File size: 55,670 Bytes
9e65f67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 |
"""
The :mod:`sklearn.naive_bayes` module implements Naive Bayes algorithms. These
are supervised learning methods based on applying Bayes' theorem with strong
(naive) feature independence assumptions.
"""
# Author: Vincent Michel <[email protected]>
# Minor fixes by Fabian Pedregosa
# Amit Aides <[email protected]>
# Yehuda Finkelstein <[email protected]>
# Lars Buitinck
# Jan Hendrik Metzen <[email protected]>
# (parts based on earlier work by Mathieu Blondel)
#
# License: BSD 3 clause
import warnings
from abc import ABCMeta, abstractmethod
from numbers import Integral, Real
import numpy as np
from scipy.special import logsumexp
from .base import BaseEstimator, ClassifierMixin, _fit_context
from .preprocessing import LabelBinarizer, binarize, label_binarize
from .utils._param_validation import Interval
from .utils.extmath import safe_sparse_dot
from .utils.multiclass import _check_partial_fit_first_call
from .utils.validation import _check_sample_weight, check_is_fitted, check_non_negative
__all__ = [
"BernoulliNB",
"GaussianNB",
"MultinomialNB",
"ComplementNB",
"CategoricalNB",
]
class _BaseNB(ClassifierMixin, BaseEstimator, metaclass=ABCMeta):
"""Abstract base class for naive Bayes estimators"""
@abstractmethod
def _joint_log_likelihood(self, X):
"""Compute the unnormalized posterior log probability of X
I.e. ``log P(c) + log P(x|c)`` for all rows x of X, as an array-like of
shape (n_samples, n_classes).
Public methods predict, predict_proba, predict_log_proba, and
predict_joint_log_proba pass the input through _check_X before handing it
over to _joint_log_likelihood. The term "joint log likelihood" is used
interchangibly with "joint log probability".
"""
@abstractmethod
def _check_X(self, X):
"""To be overridden in subclasses with the actual checks.
Only used in predict* methods.
"""
def predict_joint_log_proba(self, X):
"""Return joint log probability estimates for the test vector X.
For each row x of X and class y, the joint log probability is given by
``log P(x, y) = log P(y) + log P(x|y),``
where ``log P(y)`` is the class prior probability and ``log P(x|y)`` is
the class-conditional probability.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
Returns
-------
C : ndarray of shape (n_samples, n_classes)
Returns the joint log-probability of the samples for each class in
the model. The columns correspond to the classes in sorted
order, as they appear in the attribute :term:`classes_`.
"""
check_is_fitted(self)
X = self._check_X(X)
return self._joint_log_likelihood(X)
def predict(self, X):
"""
Perform classification on an array of test vectors X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
Returns
-------
C : ndarray of shape (n_samples,)
Predicted target values for X.
"""
check_is_fitted(self)
X = self._check_X(X)
jll = self._joint_log_likelihood(X)
return self.classes_[np.argmax(jll, axis=1)]
def predict_log_proba(self, X):
"""
Return log-probability estimates for the test vector X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
Returns
-------
C : array-like of shape (n_samples, n_classes)
Returns the log-probability of the samples for each class in
the model. The columns correspond to the classes in sorted
order, as they appear in the attribute :term:`classes_`.
"""
check_is_fitted(self)
X = self._check_X(X)
jll = self._joint_log_likelihood(X)
# normalize by P(x) = P(f_1, ..., f_n)
log_prob_x = logsumexp(jll, axis=1)
return jll - np.atleast_2d(log_prob_x).T
def predict_proba(self, X):
"""
Return probability estimates for the test vector X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
Returns
-------
C : array-like of shape (n_samples, n_classes)
Returns the probability of the samples for each class in
the model. The columns correspond to the classes in sorted
order, as they appear in the attribute :term:`classes_`.
"""
return np.exp(self.predict_log_proba(X))
class GaussianNB(_BaseNB):
"""
Gaussian Naive Bayes (GaussianNB).
Can perform online updates to model parameters via :meth:`partial_fit`.
For details on algorithm used to update feature means and variance online,
see Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque:
http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf
Read more in the :ref:`User Guide <gaussian_naive_bayes>`.
Parameters
----------
priors : array-like of shape (n_classes,), default=None
Prior probabilities of the classes. If specified, the priors are not
adjusted according to the data.
var_smoothing : float, default=1e-9
Portion of the largest variance of all features that is added to
variances for calculation stability.
.. versionadded:: 0.20
Attributes
----------
class_count_ : ndarray of shape (n_classes,)
number of training samples observed in each class.
class_prior_ : ndarray of shape (n_classes,)
probability of each class.
classes_ : ndarray of shape (n_classes,)
class labels known to the classifier.
epsilon_ : float
absolute additive value to variances.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
var_ : ndarray of shape (n_classes, n_features)
Variance of each feature per class.
.. versionadded:: 1.0
theta_ : ndarray of shape (n_classes, n_features)
mean of each feature per class.
See Also
--------
BernoulliNB : Naive Bayes classifier for multivariate Bernoulli models.
CategoricalNB : Naive Bayes classifier for categorical features.
ComplementNB : Complement Naive Bayes classifier.
MultinomialNB : Naive Bayes classifier for multinomial models.
Examples
--------
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> Y = np.array([1, 1, 1, 2, 2, 2])
>>> from sklearn.naive_bayes import GaussianNB
>>> clf = GaussianNB()
>>> clf.fit(X, Y)
GaussianNB()
>>> print(clf.predict([[-0.8, -1]]))
[1]
>>> clf_pf = GaussianNB()
>>> clf_pf.partial_fit(X, Y, np.unique(Y))
GaussianNB()
>>> print(clf_pf.predict([[-0.8, -1]]))
[1]
"""
_parameter_constraints: dict = {
"priors": ["array-like", None],
"var_smoothing": [Interval(Real, 0, None, closed="left")],
}
def __init__(self, *, priors=None, var_smoothing=1e-9):
self.priors = priors
self.var_smoothing = var_smoothing
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y, sample_weight=None):
"""Fit Gaussian Naive Bayes according to X, y.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vectors, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like of shape (n_samples,)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Weights applied to individual samples (1. for unweighted).
.. versionadded:: 0.17
Gaussian Naive Bayes supports fitting with *sample_weight*.
Returns
-------
self : object
Returns the instance itself.
"""
y = self._validate_data(y=y)
return self._partial_fit(
X, y, np.unique(y), _refit=True, sample_weight=sample_weight
)
def _check_X(self, X):
"""Validate X, used only in predict* methods."""
return self._validate_data(X, reset=False)
@staticmethod
def _update_mean_variance(n_past, mu, var, X, sample_weight=None):
"""Compute online update of Gaussian mean and variance.
Given starting sample count, mean, and variance, a new set of
points X, and optionally sample weights, return the updated mean and
variance. (NB - each dimension (column) in X is treated as independent
-- you get variance, not covariance).
Can take scalar mean and variance, or vector mean and variance to
simultaneously update a number of independent Gaussians.
See Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque:
http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf
Parameters
----------
n_past : int
Number of samples represented in old mean and variance. If sample
weights were given, this should contain the sum of sample
weights represented in old mean and variance.
mu : array-like of shape (number of Gaussians,)
Means for Gaussians in original set.
var : array-like of shape (number of Gaussians,)
Variances for Gaussians in original set.
sample_weight : array-like of shape (n_samples,), default=None
Weights applied to individual samples (1. for unweighted).
Returns
-------
total_mu : array-like of shape (number of Gaussians,)
Updated mean for each Gaussian over the combined set.
total_var : array-like of shape (number of Gaussians,)
Updated variance for each Gaussian over the combined set.
"""
if X.shape[0] == 0:
return mu, var
# Compute (potentially weighted) mean and variance of new datapoints
if sample_weight is not None:
n_new = float(sample_weight.sum())
if np.isclose(n_new, 0.0):
return mu, var
new_mu = np.average(X, axis=0, weights=sample_weight)
new_var = np.average((X - new_mu) ** 2, axis=0, weights=sample_weight)
else:
n_new = X.shape[0]
new_var = np.var(X, axis=0)
new_mu = np.mean(X, axis=0)
if n_past == 0:
return new_mu, new_var
n_total = float(n_past + n_new)
# Combine mean of old and new data, taking into consideration
# (weighted) number of observations
total_mu = (n_new * new_mu + n_past * mu) / n_total
# Combine variance of old and new data, taking into consideration
# (weighted) number of observations. This is achieved by combining
# the sum-of-squared-differences (ssd)
old_ssd = n_past * var
new_ssd = n_new * new_var
total_ssd = old_ssd + new_ssd + (n_new * n_past / n_total) * (mu - new_mu) ** 2
total_var = total_ssd / n_total
return total_mu, total_var
@_fit_context(prefer_skip_nested_validation=True)
def partial_fit(self, X, y, classes=None, sample_weight=None):
"""Incremental fit on a batch of samples.
This method is expected to be called several times consecutively
on different chunks of a dataset so as to implement out-of-core
or online learning.
This is especially useful when the whole dataset is too big to fit in
memory at once.
This method has some performance and numerical stability overhead,
hence it is better to call partial_fit on chunks of data that are
as large as possible (as long as fitting in the memory budget) to
hide the overhead.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vectors, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : array-like of shape (n_samples,)
Target values.
classes : array-like of shape (n_classes,), default=None
List of all the classes that can possibly appear in the y vector.
Must be provided at the first call to partial_fit, can be omitted
in subsequent calls.
sample_weight : array-like of shape (n_samples,), default=None
Weights applied to individual samples (1. for unweighted).
.. versionadded:: 0.17
Returns
-------
self : object
Returns the instance itself.
"""
return self._partial_fit(
X, y, classes, _refit=False, sample_weight=sample_weight
)
def _partial_fit(self, X, y, classes=None, _refit=False, sample_weight=None):
"""Actual implementation of Gaussian NB fitting.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vectors, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : array-like of shape (n_samples,)
Target values.
classes : array-like of shape (n_classes,), default=None
List of all the classes that can possibly appear in the y vector.
Must be provided at the first call to partial_fit, can be omitted
in subsequent calls.
_refit : bool, default=False
If true, act as though this were the first time we called
_partial_fit (ie, throw away any past fitting and start over).
sample_weight : array-like of shape (n_samples,), default=None
Weights applied to individual samples (1. for unweighted).
Returns
-------
self : object
"""
if _refit:
self.classes_ = None
first_call = _check_partial_fit_first_call(self, classes)
X, y = self._validate_data(X, y, reset=first_call)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X)
# If the ratio of data variance between dimensions is too small, it
# will cause numerical errors. To address this, we artificially
# boost the variance by epsilon, a small fraction of the standard
# deviation of the largest dimension.
self.epsilon_ = self.var_smoothing * np.var(X, axis=0).max()
if first_call:
# This is the first call to partial_fit:
# initialize various cumulative counters
n_features = X.shape[1]
n_classes = len(self.classes_)
self.theta_ = np.zeros((n_classes, n_features))
self.var_ = np.zeros((n_classes, n_features))
self.class_count_ = np.zeros(n_classes, dtype=np.float64)
# Initialise the class prior
# Take into account the priors
if self.priors is not None:
priors = np.asarray(self.priors)
# Check that the provided prior matches the number of classes
if len(priors) != n_classes:
raise ValueError("Number of priors must match number of classes.")
# Check that the sum is 1
if not np.isclose(priors.sum(), 1.0):
raise ValueError("The sum of the priors should be 1.")
# Check that the priors are non-negative
if (priors < 0).any():
raise ValueError("Priors must be non-negative.")
self.class_prior_ = priors
else:
# Initialize the priors to zeros for each class
self.class_prior_ = np.zeros(len(self.classes_), dtype=np.float64)
else:
if X.shape[1] != self.theta_.shape[1]:
msg = "Number of features %d does not match previous data %d."
raise ValueError(msg % (X.shape[1], self.theta_.shape[1]))
# Put epsilon back in each time
self.var_[:, :] -= self.epsilon_
classes = self.classes_
unique_y = np.unique(y)
unique_y_in_classes = np.isin(unique_y, classes)
if not np.all(unique_y_in_classes):
raise ValueError(
"The target label(s) %s in y do not exist in the initial classes %s"
% (unique_y[~unique_y_in_classes], classes)
)
for y_i in unique_y:
i = classes.searchsorted(y_i)
X_i = X[y == y_i, :]
if sample_weight is not None:
sw_i = sample_weight[y == y_i]
N_i = sw_i.sum()
else:
sw_i = None
N_i = X_i.shape[0]
new_theta, new_sigma = self._update_mean_variance(
self.class_count_[i], self.theta_[i, :], self.var_[i, :], X_i, sw_i
)
self.theta_[i, :] = new_theta
self.var_[i, :] = new_sigma
self.class_count_[i] += N_i
self.var_[:, :] += self.epsilon_
# Update if only no priors is provided
if self.priors is None:
# Empirical prior, with sample_weight taken into account
self.class_prior_ = self.class_count_ / self.class_count_.sum()
return self
def _joint_log_likelihood(self, X):
joint_log_likelihood = []
for i in range(np.size(self.classes_)):
jointi = np.log(self.class_prior_[i])
n_ij = -0.5 * np.sum(np.log(2.0 * np.pi * self.var_[i, :]))
n_ij -= 0.5 * np.sum(((X - self.theta_[i, :]) ** 2) / (self.var_[i, :]), 1)
joint_log_likelihood.append(jointi + n_ij)
joint_log_likelihood = np.array(joint_log_likelihood).T
return joint_log_likelihood
class _BaseDiscreteNB(_BaseNB):
"""Abstract base class for naive Bayes on discrete/categorical data
Any estimator based on this class should provide:
__init__
_joint_log_likelihood(X) as per _BaseNB
_update_feature_log_prob(alpha)
_count(X, Y)
"""
_parameter_constraints: dict = {
"alpha": [Interval(Real, 0, None, closed="left"), "array-like"],
"fit_prior": ["boolean"],
"class_prior": ["array-like", None],
"force_alpha": ["boolean"],
}
def __init__(self, alpha=1.0, fit_prior=True, class_prior=None, force_alpha=True):
self.alpha = alpha
self.fit_prior = fit_prior
self.class_prior = class_prior
self.force_alpha = force_alpha
@abstractmethod
def _count(self, X, Y):
"""Update counts that are used to calculate probabilities.
The counts make up a sufficient statistic extracted from the data.
Accordingly, this method is called each time `fit` or `partial_fit`
update the model. `class_count_` and `feature_count_` must be updated
here along with any model specific counts.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
The input samples.
Y : ndarray of shape (n_samples, n_classes)
Binarized class labels.
"""
@abstractmethod
def _update_feature_log_prob(self, alpha):
"""Update feature log probabilities based on counts.
This method is called each time `fit` or `partial_fit` update the
model.
Parameters
----------
alpha : float
smoothing parameter. See :meth:`_check_alpha`.
"""
def _check_X(self, X):
"""Validate X, used only in predict* methods."""
return self._validate_data(X, accept_sparse="csr", reset=False)
def _check_X_y(self, X, y, reset=True):
"""Validate X and y in fit methods."""
return self._validate_data(X, y, accept_sparse="csr", reset=reset)
def _update_class_log_prior(self, class_prior=None):
"""Update class log priors.
The class log priors are based on `class_prior`, class count or the
number of classes. This method is called each time `fit` or
`partial_fit` update the model.
"""
n_classes = len(self.classes_)
if class_prior is not None:
if len(class_prior) != n_classes:
raise ValueError("Number of priors must match number of classes.")
self.class_log_prior_ = np.log(class_prior)
elif self.fit_prior:
with warnings.catch_warnings():
# silence the warning when count is 0 because class was not yet
# observed
warnings.simplefilter("ignore", RuntimeWarning)
log_class_count = np.log(self.class_count_)
# empirical prior, with sample_weight taken into account
self.class_log_prior_ = log_class_count - np.log(self.class_count_.sum())
else:
self.class_log_prior_ = np.full(n_classes, -np.log(n_classes))
def _check_alpha(self):
alpha = (
np.asarray(self.alpha) if not isinstance(self.alpha, Real) else self.alpha
)
alpha_min = np.min(alpha)
if isinstance(alpha, np.ndarray):
if not alpha.shape[0] == self.n_features_in_:
raise ValueError(
"When alpha is an array, it should contains `n_features`. "
f"Got {alpha.shape[0]} elements instead of {self.n_features_in_}."
)
# check that all alpha are positive
if alpha_min < 0:
raise ValueError("All values in alpha must be greater than 0.")
alpha_lower_bound = 1e-10
if alpha_min < alpha_lower_bound and not self.force_alpha:
warnings.warn(
"alpha too small will result in numeric errors, setting alpha ="
f" {alpha_lower_bound:.1e}. Use `force_alpha=True` to keep alpha"
" unchanged."
)
return np.maximum(alpha, alpha_lower_bound)
return alpha
@_fit_context(prefer_skip_nested_validation=True)
def partial_fit(self, X, y, classes=None, sample_weight=None):
"""Incremental fit on a batch of samples.
This method is expected to be called several times consecutively
on different chunks of a dataset so as to implement out-of-core
or online learning.
This is especially useful when the whole dataset is too big to fit in
memory at once.
This method has some performance overhead hence it is better to call
partial_fit on chunks of data that are as large as possible
(as long as fitting in the memory budget) to hide the overhead.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vectors, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : array-like of shape (n_samples,)
Target values.
classes : array-like of shape (n_classes,), default=None
List of all the classes that can possibly appear in the y vector.
Must be provided at the first call to partial_fit, can be omitted
in subsequent calls.
sample_weight : array-like of shape (n_samples,), default=None
Weights applied to individual samples (1. for unweighted).
Returns
-------
self : object
Returns the instance itself.
"""
first_call = not hasattr(self, "classes_")
X, y = self._check_X_y(X, y, reset=first_call)
_, n_features = X.shape
if _check_partial_fit_first_call(self, classes):
# This is the first call to partial_fit:
# initialize various cumulative counters
n_classes = len(classes)
self._init_counters(n_classes, n_features)
Y = label_binarize(y, classes=self.classes_)
if Y.shape[1] == 1:
if len(self.classes_) == 2:
Y = np.concatenate((1 - Y, Y), axis=1)
else: # degenerate case: just one class
Y = np.ones_like(Y)
if X.shape[0] != Y.shape[0]:
msg = "X.shape[0]=%d and y.shape[0]=%d are incompatible."
raise ValueError(msg % (X.shape[0], y.shape[0]))
# label_binarize() returns arrays with dtype=np.int64.
# We convert it to np.float64 to support sample_weight consistently
Y = Y.astype(np.float64, copy=False)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X)
sample_weight = np.atleast_2d(sample_weight)
Y *= sample_weight.T
class_prior = self.class_prior
# Count raw events from data before updating the class log prior
# and feature log probas
self._count(X, Y)
# XXX: OPTIM: we could introduce a public finalization method to
# be called by the user explicitly just once after several consecutive
# calls to partial_fit and prior any call to predict[_[log_]proba]
# to avoid computing the smooth log probas at each call to partial fit
alpha = self._check_alpha()
self._update_feature_log_prob(alpha)
self._update_class_log_prior(class_prior=class_prior)
return self
@_fit_context(prefer_skip_nested_validation=True)
def fit(self, X, y, sample_weight=None):
"""Fit Naive Bayes classifier according to X, y.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vectors, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : array-like of shape (n_samples,)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Weights applied to individual samples (1. for unweighted).
Returns
-------
self : object
Returns the instance itself.
"""
X, y = self._check_X_y(X, y)
_, n_features = X.shape
labelbin = LabelBinarizer()
Y = labelbin.fit_transform(y)
self.classes_ = labelbin.classes_
if Y.shape[1] == 1:
if len(self.classes_) == 2:
Y = np.concatenate((1 - Y, Y), axis=1)
else: # degenerate case: just one class
Y = np.ones_like(Y)
# LabelBinarizer().fit_transform() returns arrays with dtype=np.int64.
# We convert it to np.float64 to support sample_weight consistently;
# this means we also don't have to cast X to floating point
if sample_weight is not None:
Y = Y.astype(np.float64, copy=False)
sample_weight = _check_sample_weight(sample_weight, X)
sample_weight = np.atleast_2d(sample_weight)
Y *= sample_weight.T
class_prior = self.class_prior
# Count raw events from data before updating the class log prior
# and feature log probas
n_classes = Y.shape[1]
self._init_counters(n_classes, n_features)
self._count(X, Y)
alpha = self._check_alpha()
self._update_feature_log_prob(alpha)
self._update_class_log_prior(class_prior=class_prior)
return self
def _init_counters(self, n_classes, n_features):
self.class_count_ = np.zeros(n_classes, dtype=np.float64)
self.feature_count_ = np.zeros((n_classes, n_features), dtype=np.float64)
def _more_tags(self):
return {"poor_score": True}
class MultinomialNB(_BaseDiscreteNB):
"""
Naive Bayes classifier for multinomial models.
The multinomial Naive Bayes classifier is suitable for classification with
discrete features (e.g., word counts for text classification). The
multinomial distribution normally requires integer feature counts. However,
in practice, fractional counts such as tf-idf may also work.
Read more in the :ref:`User Guide <multinomial_naive_bayes>`.
Parameters
----------
alpha : float or array-like of shape (n_features,), default=1.0
Additive (Laplace/Lidstone) smoothing parameter
(set alpha=0 and force_alpha=True, for no smoothing).
force_alpha : bool, default=True
If False and alpha is less than 1e-10, it will set alpha to
1e-10. If True, alpha will remain unchanged. This may cause
numerical errors if alpha is too close to 0.
.. versionadded:: 1.2
.. versionchanged:: 1.4
The default value of `force_alpha` changed to `True`.
fit_prior : bool, default=True
Whether to learn class prior probabilities or not.
If false, a uniform prior will be used.
class_prior : array-like of shape (n_classes,), default=None
Prior probabilities of the classes. If specified, the priors are not
adjusted according to the data.
Attributes
----------
class_count_ : ndarray of shape (n_classes,)
Number of samples encountered for each class during fitting. This
value is weighted by the sample weight when provided.
class_log_prior_ : ndarray of shape (n_classes,)
Smoothed empirical log probability for each class.
classes_ : ndarray of shape (n_classes,)
Class labels known to the classifier
feature_count_ : ndarray of shape (n_classes, n_features)
Number of samples encountered for each (class, feature)
during fitting. This value is weighted by the sample weight when
provided.
feature_log_prob_ : ndarray of shape (n_classes, n_features)
Empirical log probability of features
given a class, ``P(x_i|y)``.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
BernoulliNB : Naive Bayes classifier for multivariate Bernoulli models.
CategoricalNB : Naive Bayes classifier for categorical features.
ComplementNB : Complement Naive Bayes classifier.
GaussianNB : Gaussian Naive Bayes.
References
----------
C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to
Information Retrieval. Cambridge University Press, pp. 234-265.
https://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html
Examples
--------
>>> import numpy as np
>>> rng = np.random.RandomState(1)
>>> X = rng.randint(5, size=(6, 100))
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> from sklearn.naive_bayes import MultinomialNB
>>> clf = MultinomialNB()
>>> clf.fit(X, y)
MultinomialNB()
>>> print(clf.predict(X[2:3]))
[3]
"""
def __init__(
self, *, alpha=1.0, force_alpha=True, fit_prior=True, class_prior=None
):
super().__init__(
alpha=alpha,
fit_prior=fit_prior,
class_prior=class_prior,
force_alpha=force_alpha,
)
def _more_tags(self):
return {"requires_positive_X": True}
def _count(self, X, Y):
"""Count and smooth feature occurrences."""
check_non_negative(X, "MultinomialNB (input X)")
self.feature_count_ += safe_sparse_dot(Y.T, X)
self.class_count_ += Y.sum(axis=0)
def _update_feature_log_prob(self, alpha):
"""Apply smoothing to raw counts and recompute log probabilities"""
smoothed_fc = self.feature_count_ + alpha
smoothed_cc = smoothed_fc.sum(axis=1)
self.feature_log_prob_ = np.log(smoothed_fc) - np.log(
smoothed_cc.reshape(-1, 1)
)
def _joint_log_likelihood(self, X):
"""Calculate the posterior log probability of the samples X"""
return safe_sparse_dot(X, self.feature_log_prob_.T) + self.class_log_prior_
class ComplementNB(_BaseDiscreteNB):
"""The Complement Naive Bayes classifier described in Rennie et al. (2003).
The Complement Naive Bayes classifier was designed to correct the "severe
assumptions" made by the standard Multinomial Naive Bayes classifier. It is
particularly suited for imbalanced data sets.
Read more in the :ref:`User Guide <complement_naive_bayes>`.
.. versionadded:: 0.20
Parameters
----------
alpha : float or array-like of shape (n_features,), default=1.0
Additive (Laplace/Lidstone) smoothing parameter
(set alpha=0 and force_alpha=True, for no smoothing).
force_alpha : bool, default=True
If False and alpha is less than 1e-10, it will set alpha to
1e-10. If True, alpha will remain unchanged. This may cause
numerical errors if alpha is too close to 0.
.. versionadded:: 1.2
.. versionchanged:: 1.4
The default value of `force_alpha` changed to `True`.
fit_prior : bool, default=True
Only used in edge case with a single class in the training set.
class_prior : array-like of shape (n_classes,), default=None
Prior probabilities of the classes. Not used.
norm : bool, default=False
Whether or not a second normalization of the weights is performed. The
default behavior mirrors the implementations found in Mahout and Weka,
which do not follow the full algorithm described in Table 9 of the
paper.
Attributes
----------
class_count_ : ndarray of shape (n_classes,)
Number of samples encountered for each class during fitting. This
value is weighted by the sample weight when provided.
class_log_prior_ : ndarray of shape (n_classes,)
Smoothed empirical log probability for each class. Only used in edge
case with a single class in the training set.
classes_ : ndarray of shape (n_classes,)
Class labels known to the classifier
feature_all_ : ndarray of shape (n_features,)
Number of samples encountered for each feature during fitting. This
value is weighted by the sample weight when provided.
feature_count_ : ndarray of shape (n_classes, n_features)
Number of samples encountered for each (class, feature) during fitting.
This value is weighted by the sample weight when provided.
feature_log_prob_ : ndarray of shape (n_classes, n_features)
Empirical weights for class complements.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
BernoulliNB : Naive Bayes classifier for multivariate Bernoulli models.
CategoricalNB : Naive Bayes classifier for categorical features.
GaussianNB : Gaussian Naive Bayes.
MultinomialNB : Naive Bayes classifier for multinomial models.
References
----------
Rennie, J. D., Shih, L., Teevan, J., & Karger, D. R. (2003).
Tackling the poor assumptions of naive bayes text classifiers. In ICML
(Vol. 3, pp. 616-623).
https://people.csail.mit.edu/jrennie/papers/icml03-nb.pdf
Examples
--------
>>> import numpy as np
>>> rng = np.random.RandomState(1)
>>> X = rng.randint(5, size=(6, 100))
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> from sklearn.naive_bayes import ComplementNB
>>> clf = ComplementNB()
>>> clf.fit(X, y)
ComplementNB()
>>> print(clf.predict(X[2:3]))
[3]
"""
_parameter_constraints: dict = {
**_BaseDiscreteNB._parameter_constraints,
"norm": ["boolean"],
}
def __init__(
self,
*,
alpha=1.0,
force_alpha=True,
fit_prior=True,
class_prior=None,
norm=False,
):
super().__init__(
alpha=alpha,
force_alpha=force_alpha,
fit_prior=fit_prior,
class_prior=class_prior,
)
self.norm = norm
def _more_tags(self):
return {"requires_positive_X": True}
def _count(self, X, Y):
"""Count feature occurrences."""
check_non_negative(X, "ComplementNB (input X)")
self.feature_count_ += safe_sparse_dot(Y.T, X)
self.class_count_ += Y.sum(axis=0)
self.feature_all_ = self.feature_count_.sum(axis=0)
def _update_feature_log_prob(self, alpha):
"""Apply smoothing to raw counts and compute the weights."""
comp_count = self.feature_all_ + alpha - self.feature_count_
logged = np.log(comp_count / comp_count.sum(axis=1, keepdims=True))
# _BaseNB.predict uses argmax, but ComplementNB operates with argmin.
if self.norm:
summed = logged.sum(axis=1, keepdims=True)
feature_log_prob = logged / summed
else:
feature_log_prob = -logged
self.feature_log_prob_ = feature_log_prob
def _joint_log_likelihood(self, X):
"""Calculate the class scores for the samples in X."""
jll = safe_sparse_dot(X, self.feature_log_prob_.T)
if len(self.classes_) == 1:
jll += self.class_log_prior_
return jll
class BernoulliNB(_BaseDiscreteNB):
"""Naive Bayes classifier for multivariate Bernoulli models.
Like MultinomialNB, this classifier is suitable for discrete data. The
difference is that while MultinomialNB works with occurrence counts,
BernoulliNB is designed for binary/boolean features.
Read more in the :ref:`User Guide <bernoulli_naive_bayes>`.
Parameters
----------
alpha : float or array-like of shape (n_features,), default=1.0
Additive (Laplace/Lidstone) smoothing parameter
(set alpha=0 and force_alpha=True, for no smoothing).
force_alpha : bool, default=True
If False and alpha is less than 1e-10, it will set alpha to
1e-10. If True, alpha will remain unchanged. This may cause
numerical errors if alpha is too close to 0.
.. versionadded:: 1.2
.. versionchanged:: 1.4
The default value of `force_alpha` changed to `True`.
binarize : float or None, default=0.0
Threshold for binarizing (mapping to booleans) of sample features.
If None, input is presumed to already consist of binary vectors.
fit_prior : bool, default=True
Whether to learn class prior probabilities or not.
If false, a uniform prior will be used.
class_prior : array-like of shape (n_classes,), default=None
Prior probabilities of the classes. If specified, the priors are not
adjusted according to the data.
Attributes
----------
class_count_ : ndarray of shape (n_classes,)
Number of samples encountered for each class during fitting. This
value is weighted by the sample weight when provided.
class_log_prior_ : ndarray of shape (n_classes,)
Log probability of each class (smoothed).
classes_ : ndarray of shape (n_classes,)
Class labels known to the classifier
feature_count_ : ndarray of shape (n_classes, n_features)
Number of samples encountered for each (class, feature)
during fitting. This value is weighted by the sample weight when
provided.
feature_log_prob_ : ndarray of shape (n_classes, n_features)
Empirical log probability of features given a class, P(x_i|y).
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
See Also
--------
CategoricalNB : Naive Bayes classifier for categorical features.
ComplementNB : The Complement Naive Bayes classifier
described in Rennie et al. (2003).
GaussianNB : Gaussian Naive Bayes (GaussianNB).
MultinomialNB : Naive Bayes classifier for multinomial models.
References
----------
C.D. Manning, P. Raghavan and H. Schuetze (2008). Introduction to
Information Retrieval. Cambridge University Press, pp. 234-265.
https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html
A. McCallum and K. Nigam (1998). A comparison of event models for naive
Bayes text classification. Proc. AAAI/ICML-98 Workshop on Learning for
Text Categorization, pp. 41-48.
V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with
naive Bayes -- Which naive Bayes? 3rd Conf. on Email and Anti-Spam (CEAS).
Examples
--------
>>> import numpy as np
>>> rng = np.random.RandomState(1)
>>> X = rng.randint(5, size=(6, 100))
>>> Y = np.array([1, 2, 3, 4, 4, 5])
>>> from sklearn.naive_bayes import BernoulliNB
>>> clf = BernoulliNB()
>>> clf.fit(X, Y)
BernoulliNB()
>>> print(clf.predict(X[2:3]))
[3]
"""
_parameter_constraints: dict = {
**_BaseDiscreteNB._parameter_constraints,
"binarize": [None, Interval(Real, 0, None, closed="left")],
}
def __init__(
self,
*,
alpha=1.0,
force_alpha=True,
binarize=0.0,
fit_prior=True,
class_prior=None,
):
super().__init__(
alpha=alpha,
fit_prior=fit_prior,
class_prior=class_prior,
force_alpha=force_alpha,
)
self.binarize = binarize
def _check_X(self, X):
"""Validate X, used only in predict* methods."""
X = super()._check_X(X)
if self.binarize is not None:
X = binarize(X, threshold=self.binarize)
return X
def _check_X_y(self, X, y, reset=True):
X, y = super()._check_X_y(X, y, reset=reset)
if self.binarize is not None:
X = binarize(X, threshold=self.binarize)
return X, y
def _count(self, X, Y):
"""Count and smooth feature occurrences."""
self.feature_count_ += safe_sparse_dot(Y.T, X)
self.class_count_ += Y.sum(axis=0)
def _update_feature_log_prob(self, alpha):
"""Apply smoothing to raw counts and recompute log probabilities"""
smoothed_fc = self.feature_count_ + alpha
smoothed_cc = self.class_count_ + alpha * 2
self.feature_log_prob_ = np.log(smoothed_fc) - np.log(
smoothed_cc.reshape(-1, 1)
)
def _joint_log_likelihood(self, X):
"""Calculate the posterior log probability of the samples X"""
n_features = self.feature_log_prob_.shape[1]
n_features_X = X.shape[1]
if n_features_X != n_features:
raise ValueError(
"Expected input with %d features, got %d instead"
% (n_features, n_features_X)
)
neg_prob = np.log(1 - np.exp(self.feature_log_prob_))
# Compute neg_prob · (1 - X).T as ∑neg_prob - X · neg_prob
jll = safe_sparse_dot(X, (self.feature_log_prob_ - neg_prob).T)
jll += self.class_log_prior_ + neg_prob.sum(axis=1)
return jll
class CategoricalNB(_BaseDiscreteNB):
"""Naive Bayes classifier for categorical features.
The categorical Naive Bayes classifier is suitable for classification with
discrete features that are categorically distributed. The categories of
each feature are drawn from a categorical distribution.
Read more in the :ref:`User Guide <categorical_naive_bayes>`.
Parameters
----------
alpha : float, default=1.0
Additive (Laplace/Lidstone) smoothing parameter
(set alpha=0 and force_alpha=True, for no smoothing).
force_alpha : bool, default=True
If False and alpha is less than 1e-10, it will set alpha to
1e-10. If True, alpha will remain unchanged. This may cause
numerical errors if alpha is too close to 0.
.. versionadded:: 1.2
.. versionchanged:: 1.4
The default value of `force_alpha` changed to `True`.
fit_prior : bool, default=True
Whether to learn class prior probabilities or not.
If false, a uniform prior will be used.
class_prior : array-like of shape (n_classes,), default=None
Prior probabilities of the classes. If specified, the priors are not
adjusted according to the data.
min_categories : int or array-like of shape (n_features,), default=None
Minimum number of categories per feature.
- integer: Sets the minimum number of categories per feature to
`n_categories` for each features.
- array-like: shape (n_features,) where `n_categories[i]` holds the
minimum number of categories for the ith column of the input.
- None (default): Determines the number of categories automatically
from the training data.
.. versionadded:: 0.24
Attributes
----------
category_count_ : list of arrays of shape (n_features,)
Holds arrays of shape (n_classes, n_categories of respective feature)
for each feature. Each array provides the number of samples
encountered for each class and category of the specific feature.
class_count_ : ndarray of shape (n_classes,)
Number of samples encountered for each class during fitting. This
value is weighted by the sample weight when provided.
class_log_prior_ : ndarray of shape (n_classes,)
Smoothed empirical log probability for each class.
classes_ : ndarray of shape (n_classes,)
Class labels known to the classifier
feature_log_prob_ : list of arrays of shape (n_features,)
Holds arrays of shape (n_classes, n_categories of respective feature)
for each feature. Each array provides the empirical log probability
of categories given the respective feature and class, ``P(x_i|y)``.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
n_categories_ : ndarray of shape (n_features,), dtype=np.int64
Number of categories for each feature. This value is
inferred from the data or set by the minimum number of categories.
.. versionadded:: 0.24
See Also
--------
BernoulliNB : Naive Bayes classifier for multivariate Bernoulli models.
ComplementNB : Complement Naive Bayes classifier.
GaussianNB : Gaussian Naive Bayes.
MultinomialNB : Naive Bayes classifier for multinomial models.
Examples
--------
>>> import numpy as np
>>> rng = np.random.RandomState(1)
>>> X = rng.randint(5, size=(6, 100))
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> from sklearn.naive_bayes import CategoricalNB
>>> clf = CategoricalNB()
>>> clf.fit(X, y)
CategoricalNB()
>>> print(clf.predict(X[2:3]))
[3]
"""
_parameter_constraints: dict = {
**_BaseDiscreteNB._parameter_constraints,
"min_categories": [
None,
"array-like",
Interval(Integral, 1, None, closed="left"),
],
"alpha": [Interval(Real, 0, None, closed="left")],
}
def __init__(
self,
*,
alpha=1.0,
force_alpha=True,
fit_prior=True,
class_prior=None,
min_categories=None,
):
super().__init__(
alpha=alpha,
force_alpha=force_alpha,
fit_prior=fit_prior,
class_prior=class_prior,
)
self.min_categories = min_categories
def fit(self, X, y, sample_weight=None):
"""Fit Naive Bayes classifier according to X, y.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vectors, where `n_samples` is the number of samples and
`n_features` is the number of features. Here, each feature of X is
assumed to be from a different categorical distribution.
It is further assumed that all categories of each feature are
represented by the numbers 0, ..., n - 1, where n refers to the
total number of categories for the given feature. This can, for
instance, be achieved with the help of OrdinalEncoder.
y : array-like of shape (n_samples,)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Weights applied to individual samples (1. for unweighted).
Returns
-------
self : object
Returns the instance itself.
"""
return super().fit(X, y, sample_weight=sample_weight)
def partial_fit(self, X, y, classes=None, sample_weight=None):
"""Incremental fit on a batch of samples.
This method is expected to be called several times consecutively
on different chunks of a dataset so as to implement out-of-core
or online learning.
This is especially useful when the whole dataset is too big to fit in
memory at once.
This method has some performance overhead hence it is better to call
partial_fit on chunks of data that are as large as possible
(as long as fitting in the memory budget) to hide the overhead.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vectors, where `n_samples` is the number of samples and
`n_features` is the number of features. Here, each feature of X is
assumed to be from a different categorical distribution.
It is further assumed that all categories of each feature are
represented by the numbers 0, ..., n - 1, where n refers to the
total number of categories for the given feature. This can, for
instance, be achieved with the help of OrdinalEncoder.
y : array-like of shape (n_samples,)
Target values.
classes : array-like of shape (n_classes,), default=None
List of all the classes that can possibly appear in the y vector.
Must be provided at the first call to partial_fit, can be omitted
in subsequent calls.
sample_weight : array-like of shape (n_samples,), default=None
Weights applied to individual samples (1. for unweighted).
Returns
-------
self : object
Returns the instance itself.
"""
return super().partial_fit(X, y, classes, sample_weight=sample_weight)
def _more_tags(self):
return {"requires_positive_X": True}
def _check_X(self, X):
"""Validate X, used only in predict* methods."""
X = self._validate_data(
X, dtype="int", accept_sparse=False, force_all_finite=True, reset=False
)
check_non_negative(X, "CategoricalNB (input X)")
return X
def _check_X_y(self, X, y, reset=True):
X, y = self._validate_data(
X, y, dtype="int", accept_sparse=False, force_all_finite=True, reset=reset
)
check_non_negative(X, "CategoricalNB (input X)")
return X, y
def _init_counters(self, n_classes, n_features):
self.class_count_ = np.zeros(n_classes, dtype=np.float64)
self.category_count_ = [np.zeros((n_classes, 0)) for _ in range(n_features)]
@staticmethod
def _validate_n_categories(X, min_categories):
# rely on max for n_categories categories are encoded between 0...n-1
n_categories_X = X.max(axis=0) + 1
min_categories_ = np.array(min_categories)
if min_categories is not None:
if not np.issubdtype(min_categories_.dtype, np.signedinteger):
raise ValueError(
"'min_categories' should have integral type. Got "
f"{min_categories_.dtype} instead."
)
n_categories_ = np.maximum(n_categories_X, min_categories_, dtype=np.int64)
if n_categories_.shape != n_categories_X.shape:
raise ValueError(
f"'min_categories' should have shape ({X.shape[1]},"
") when an array-like is provided. Got"
f" {min_categories_.shape} instead."
)
return n_categories_
else:
return n_categories_X
def _count(self, X, Y):
def _update_cat_count_dims(cat_count, highest_feature):
diff = highest_feature + 1 - cat_count.shape[1]
if diff > 0:
# we append a column full of zeros for each new category
return np.pad(cat_count, [(0, 0), (0, diff)], "constant")
return cat_count
def _update_cat_count(X_feature, Y, cat_count, n_classes):
for j in range(n_classes):
mask = Y[:, j].astype(bool)
if Y.dtype.type == np.int64:
weights = None
else:
weights = Y[mask, j]
counts = np.bincount(X_feature[mask], weights=weights)
indices = np.nonzero(counts)[0]
cat_count[j, indices] += counts[indices]
self.class_count_ += Y.sum(axis=0)
self.n_categories_ = self._validate_n_categories(X, self.min_categories)
for i in range(self.n_features_in_):
X_feature = X[:, i]
self.category_count_[i] = _update_cat_count_dims(
self.category_count_[i], self.n_categories_[i] - 1
)
_update_cat_count(
X_feature, Y, self.category_count_[i], self.class_count_.shape[0]
)
def _update_feature_log_prob(self, alpha):
feature_log_prob = []
for i in range(self.n_features_in_):
smoothed_cat_count = self.category_count_[i] + alpha
smoothed_class_count = smoothed_cat_count.sum(axis=1)
feature_log_prob.append(
np.log(smoothed_cat_count) - np.log(smoothed_class_count.reshape(-1, 1))
)
self.feature_log_prob_ = feature_log_prob
def _joint_log_likelihood(self, X):
self._check_n_features(X, reset=False)
jll = np.zeros((X.shape[0], self.class_count_.shape[0]))
for i in range(self.n_features_in_):
indices = X[:, i]
jll += self.feature_log_prob_[i][:, indices].T
total_ll = jll + self.class_log_prior_
return total_ll
|