File size: 9,244 Bytes
ad58d47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
.. Copyright (C) 2001-2023 NLTK Project
.. For license information, see LICENSE.TXT
===========
Probability
===========
>>> from nltk.test.probability_fixt import setup_module
>>> setup_module()
>>> import nltk
>>> from nltk.probability import *
FreqDist
--------
>>> text1 = ['no', 'good', 'fish', 'goes', 'anywhere', 'without', 'a', 'porpoise', '!']
>>> text2 = ['no', 'good', 'porpoise', 'likes', 'to', 'fish', 'fish', 'anywhere', '.']
>>> fd1 = nltk.FreqDist(text1)
>>> fd1 == nltk.FreqDist(text1)
True
Note that items are sorted in order of decreasing frequency; two items of the same frequency appear in indeterminate order.
>>> import itertools
>>> both = nltk.FreqDist(text1 + text2)
>>> both_most_common = both.most_common()
>>> list(itertools.chain(*(sorted(ys) for k, ys in itertools.groupby(both_most_common, key=lambda t: t[1]))))
[('fish', 3), ('anywhere', 2), ('good', 2), ('no', 2), ('porpoise', 2), ('!', 1), ('.', 1), ('a', 1), ('goes', 1), ('likes', 1), ('to', 1), ('without', 1)]
>>> both == fd1 + nltk.FreqDist(text2)
True
>>> fd1 == nltk.FreqDist(text1) # But fd1 is unchanged
True
>>> fd2 = nltk.FreqDist(text2)
>>> fd1.update(fd2)
>>> fd1 == both
True
>>> fd1 = nltk.FreqDist(text1)
>>> fd1.update(text2)
>>> fd1 == both
True
>>> fd1 = nltk.FreqDist(text1)
>>> fd2 = nltk.FreqDist(fd1)
>>> fd2 == fd1
True
``nltk.FreqDist`` can be pickled:
>>> import pickle
>>> fd1 = nltk.FreqDist(text1)
>>> pickled = pickle.dumps(fd1)
>>> fd1 == pickle.loads(pickled)
True
Mathematical operations:
>>> FreqDist('abbb') + FreqDist('bcc')
FreqDist({'b': 4, 'c': 2, 'a': 1})
>>> FreqDist('abbbc') - FreqDist('bccd')
FreqDist({'b': 2, 'a': 1})
>>> FreqDist('abbb') | FreqDist('bcc')
FreqDist({'b': 3, 'c': 2, 'a': 1})
>>> FreqDist('abbb') & FreqDist('bcc')
FreqDist({'b': 1})
ConditionalFreqDist
-------------------
>>> cfd1 = ConditionalFreqDist()
>>> cfd1[1] = FreqDist('abbbb')
>>> cfd1[2] = FreqDist('xxxxyy')
>>> cfd1
<ConditionalFreqDist with 2 conditions>
>>> cfd2 = ConditionalFreqDist()
>>> cfd2[1] = FreqDist('bbccc')
>>> cfd2[2] = FreqDist('xxxyyyzz')
>>> cfd2[3] = FreqDist('m')
>>> cfd2
<ConditionalFreqDist with 3 conditions>
>>> r = cfd1 + cfd2
>>> [(i,r[i]) for i in r.conditions()]
[(1, FreqDist({'b': 6, 'c': 3, 'a': 1})), (2, FreqDist({'x': 7, 'y': 5, 'z': 2})), (3, FreqDist({'m': 1}))]
>>> r = cfd1 - cfd2
>>> [(i,r[i]) for i in r.conditions()]
[(1, FreqDist({'b': 2, 'a': 1})), (2, FreqDist({'x': 1}))]
>>> r = cfd1 | cfd2
>>> [(i,r[i]) for i in r.conditions()]
[(1, FreqDist({'b': 4, 'c': 3, 'a': 1})), (2, FreqDist({'x': 4, 'y': 3, 'z': 2})), (3, FreqDist({'m': 1}))]
>>> r = cfd1 & cfd2
>>> [(i,r[i]) for i in r.conditions()]
[(1, FreqDist({'b': 2})), (2, FreqDist({'x': 3, 'y': 2}))]
Testing some HMM estimators
---------------------------
We extract a small part (500 sentences) of the Brown corpus
>>> corpus = nltk.corpus.brown.tagged_sents(categories='adventure')[:500]
>>> print(len(corpus))
500
We create a HMM trainer - note that we need the tags and symbols
from the whole corpus, not just the training corpus
>>> from nltk.util import unique_list
>>> tag_set = unique_list(tag for sent in corpus for (word,tag) in sent)
>>> print(len(tag_set))
92
>>> symbols = unique_list(word for sent in corpus for (word,tag) in sent)
>>> print(len(symbols))
1464
>>> trainer = nltk.tag.HiddenMarkovModelTrainer(tag_set, symbols)
We divide the corpus into 90% training and 10% testing
>>> train_corpus = []
>>> test_corpus = []
>>> for i in range(len(corpus)):
... if i % 10:
... train_corpus += [corpus[i]]
... else:
... test_corpus += [corpus[i]]
>>> print(len(train_corpus))
450
>>> print(len(test_corpus))
50
And now we can test the estimators
>>> def train_and_test(est):
... hmm = trainer.train_supervised(train_corpus, estimator=est)
... print('%.2f%%' % (100 * hmm.accuracy(test_corpus)))
Maximum Likelihood Estimation
-----------------------------
- this resulted in an initialization error before r7209
>>> mle = lambda fd, bins: MLEProbDist(fd)
>>> train_and_test(mle)
22.75%
Laplace (= Lidstone with gamma==1)
>>> train_and_test(LaplaceProbDist)
66.04%
Expected Likelihood Estimation (= Lidstone with gamma==0.5)
>>> train_and_test(ELEProbDist)
73.01%
Lidstone Estimation, for gamma==0.1, 0.5 and 1
(the later two should be exactly equal to MLE and ELE above)
>>> def lidstone(gamma):
... return lambda fd, bins: LidstoneProbDist(fd, gamma, bins)
>>> train_and_test(lidstone(0.1))
82.51%
>>> train_and_test(lidstone(0.5))
73.01%
>>> train_and_test(lidstone(1.0))
66.04%
Witten Bell Estimation
----------------------
- This resulted in ZeroDivisionError before r7209
>>> train_and_test(WittenBellProbDist)
88.12%
Good Turing Estimation
>>> gt = lambda fd, bins: SimpleGoodTuringProbDist(fd, bins=1e5)
>>> train_and_test(gt)
86.93%
Kneser Ney Estimation
---------------------
Since the Kneser-Ney distribution is best suited for trigrams, we must adjust
our testing accordingly.
>>> corpus = [[((x[0],y[0],z[0]),(x[1],y[1],z[1]))
... for x, y, z in nltk.trigrams(sent)]
... for sent in corpus[:100]]
We will then need to redefine the rest of the training/testing variables
>>> tag_set = unique_list(tag for sent in corpus for (word,tag) in sent)
>>> len(tag_set)
906
>>> symbols = unique_list(word for sent in corpus for (word,tag) in sent)
>>> len(symbols)
1341
>>> trainer = nltk.tag.HiddenMarkovModelTrainer(tag_set, symbols)
>>> train_corpus = []
>>> test_corpus = []
>>> for i in range(len(corpus)):
... if i % 10:
... train_corpus += [corpus[i]]
... else:
... test_corpus += [corpus[i]]
>>> len(train_corpus)
90
>>> len(test_corpus)
10
>>> kn = lambda fd, bins: KneserNeyProbDist(fd)
>>> train_and_test(kn)
0.86%
Remains to be added:
- Tests for HeldoutProbDist, CrossValidationProbDist and MutableProbDist
Squashed bugs
-------------
Issue 511: override pop and popitem to invalidate the cache
>>> fd = nltk.FreqDist('a')
>>> list(fd.keys())
['a']
>>> fd.pop('a')
1
>>> list(fd.keys())
[]
Issue 533: access cumulative frequencies with no arguments
>>> fd = nltk.FreqDist('aab')
>>> list(fd._cumulative_frequencies(['a']))
[2.0]
>>> list(fd._cumulative_frequencies(['a', 'b']))
[2.0, 3.0]
Issue 579: override clear to reset some variables
>>> fd = FreqDist('aab')
>>> fd.clear()
>>> fd.N()
0
Issue 351: fix fileids method of CategorizedCorpusReader to inadvertently
add errant categories
>>> from nltk.corpus import brown
>>> brown.fileids('blah')
Traceback (most recent call last):
...
ValueError: Category blah not found
>>> brown.categories()
['adventure', 'belles_lettres', 'editorial', 'fiction', 'government', 'hobbies', 'humor', 'learned', 'lore', 'mystery', 'news', 'religion', 'reviews', 'romance', 'science_fiction']
Issue 175: add the unseen bin to SimpleGoodTuringProbDist by default
otherwise any unseen events get a probability of zero, i.e.,
they don't get smoothed
>>> from nltk import SimpleGoodTuringProbDist, FreqDist
>>> fd = FreqDist({'a':1, 'b':1, 'c': 2, 'd': 3, 'e': 4, 'f': 4, 'g': 4, 'h': 5, 'i': 5, 'j': 6, 'k': 6, 'l': 6, 'm': 7, 'n': 7, 'o': 8, 'p': 9, 'q': 10})
>>> p = SimpleGoodTuringProbDist(fd)
>>> p.prob('a')
0.017649766667026317...
>>> p.prob('o')
0.08433050215340411...
>>> p.prob('z')
0.022727272727272728...
>>> p.prob('foobar')
0.022727272727272728...
``MLEProbDist``, ``ConditionalProbDist'', ``DictionaryConditionalProbDist`` and
``ConditionalFreqDist`` can be pickled:
>>> import pickle
>>> pd = MLEProbDist(fd)
>>> sorted(pd.samples()) == sorted(pickle.loads(pickle.dumps(pd)).samples())
True
>>> dpd = DictionaryConditionalProbDist({'x': pd})
>>> unpickled = pickle.loads(pickle.dumps(dpd))
>>> dpd['x'].prob('a')
0.011363636...
>>> dpd['x'].prob('a') == unpickled['x'].prob('a')
True
>>> cfd = nltk.probability.ConditionalFreqDist()
>>> cfd['foo']['hello'] += 1
>>> cfd['foo']['hello'] += 1
>>> cfd['bar']['hello'] += 1
>>> cfd2 = pickle.loads(pickle.dumps(cfd))
>>> cfd2 == cfd
True
>>> cpd = ConditionalProbDist(cfd, SimpleGoodTuringProbDist)
>>> cpd2 = pickle.loads(pickle.dumps(cpd))
>>> cpd['foo'].prob('hello') == cpd2['foo'].prob('hello')
True
|