121 |
+
dst = src if src.dtype == dst.dtype else dst.data.copy_(src)
|
122 |
+
else:
|
123 |
+
dst.data.copy_(src[self.gpu_index * dst_shape[-1]:(self.gpu_index + 1) * dst_shape[-1]])
|
124 |
+
dst = torch.nn.parameter.Parameter(dst, requires_grad=False)
|
125 |
+
if hasattr(src, 'scale'):
|
126 |
+
dst.scale = src.scale
|
127 |
+
return dst
|
128 |
+
|
129 |
+
|
130 |
+
class Loading():
|
131 |
+
|
132 |
+
def is_load_module(module):
|
133 |
+
load_layers = [nn.Linear, nn.Embedding, nn.LayerNorm]
|
134 |
+
load_layer_names = [
|
135 |
+
"LPLayerNorm", "SharedEmbedding", "OPTLearnedPositionalEmbedding", "LlamaRMSNorm", "FalconLinear",
|
136 |
+
"MistralRMSNorm", "T5LayerNorm", "MixtralRMSNorm"
|
137 |
+
]
|
138 |
+
return module.__class__ in load_layers or module._get_name() in load_layer_names
|
139 |
+
|
140 |
+
def load_buffer(module, state_dict, prefix):
|
141 |
+
for name in module._buffers.keys():
|
142 |
+
if module._buffers[name].data.is_meta:
|
143 |
+
module._buffers[name] = torch.nn.parameter.Parameter(
|
144 |
+
data=torch.empty_like(module._buffers[name].data, device="cpu"),
|
145 |
+
requires_grad=module._buffers[name].data.requires_grad)
|
146 |
+
if prefix + name in state_dict.keys():
|
147 |
+
module._buffers[name].data.copy_(state_dict[prefix + name])
|
148 |
+
|
149 |
+
def load(module, state_dict, prefix, mp_group=None):
|
150 |
+
mp_replace = ReplaceWithTensorSlicing(mp_group=mp_group)
|
151 |
+
if hasattr(module, 'weight'):
|
152 |
+
if module.weight.data.is_meta:
|
153 |
+
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here
|
154 |
+
module.weight = torch.nn.parameter.Parameter(data=torch.empty_like(module.weight.data, device="cpu"),
|
155 |
+
requires_grad=module.weight.data.requires_grad)
|
156 |
+
if 'query_key_value' in prefix:
|
157 |
+
module.weight = mp_replace.strided_copy(module.weight.data,
|
158 |
+
state_dict[prefix + 'weight'],
|
159 |
+
num_splits=3)
|
160 |
+
else:
|
161 |
+
module.weight = mp_replace.copy(module.weight.data, state_dict[prefix + 'weight'])
|
162 |
+
else:
|
163 |
+
if hasattr(module, 'norm') and hasattr(module.norm, 'weight'):
|
164 |
+
if module.norm.weight.data.is_meta:
|
165 |
+
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here
|
166 |
+
module.norm.weight = torch.nn.parameter.Parameter(
|
167 |
+
data=torch.empty_like(module.norm.weight.data, device="cpu"),
|
168 |
+
requires_grad=module.norm.weight.data.requires_grad)
|
169 |
+
module.norm.weight = mp_replace.copy(module.norm.weight.data, state_dict[prefix + 'weight'])
|
170 |
+
|
171 |
+
if prefix + 'bias' in state_dict.keys():
|
172 |
+
if hasattr(module, 'bias'):
|
173 |
+
if module.bias.data.is_meta:
|
174 |
+
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here
|
175 |
+
module.bias = torch.nn.parameter.Parameter(data=torch.empty_like(module.bias.data, device="cpu"),
|
176 |
+
requires_grad=module.bias.data.requires_grad)
|
177 |
+
module.bias = mp_replace.copy(module.bias, state_dict[prefix + 'bias'])
|
178 |
+
else:
|
179 |
+
if hasattr(module, 'norm') and hasattr(module.norm, 'bias'):
|
180 |
+
if module.norm.bias.data.is_meta:
|
181 |
+
# meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here
|
182 |
+
module.norm.bias = torch.nn.parameter.Parameter(
|
183 |
+
data=torch.empty_like(module.norm.bias.data, device="cpu"),
|
184 |
+
requires_grad=module.norm.bias.data.requires_grad)
|
185 |
+
module.norm.bias = mp_replace.copy(module.norm.bias, state_dict[prefix + 'bias'])
|
186 |
+
|
187 |
+
|
188 |
+
class AutoTP():
|
189 |
+
|
190 |
+
def __init__(self, module, all_reduce_linears, prefix, state_dict, linear_layer_setting, orig_layer_impl):
|
191 |
+
self.module = module
|
192 |
+
self.all_reduce_linears = all_reduce_linears
|
193 |
+
self.prefix = prefix
|
194 |
+
self.state_dict = state_dict
|
195 |
+
|
196 |
+
self.mp_size = None
|
197 |
+
self.mp_group = None
|
198 |
+
self.linear_layer_setting = linear_layer_setting
|
199 |
+
self.orig_layer_impl = orig_layer_impl
|
200 |
+
self.linear_policies = None
|
201 |
+
self.conv_linear_layer = False
|
202 |
+
|
203 |
+
def in_module_list(module, module_list):
|
204 |
+
for item in module_list:
|
205 |
+
if type(item).__name__ == type(module).__name__:
|
206 |
+
return True
|
207 |
+
return False
|
208 |
+
|
209 |
+
def get_module_list(model):
|
210 |
+
mlist = []
|
211 |
+
for child in model.children():
|
212 |
+
if isinstance(child, nn.ModuleList):
|
213 |
+
for module in child.children():
|
214 |
+
if not mlist:
|
215 |
+
mlist = [module]
|
216 |
+
elif not AutoTP.in_module_list(module, mlist):
|
217 |
+
mlist = mlist + [module]
|
218 |
+
else:
|
219 |
+
mlist = mlist + AutoTP.get_module_list(child)
|
220 |
+
return mlist
|
221 |
+
|
222 |
+
def supported(model):
|
223 |
+
unsupported = ['deberta', 'flaubert', 'fsmt', 'gpt2', 'led', 'longformer', 'xlm', 'xlnet']
|
224 |
+
model = str(model)
|
225 |
+
key = re.search(r": (.*?)Model", model)
|
226 |
+
if key is None:
|
227 |
+
key = re.search(r": (.*?)Stack", model)
|
228 |
+
if key is None:
|
229 |
+
key = re.match(r"(.*?)Model", model)
|
230 |
+
assert key is not None, "Not able to determine model policy automatically. Please provide policy."
|
231 |
+
if key.group(1).lower() in unsupported:
|
232 |
+
return False
|
233 |
+
return True
|
234 |
+
|
235 |
+
def get_layers(parent, module):
|
236 |
+
layer_list = []
|
237 |
+
for key, submodule in module._modules.items():
|
238 |
+
if isinstance(submodule, nn.Linear):
|
239 |
+
layer_list = layer_list + [parent + "." + key]
|
240 |
+
elif isinstance(submodule, nn.LayerNorm) or key == 'LayerNorm' or key == 'layer_norm':
|
241 |
+
layer_list = layer_list + ["ln"]
|
242 |
+
else:
|
243 |
+
layer_list = layer_list + AutoTP.get_layers(key, submodule)
|
244 |
+
return layer_list
|
245 |
+
|
246 |
+
def update_policy_list(policy_list, new_module, new_gems):
|
247 |
+
if len(policy_list):
|
248 |
+
for i, policy in enumerate(policy_list):
|
249 |
+
# if module already exists in policy, combine gems and remove duplicates
|
250 |
+
if policy[0] == type(new_module):
|
251 |
+
new_gems = set(new_gems + policy[1])
|
252 |
+
policy_list[i] = tuple([type(new_module), new_gems])
|
253 |
+
return policy_list
|
254 |
+
policy_list.append(tuple([type(new_module), new_gems]))
|
255 |
+
return policy_list
|
256 |
+
|
257 |
+
def kernel_supported(module_list):
|
258 |
+
policy = []
|
259 |
+
for plcy in replace_policies:
|
260 |
+
# instantiate a throw-away policy in order to populate the _orig_layer_class
|
261 |
+
_ = plcy(None)
|
262 |
+
if isinstance(plcy._orig_layer_class, list):
|
263 |
+
for orig_layer_class in plcy._orig_layer_class:
|
264 |
+
policy.append(orig_layer_class)
|
265 |
+
elif plcy._orig_layer_class is not None:
|
266 |
+
policy.append(plcy._orig_layer_class)
|
267 |
+
for child in module_list:
|
268 |
+
if child.__class__ in policy:
|
269 |
+
return True
|
270 |
+
return False
|
271 |
+
|
272 |
+
def tp_parser(model):
|
273 |
+
policy_list = []
|
274 |
+
module_list = []
|
275 |
+
layer_list = []
|
276 |
+
gem_list = []
|
277 |
+
|
278 |
+
module_list = AutoTP.get_module_list(model)
|
279 |
+
assert AutoTP.supported(model), "AutoTP not supported for model. Please use kernel injection since container policy for model exists." \
|
280 |
+
if AutoTP.kernel_supported(module_list) else "AutoTP not supported for model. Please provide policy."
|
281 |
+
norm_layer_name_list = ['LayerNorm', 'layer_norm', 'ln_1', 'ln_2']
|
282 |
+
#ln_1 , ln_2 for Qwen
|
283 |
+
for module in module_list:
|
284 |
+
for key, submodule in module._modules.items():
|
285 |
+
if isinstance(submodule, nn.Linear):
|
286 |
+
layer_list = layer_list + ["." + key]
|
287 |
+
elif isinstance(submodule, nn.LayerNorm) or key in norm_layer_name_list:
|
288 |
+
layer_list = layer_list + ["ln"]
|
289 |
+
else:
|
290 |
+
layer_list = layer_list + AutoTP.get_layers(key, submodule)
|
291 |
+
for i, layer in enumerate(layer_list):
|
292 |
+
if layer == 'ln':
|
293 |
+
if layer_list[i - 1] != 'ln':
|
294 |
+
gem_list = gem_list + [layer_list[i - 1]]
|
295 |
+
elif 'out_proj' in layer:
|
296 |
+
gem_list = gem_list + [layer]
|
297 |
+
elif 'o_proj' in layer:
|
298 |
+
gem_list = gem_list + [layer]
|
299 |
+
elif 'down_proj' in layer:
|
300 |
+
gem_list = gem_list + [layer]
|
301 |
+
elif 'attention.dense' in layer and 'GPTNeoX' in str(model):
|
302 |
+
gem_list = gem_list + [layer]
|
303 |
+
elif 'self_attention.dense' in layer and 'falcon' in str(
|
304 |
+
type(module)): # this is a hack to get the right linear layer for this model!
|
305 |
+
gem_list = gem_list + [layer]
|
306 |
+
# Mixtral-7x8b used w2*act(w1*w3) linear. need to replace w2 to linearallreduce.
|
307 |
+
elif 'w2' in layer and 'Mixtral' in str(type(module)):
|
308 |
+
gem_list = gem_list + [layer]
|
309 |
+
|
310 |
+
layer_list = []
|
311 |
+
if gem_list != []:
|
312 |
+
gem_list = list(set(gem_list))
|
313 |
+
policy_list = AutoTP.update_policy_list(policy_list, module, gem_list)
|
314 |
+
gem_list = []
|
315 |
+
assert len(policy_list), "AutoTP not supported for model. Please use kernel injection since container policy for model exists." \
|
316 |
+
if AutoTP.kernel_supported(module_list) else "Not able to determine model policy automatically. Please provide policy."
|
317 |
+
return policy_list
|
318 |
+
|
319 |
+
def set_tensor_parallel_config(self, mp_size, mp_group):
|
320 |
+
self.mp_size = mp_size
|
321 |
+
self.mp_group = mp_group
|
322 |
+
|
323 |
+
def _replace(self, child, name, conv_linear_layer):
|
324 |
+
if getattr(child, "replaced", False) == True:
|
325 |
+
return
|
326 |
+
weight_shape = child.weight.shape
|
327 |
+
mp_replace = ReplaceWithTensorSlicing(mp_group=self.mp_group)
|
328 |
+
# For mixtral-7x8b, need to skip MoE gate linear replace.
|
329 |
+
if name == "block_sparse_moe.gate":
|
330 |
+
return child
|
331 |
+
if name in self.all_reduce_linears:
|
332 |
+
# if conv_linear_layer [weight_shape[1], weight_shape[0] // mp_size]
|
333 |
+
# else [weight_shape[0], weight_shape[1] // mp_size]
|
334 |
+
|
335 |
+
if self.conv_linear_layer:
|
336 |
+
child.weight.data = child.weight.data.transpose(-1, -2).contiguous()
|
337 |
+
data = child.weight.data.split(get_shard_size_list(
|
338 |
+
weight_shape[0] if self.conv_linear_layer else weight_shape[1], self.mp_size, name),
|
339 |
+
dim=1)
|
340 |
+
data_dc = move(data[mp_replace.gpu_index], get_accelerator().current_device_name()).detach()
|
341 |
+
del data
|
342 |
+
|
343 |
+
setattr(child, "replaced", True)
|
344 |
+
if name == "lm_head" or name == 'embed_out':
|
345 |
+
return LmHeadLinearAllreduce(
|
346 |
+
torch.nn.parameter.Parameter(data_dc, requires_grad=False), dist.get_rank(), dist.get_world_size(),
|
347 |
+
child.bias if child.bias is None else torch.nn.parameter.Parameter(
|
348 |
+
move(child.bias,
|
349 |
+
get_accelerator().current_device_name())), self.mp_group)
|
350 |
+
return LinearAllreduce(torch.nn.parameter.Parameter(data_dc, requires_grad=False), child.bias if child.bias is None else \
|
351 |
+
torch.nn.parameter.Parameter(move(child.bias, get_accelerator().current_device_name())), self.mp_group)
|
352 |
+
else:
|
353 |
+
|
354 |
+
# if conv_linear_layer [weight_shape[1], weight_shape[0] // mp_size]
|
355 |
+
# else [weight_shape[0] // mp_size, weight_shape[1]]
|
356 |
+
if self.conv_linear_layer:
|
357 |
+
child.weight.data = child.weight.data.transpose(-1, -2).contiguous()
|
358 |
+
|
359 |
+
if require_tp_fused_qkvw(name, self.mp_size):
|
360 |
+
#Check and handle fused qkv for TP
|
361 |
+
#The copy is a regular copy, The shape of dst and src is the same
|
362 |
+
data_dc = move(
|
363 |
+
prepare_tp_fused_qkvw(self.module, child.weight.data, self.mp_size, mp_replace.gpu_index),
|
364 |
+
get_accelerator().current_device_name())
|
365 |
+
|
366 |
+
bias_data_dc = None if child.bias is None else move(
|
367 |
+
prepare_tp_fused_qkvw(self.module, child.bias.data, self.mp_size, mp_replace.gpu_index),
|
368 |
+
get_accelerator().current_device_name())
|
369 |
+
else:
|
370 |
+
data = child.weight.data.split(get_shard_size_list(weight_shape[0], self.mp_size, name),
|
371 |
+
dim=1 if self.conv_linear_layer else 0)
|
372 |
+
data_dc = move(data[mp_replace.gpu_index], get_accelerator().current_device_name()).detach()
|
373 |
+
del data
|
374 |
+
|
375 |
+
if child.bias is not None:
|
376 |
+
bias_data = child.bias.data.split(get_shard_size_list(
|
377 |
+
weight_shape[1] if self.conv_linear_layer else weight_shape[0], self.mp_size, name),
|
378 |
+
dim=0)
|
379 |
+
bias_data = move(bias_data[mp_replace.gpu_index], get_accelerator().current_device_name())
|
380 |
+
bias_data_dc = torch.nn.parameter.Parameter(bias_data, requires_grad=False)
|
381 |
+
del bias_data
|
382 |
+
else:
|
383 |
+
bias_data_dc = None
|
384 |
+
|
385 |
+
setattr(child, "replaced", True)
|
386 |
+
return LinearLayer(weight=torch.nn.parameter.Parameter(data_dc, requires_grad=False), bias=bias_data_dc)
|
387 |
+
|
388 |
+
def _slice_embedding(self, child, name, conv_linear_layer):
|
389 |
+
if getattr(child, "replaced", False) == True:
|
390 |
+
return
|
391 |
+
mp_replace = ReplaceWithTensorSlicing(mp_group=self.mp_group)
|
392 |
+
|
393 |
+
if hasattr(child.weight, 'ds_tensor'):
|
394 |
+
data = child.weight.ds_tensor.data.split(get_shard_size_list(child.weight.shape[1], self.mp_size), dim=1)
|
395 |
+
else:
|
396 |
+
data = child.weight.data.split(get_shard_size_list(child.weight.shape[1], self.mp_size, name), dim=1)
|
397 |
+
data = data[mp_replace.gpu_index].to(get_accelerator().current_device_name())
|
398 |
+
data = torch.nn.parameter.Parameter(data, requires_grad=False)
|
399 |
+
|
400 |
+
new_embedding = nn.Embedding(child.weight.shape[0], get_shard_size(child.weight.shape[1], self.mp_size, name))
|
401 |
+
new_embedding.weight.data.copy_(data)
|
402 |
+
setattr(child, "replaced", True)
|
403 |
+
return new_embedding
|
404 |
+
|
405 |
+
def update_mp_params(self, child):
|
406 |
+
if getattr(child, "replaced", False) == True:
|
407 |
+
return
|
408 |
+
for param in [
|
409 |
+
"n_heads", "inner_dim", "num_heads", "num_kv", "num_attention_heads", "num_attn_heads",
|
410 |
+
"all_head_size", "embed_dim", "hidden_size", "num_key_value_heads", "num_kv_heads", "kv_n_heads",
|
411 |
+
"d_model"
|
412 |
+
]:
|
413 |
+
if hasattr(child, param):
|
414 |
+
param_val = getattr(child, param)
|
415 |
+
setattr(child, param, get_shard_size(param_val, self.mp_size))
|
416 |
+
setattr(child, "replaced", True)
|
417 |
+
|
418 |
+
def update_linear_policies(self):
|
419 |
+
self.conv_linear_layer = False
|
420 |
+
if self.linear_layer_setting is not None:
|
421 |
+
self.linear_policies = {self.linear_layer_setting[0]: self._replace}
|
422 |
+
if len(self.linear_layer_setting) == 2:
|
423 |
+
self.linear_policies.update({self.linear_layer_setting[1]: self._slice_embedding})
|
424 |
+
else:
|
425 |
+
import transformers
|
426 |
+
if self.orig_layer_impl is transformers.models.gpt2.modeling_gpt2.GPT2Block:
|
427 |
+
try:
|
428 |
+
self.conv_linear_layer = True
|
429 |
+
self.linear_policies = {transformers.pytorch_utils.Conv1D: self._replace}
|
430 |
+
except ImportError:
|
431 |
+
self.linear_policies = {nn.Linear: self._replace}
|
432 |
+
else:
|
433 |
+
self.linear_policies = {nn.Linear: self._replace, nn.Embedding: self._slice_embedding}
|
434 |
+
|
435 |
+
def _replace_module(self, r_module, prev_name='', prev_class_name=''):
|
436 |
+
for name, child in r_module.named_children():
|
437 |
+
if prev_class_name == "":
|
438 |
+
class_name = prev_name
|
439 |
+
elif prev_name == "":
|
440 |
+
class_name = prev_class_name
|
441 |
+
else:
|
442 |
+
class_name = prev_class_name + '.' + prev_name
|
443 |
+
checking_key = self.prefix + '.' + class_name + '.' + name + '.' if class_name != "" else self.prefix + '.' + name + '.'
|
444 |
+
if Loading.is_load_module(child) and self.state_dict is not None:
|
445 |
+
if any(checking_key in item for item in self.state_dict):
|
446 |
+
Loading.load(child, self.state_dict, checking_key, self.mp_group)
|
447 |
+
else:
|
448 |
+
continue
|
449 |
+
if len(child._buffers) != 0 and self.state_dict is not None:
|
450 |
+
Loading.load_buffer(child, self.state_dict, checking_key)
|
451 |
+
if child.__class__ in self.linear_policies:
|
452 |
+
setattr(r_module, name, self.linear_policies[child.__class__](child, prev_name + '.' + name,
|
453 |
+
self.conv_linear_layer))
|
454 |
+
elif any(isinstance(child, lp) for lp in self.linear_policies):
|
455 |
+
# Added for falcon model support
|
456 |
+
# Note: isinstance will account for class inheritance, child.__class__ does not
|
457 |
+
key = None
|
458 |
+
for lp in self.linear_policies:
|
459 |
+
if isinstance(child, lp):
|
460 |
+
key = lp
|
461 |
+
break
|
462 |
+
assert key is not None
|
463 |
+
setattr(r_module, name, self.linear_policies[key](child, prev_name + '.' + name,
|
464 |
+
self.conv_linear_layer))
|
465 |
+
else:
|
466 |
+
self.update_mp_params(child)
|
467 |
+
self._replace_module(child, name, class_name)
|
468 |
+
return r_module
|
469 |
+
|
470 |
+
def get_model_num_kv_heads(self, config):
|
471 |
+
num_kv_heads = None
|
472 |
+
kv_head_names = ['num_kv_heads', 'num_key_value_heads', 'num_attention_heads', 'n_heads']
|
473 |
+
for name in kv_head_names:
|
474 |
+
if hasattr(config, name):
|
475 |
+
num_kv_heads = getattr(config, name)
|
476 |
+
if num_kv_heads is not None:
|
477 |
+
break
|
478 |
+
return num_kv_heads
|
479 |
+
|
480 |
+
def _replace_last_linear_module(self, r_module):
|
481 |
+
if hasattr(r_module, "lm_head"):
|
482 |
+
name = "lm_head"
|
483 |
+
child = r_module.lm_head
|
484 |
+
elif hasattr(r_module, "embed_out"):
|
485 |
+
name = "embed_out"
|
486 |
+
child = r_module.embed_out
|
487 |
+
else:
|
488 |
+
return r_module
|
489 |
+
if child.__class__ in self.linear_policies:
|
490 |
+
setattr(r_module, name, self.linear_policies[child.__class__](child, name, self.conv_linear_layer))
|
491 |
+
return r_module
|
venv/lib/python3.10/site-packages/deepspeed/module_inject/auto_tp_model_utils.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
|
4 |
+
# DeepSpeed Team
|
5 |
+
|
6 |
+
from deepspeed import comm as dist
|
7 |
+
import torch
|
8 |
+
from typing import Optional
|
9 |
+
from deepspeed.module_inject.tp_shard import get_shard_size, get_shard_size_list
|
10 |
+
|
11 |
+
|
12 |
+
def build_bloom_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
|
13 |
+
"""
|
14 |
+
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
|
15 |
+
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
|
16 |
+
`softmax(l+a) = softmax(l)`. Based on
|
17 |
+
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
|
18 |
+
TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
Returns tensor shaped (batch_size * num_heads, 1, max_seq_len)
|
22 |
+
attention_mask (`torch.Tensor`):
|
23 |
+
Token-wise attention mask, this should be of shape (batch_size, max_seq_len).
|
24 |
+
num_heads (`int`, *required*):
|
25 |
+
number of heads
|
26 |
+
dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`):
|
27 |
+
dtype of the output tensor
|
28 |
+
"""
|
29 |
+
import math
|
30 |
+
batch_size, seq_length = attention_mask.shape
|
31 |
+
closest_power_of_2 = 2**math.floor(math.log2(num_heads))
|
32 |
+
base = torch.tensor(2**(-(2**-(math.log2(closest_power_of_2) - 3))),
|
33 |
+
device=attention_mask.device,
|
34 |
+
dtype=torch.float32)
|
35 |
+
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
|
36 |
+
slopes = torch.pow(base, powers)
|
37 |
+
|
38 |
+
if closest_power_of_2 != num_heads:
|
39 |
+
extra_base = torch.tensor(2**(-(2**-(math.log2(2 * closest_power_of_2) - 3))),
|
40 |
+
device=attention_mask.device,
|
41 |
+
dtype=torch.float32)
|
42 |
+
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
43 |
+
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
|
44 |
+
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
45 |
+
|
46 |
+
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
|
47 |
+
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
|
48 |
+
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
|
49 |
+
# => the query_length dimension will then be broadcasted correctly
|
50 |
+
# This is more or less identical to T5's relative position bias:
|
51 |
+
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
|
52 |
+
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
|
53 |
+
alibi = slopes[..., None] * arange_tensor
|
54 |
+
if dist.is_initialized():
|
55 |
+
num_heads_per_rank = get_shard_size(num_heads, dist.get_world_size())
|
56 |
+
offset = sum(get_shard_size_list(num_heads, dist.get_world_size())[0:dist.get_rank()])
|
57 |
+
alibi = alibi.view(batch_size, num_heads, 1, seq_length)
|
58 |
+
alibi = alibi[:, offset:num_heads_per_rank + offset, :, :]
|
59 |
+
return alibi.reshape(batch_size * num_heads_per_rank, 1, seq_length).to(dtype)
|
60 |
+
else:
|
61 |
+
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
|
62 |
+
|
63 |
+
|
64 |
+
def get_alibi_mask(self, tensor, seq_length_with_past):
|
65 |
+
mask = self.get_alibi_mask_orig(tensor, seq_length_with_past)
|
66 |
+
if not self.training and dist.is_initialized():
|
67 |
+
num_heads_per_rank = get_shard_size(self.n_head, dist.get_world_size())
|
68 |
+
offset = sum(get_shard_size_list(self.n_head, dist.get_world_size())[0:dist.get_rank()])
|
69 |
+
mask = mask[offset:num_heads_per_rank + offset, :seq_length_with_past, :seq_length_with_past]
|
70 |
+
|
71 |
+
return mask
|
72 |
+
|
73 |
+
|
74 |
+
def build_mpt_atten_bias_tensor(self,
|
75 |
+
device,
|
76 |
+
dtype,
|
77 |
+
attention_mask: Optional[torch.ByteTensor] = None,
|
78 |
+
prefix_mask: Optional[torch.ByteTensor] = None,
|
79 |
+
sequence_id: Optional[torch.LongTensor] = None):
|
80 |
+
(attn_bias, attention_mask) = self._attn_bias_orig(device,
|
81 |
+
dtype,
|
82 |
+
attention_mask=attention_mask,
|
83 |
+
prefix_mask=prefix_mask,
|
84 |
+
sequence_id=sequence_id)
|
85 |
+
if dist.is_initialized():
|
86 |
+
num_heads_per_rank = get_shard_size(self.config.n_heads, dist.get_world_size())
|
87 |
+
offset = sum(get_shard_size_list(self.config.n_heads, dist.get_world_size())[0:dist.get_rank()])
|
88 |
+
attn_bias = attn_bias[:, offset:num_heads_per_rank + offset, :, :]
|
89 |
+
return attn_bias, attention_mask
|
90 |
+
|
91 |
+
|
92 |
+
def build_mpt_alibi_tensor(self, num_heads, sequence_length, alibi_bias_max=8, device=None) -> torch.Tensor:
|
93 |
+
r"""
|
94 |
+
Link to paper: https://arxiv.org/abs/2108.12409 - Alibi tensor is not causal as the original paper mentions, it
|
95 |
+
relies on a translation invariance of softmax for quick implementation. This implementation has been copied from
|
96 |
+
the alibi implementation of MPT source code that led to slightly different results than the Bloom alibi:
|
97 |
+
https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L292
|
98 |
+
"""
|
99 |
+
alibi = self.build_mpt_alibi_tensor_orig(num_heads, sequence_length, alibi_bias_max, device)
|
100 |
+
if dist.is_initialized():
|
101 |
+
num_heads_per_rank = int(num_heads / dist.get_world_size())
|
102 |
+
offset = dist.get_rank() * num_heads_per_rank
|
103 |
+
alibi = alibi[offset:num_heads_per_rank + offset, :, :]
|
104 |
+
return alibi
|