File size: 25,586 Bytes
8777447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
# Natural Language Toolkit: ASCII visualization of NLTK trees
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Andreas van Cranenburgh <[email protected]>
#         Peter Ljunglöf <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

"""

Pretty-printing of discontinuous trees.

Adapted from the disco-dop project, by Andreas van Cranenburgh.

https://github.com/andreasvc/disco-dop



Interesting reference (not used for this code):

T. Eschbach et al., Orth. Hypergraph Drawing, Journal of

Graph Algorithms and Applications, 10(2) 141--157 (2006)149.

https://jgaa.info/accepted/2006/EschbachGuentherBecker2006.10.2.pdf

"""

import re

try:
    from html import escape
except ImportError:
    from cgi import escape

from collections import defaultdict
from operator import itemgetter

from nltk.tree.tree import Tree
from nltk.util import OrderedDict

ANSICOLOR = {
    "black": 30,
    "red": 31,
    "green": 32,
    "yellow": 33,
    "blue": 34,
    "magenta": 35,
    "cyan": 36,
    "white": 37,
}


class TreePrettyPrinter:
    """

    Pretty-print a tree in text format, either as ASCII or Unicode.

    The tree can be a normal tree, or discontinuous.



    ``TreePrettyPrinter(tree, sentence=None, highlight=())``

    creates an object from which different visualizations can be created.



    :param tree: a Tree object.

    :param sentence: a list of words (strings). If `sentence` is given,

        `tree` must contain integers as leaves, which are taken as indices

        in `sentence`. Using this you can display a discontinuous tree.

    :param highlight: Optionally, a sequence of Tree objects in `tree` which

        should be highlighted. Has the effect of only applying colors to nodes

        in this sequence (nodes should be given as Tree objects, terminals as

        indices).



    >>> from nltk.tree import Tree

    >>> tree = Tree.fromstring('(S (NP Mary) (VP walks))')

    >>> print(TreePrettyPrinter(tree).text())

    ... # doctest: +NORMALIZE_WHITESPACE

          S

      ____|____

     NP        VP

     |         |

    Mary     walks

    """

    def __init__(self, tree, sentence=None, highlight=()):
        if sentence is None:
            leaves = tree.leaves()
            if (
                leaves
                and all(len(a) > 0 for a in tree.subtrees())
                and all(isinstance(a, int) for a in leaves)
            ):
                sentence = [str(a) for a in leaves]
            else:
                # this deals with empty nodes (frontier non-terminals)
                # and multiple/mixed terminals under non-terminals.
                tree = tree.copy(True)
                sentence = []
                for a in tree.subtrees():
                    if len(a) == 0:
                        a.append(len(sentence))
                        sentence.append(None)
                    elif any(not isinstance(b, Tree) for b in a):
                        for n, b in enumerate(a):
                            if not isinstance(b, Tree):
                                a[n] = len(sentence)
                                if type(b) == tuple:
                                    b = "/".join(b)
                                sentence.append("%s" % b)
        self.nodes, self.coords, self.edges, self.highlight = self.nodecoords(
            tree, sentence, highlight
        )

    def __str__(self):
        return self.text()

    def __repr__(self):
        return "<TreePrettyPrinter with %d nodes>" % len(self.nodes)

    @staticmethod
    def nodecoords(tree, sentence, highlight):
        """

        Produce coordinates of nodes on a grid.



        Objective:



        - Produce coordinates for a non-overlapping placement of nodes and

            horizontal lines.

        - Order edges so that crossing edges cross a minimal number of previous

            horizontal lines (never vertical lines).



        Approach:



        - bottom up level order traversal (start at terminals)

        - at each level, identify nodes which cannot be on the same row

        - identify nodes which cannot be in the same column

        - place nodes into a grid at (row, column)

        - order child-parent edges with crossing edges last



        Coordinates are (row, column); the origin (0, 0) is at the top left;

        the root node is on row 0. Coordinates do not consider the size of a

        node (which depends on font, &c), so the width of a column of the grid

        should be automatically determined by the element with the greatest

        width in that column. Alternatively, the integer coordinates could be

        converted to coordinates in which the distances between adjacent nodes

        are non-uniform.



        Produces tuple (nodes, coords, edges, highlighted) where:



        - nodes[id]: Tree object for the node with this integer id

        - coords[id]: (n, m) coordinate where to draw node with id in the grid

        - edges[id]: parent id of node with this id (ordered dictionary)

        - highlighted: set of ids that should be highlighted

        """

        def findcell(m, matrix, startoflevel, children):
            """

            Find vacant row, column index for node ``m``.

            Iterate over current rows for this level (try lowest first)

            and look for cell between first and last child of this node,

            add new row to level if no free row available.

            """
            candidates = [a for _, a in children[m]]
            minidx, maxidx = min(candidates), max(candidates)
            leaves = tree[m].leaves()
            center = scale * sum(leaves) // len(leaves)  # center of gravity
            if minidx < maxidx and not minidx < center < maxidx:
                center = sum(candidates) // len(candidates)
            if max(candidates) - min(candidates) > 2 * scale:
                center -= center % scale  # round to unscaled coordinate
                if minidx < maxidx and not minidx < center < maxidx:
                    center += scale
            if ids[m] == 0:
                startoflevel = len(matrix)
            for rowidx in range(startoflevel, len(matrix) + 1):
                if rowidx == len(matrix):  # need to add a new row
                    matrix.append(
                        [
                            vertline if a not in (corner, None) else None
                            for a in matrix[-1]
                        ]
                    )
                row = matrix[rowidx]
                if len(children[m]) == 1:  # place unaries directly above child
                    return rowidx, next(iter(children[m]))[1]
                elif all(
                    a is None or a == vertline
                    for a in row[min(candidates) : max(candidates) + 1]
                ):
                    # find free column
                    for n in range(scale):
                        i = j = center + n
                        while j > minidx or i < maxidx:
                            if i < maxidx and (
                                matrix[rowidx][i] is None or i in candidates
                            ):
                                return rowidx, i
                            elif j > minidx and (
                                matrix[rowidx][j] is None or j in candidates
                            ):
                                return rowidx, j
                            i += scale
                            j -= scale
            raise ValueError(
                "could not find a free cell for:\n%s\n%s"
                "min=%d; max=%d" % (tree[m], minidx, maxidx, dumpmatrix())
            )

        def dumpmatrix():
            """Dump matrix contents for debugging purposes."""
            return "\n".join(
                "%2d: %s" % (n, " ".join(("%2r" % i)[:2] for i in row))
                for n, row in enumerate(matrix)
            )

        leaves = tree.leaves()
        if not all(isinstance(n, int) for n in leaves):
            raise ValueError("All leaves must be integer indices.")
        if len(leaves) != len(set(leaves)):
            raise ValueError("Indices must occur at most once.")
        if not all(0 <= n < len(sentence) for n in leaves):
            raise ValueError(
                "All leaves must be in the interval 0..n "
                "with n=len(sentence)\ntokens: %d indices: "
                "%r\nsentence: %s" % (len(sentence), tree.leaves(), sentence)
            )
        vertline, corner = -1, -2  # constants
        tree = tree.copy(True)
        for a in tree.subtrees():
            a.sort(key=lambda n: min(n.leaves()) if isinstance(n, Tree) else n)
        scale = 2
        crossed = set()
        # internal nodes and lexical nodes (no frontiers)
        positions = tree.treepositions()
        maxdepth = max(map(len, positions)) + 1
        childcols = defaultdict(set)
        matrix = [[None] * (len(sentence) * scale)]
        nodes = {}
        ids = {a: n for n, a in enumerate(positions)}
        highlighted_nodes = {
            n for a, n in ids.items() if not highlight or tree[a] in highlight
        }
        levels = {n: [] for n in range(maxdepth - 1)}
        terminals = []
        for a in positions:
            node = tree[a]
            if isinstance(node, Tree):
                levels[maxdepth - node.height()].append(a)
            else:
                terminals.append(a)

        for n in levels:
            levels[n].sort(key=lambda n: max(tree[n].leaves()) - min(tree[n].leaves()))
        terminals.sort()
        positions = set(positions)

        for m in terminals:
            i = int(tree[m]) * scale
            assert matrix[0][i] is None, (matrix[0][i], m, i)
            matrix[0][i] = ids[m]
            nodes[ids[m]] = sentence[tree[m]]
            if nodes[ids[m]] is None:
                nodes[ids[m]] = "..."
                highlighted_nodes.discard(ids[m])
            positions.remove(m)
            childcols[m[:-1]].add((0, i))

        # add other nodes centered on their children,
        # if the center is already taken, back off
        # to the left and right alternately, until an empty cell is found.
        for n in sorted(levels, reverse=True):
            nodesatdepth = levels[n]
            startoflevel = len(matrix)
            matrix.append(
                [vertline if a not in (corner, None) else None for a in matrix[-1]]
            )
            for m in nodesatdepth:  # [::-1]:
                if n < maxdepth - 1 and childcols[m]:
                    _, pivot = min(childcols[m], key=itemgetter(1))
                    if {
                        a[:-1]
                        for row in matrix[:-1]
                        for a in row[:pivot]
                        if isinstance(a, tuple)
                    } & {
                        a[:-1]
                        for row in matrix[:-1]
                        for a in row[pivot:]
                        if isinstance(a, tuple)
                    }:
                        crossed.add(m)

                rowidx, i = findcell(m, matrix, startoflevel, childcols)
                positions.remove(m)

                # block positions where children of this node branch out
                for _, x in childcols[m]:
                    matrix[rowidx][x] = corner
                # assert m == () or matrix[rowidx][i] in (None, corner), (
                #         matrix[rowidx][i], m, str(tree), ' '.join(sentence))
                # node itself
                matrix[rowidx][i] = ids[m]
                nodes[ids[m]] = tree[m]
                # add column to the set of children for its parent
                if len(m) > 0:
                    childcols[m[:-1]].add((rowidx, i))
        assert len(positions) == 0

        # remove unused columns, right to left
        for m in range(scale * len(sentence) - 1, -1, -1):
            if not any(isinstance(row[m], (Tree, int)) for row in matrix):
                for row in matrix:
                    del row[m]

        # remove unused rows, reverse
        matrix = [
            row
            for row in reversed(matrix)
            if not all(a is None or a == vertline for a in row)
        ]

        # collect coordinates of nodes
        coords = {}
        for n, _ in enumerate(matrix):
            for m, i in enumerate(matrix[n]):
                if isinstance(i, int) and i >= 0:
                    coords[i] = n, m

        # move crossed edges last
        positions = sorted(
            (a for level in levels.values() for a in level),
            key=lambda a: a[:-1] in crossed,
        )

        # collect edges from node to node
        edges = OrderedDict()
        for i in reversed(positions):
            for j, _ in enumerate(tree[i]):
                edges[ids[i + (j,)]] = ids[i]

        return nodes, coords, edges, highlighted_nodes

    def text(

        self,

        nodedist=1,

        unicodelines=False,

        html=False,

        ansi=False,

        nodecolor="blue",

        leafcolor="red",

        funccolor="green",

        abbreviate=None,

        maxwidth=16,

    ):
        """

        :return: ASCII art for a discontinuous tree.



        :param unicodelines: whether to use Unicode line drawing characters

            instead of plain (7-bit) ASCII.

        :param html: whether to wrap output in html code (default plain text).

        :param ansi: whether to produce colors with ANSI escape sequences

            (only effective when html==False).

        :param leafcolor, nodecolor: specify colors of leaves and phrasal

            nodes; effective when either html or ansi is True.

        :param abbreviate: if True, abbreviate labels longer than 5 characters.

            If integer, abbreviate labels longer than `abbr` characters.

        :param maxwidth: maximum number of characters before a label starts to

            wrap; pass None to disable.

        """
        if abbreviate == True:
            abbreviate = 5
        if unicodelines:
            horzline = "\u2500"
            leftcorner = "\u250c"
            rightcorner = "\u2510"
            vertline = " \u2502 "
            tee = horzline + "\u252C" + horzline
            bottom = horzline + "\u2534" + horzline
            cross = horzline + "\u253c" + horzline
            ellipsis = "\u2026"
        else:
            horzline = "_"
            leftcorner = rightcorner = " "
            vertline = " | "
            tee = 3 * horzline
            cross = bottom = "_|_"
            ellipsis = "."

        def crosscell(cur, x=vertline):
            """Overwrite center of this cell with a vertical branch."""
            splitl = len(cur) - len(cur) // 2 - len(x) // 2 - 1
            lst = list(cur)
            lst[splitl : splitl + len(x)] = list(x)
            return "".join(lst)

        result = []
        matrix = defaultdict(dict)
        maxnodewith = defaultdict(lambda: 3)
        maxnodeheight = defaultdict(lambda: 1)
        maxcol = 0
        minchildcol = {}
        maxchildcol = {}
        childcols = defaultdict(set)
        labels = {}
        wrapre = re.compile(
            "(.{%d,%d}\\b\\W*|.{%d})" % (maxwidth - 4, maxwidth, maxwidth)
        )
        # collect labels and coordinates
        for a in self.nodes:
            row, column = self.coords[a]
            matrix[row][column] = a
            maxcol = max(maxcol, column)
            label = (
                self.nodes[a].label()
                if isinstance(self.nodes[a], Tree)
                else self.nodes[a]
            )
            if abbreviate and len(label) > abbreviate:
                label = label[:abbreviate] + ellipsis
            if maxwidth and len(label) > maxwidth:
                label = wrapre.sub(r"\1\n", label).strip()
            label = label.split("\n")
            maxnodeheight[row] = max(maxnodeheight[row], len(label))
            maxnodewith[column] = max(maxnodewith[column], max(map(len, label)))
            labels[a] = label
            if a not in self.edges:
                continue  # e.g., root
            parent = self.edges[a]
            childcols[parent].add((row, column))
            minchildcol[parent] = min(minchildcol.get(parent, column), column)
            maxchildcol[parent] = max(maxchildcol.get(parent, column), column)
        # bottom up level order traversal
        for row in sorted(matrix, reverse=True):
            noderows = [
                ["".center(maxnodewith[col]) for col in range(maxcol + 1)]
                for _ in range(maxnodeheight[row])
            ]
            branchrow = ["".center(maxnodewith[col]) for col in range(maxcol + 1)]
            for col in matrix[row]:
                n = matrix[row][col]
                node = self.nodes[n]
                text = labels[n]
                if isinstance(node, Tree):
                    # draw horizontal branch towards children for this node
                    if n in minchildcol and minchildcol[n] < maxchildcol[n]:
                        i, j = minchildcol[n], maxchildcol[n]
                        a, b = (maxnodewith[i] + 1) // 2 - 1, maxnodewith[j] // 2
                        branchrow[i] = ((" " * a) + leftcorner).ljust(
                            maxnodewith[i], horzline
                        )
                        branchrow[j] = (rightcorner + (" " * b)).rjust(
                            maxnodewith[j], horzline
                        )
                        for i in range(minchildcol[n] + 1, maxchildcol[n]):
                            if i == col and any(a == i for _, a in childcols[n]):
                                line = cross
                            elif i == col:
                                line = bottom
                            elif any(a == i for _, a in childcols[n]):
                                line = tee
                            else:
                                line = horzline
                            branchrow[i] = line.center(maxnodewith[i], horzline)
                    else:  # if n and n in minchildcol:
                        branchrow[col] = crosscell(branchrow[col])
                text = [a.center(maxnodewith[col]) for a in text]
                color = nodecolor if isinstance(node, Tree) else leafcolor
                if isinstance(node, Tree) and node.label().startswith("-"):
                    color = funccolor
                if html:
                    text = [escape(a, quote=False) for a in text]
                    if n in self.highlight:
                        text = [f"<font color={color}>{a}</font>" for a in text]
                elif ansi and n in self.highlight:
                    text = ["\x1b[%d;1m%s\x1b[0m" % (ANSICOLOR[color], a) for a in text]
                for x in range(maxnodeheight[row]):
                    # draw vertical lines in partially filled multiline node
                    # labels, but only if it's not a frontier node.
                    noderows[x][col] = (
                        text[x]
                        if x < len(text)
                        else (vertline if childcols[n] else " ").center(
                            maxnodewith[col], " "
                        )
                    )
            # for each column, if there is a node below us which has a parent
            # above us, draw a vertical branch in that column.
            if row != max(matrix):
                for n, (childrow, col) in self.coords.items():
                    if n > 0 and self.coords[self.edges[n]][0] < row < childrow:
                        branchrow[col] = crosscell(branchrow[col])
                        if col not in matrix[row]:
                            for noderow in noderows:
                                noderow[col] = crosscell(noderow[col])
                branchrow = [
                    a + ((a[-1] if a[-1] != " " else b[0]) * nodedist)
                    for a, b in zip(branchrow, branchrow[1:] + [" "])
                ]
                result.append("".join(branchrow))
            result.extend(
                (" " * nodedist).join(noderow) for noderow in reversed(noderows)
            )
        return "\n".join(reversed(result)) + "\n"

    def svg(self, nodecolor="blue", leafcolor="red", funccolor="green"):
        """

        :return: SVG representation of a tree.

        """
        fontsize = 12
        hscale = 40
        vscale = 25
        hstart = vstart = 20
        width = max(col for _, col in self.coords.values())
        height = max(row for row, _ in self.coords.values())
        result = [
            '<svg version="1.1" xmlns="http://www.w3.org/2000/svg" '
            'width="%dem" height="%dem" viewBox="%d %d %d %d">'
            % (
                width * 3,
                height * 2.5,
                -hstart,
                -vstart,
                width * hscale + 3 * hstart,
                height * vscale + 3 * vstart,
            )
        ]

        children = defaultdict(set)
        for n in self.nodes:
            if n:
                children[self.edges[n]].add(n)

        # horizontal branches from nodes to children
        for node in self.nodes:
            if not children[node]:
                continue
            y, x = self.coords[node]
            x *= hscale
            y *= vscale
            x += hstart
            y += vstart + fontsize // 2
            childx = [self.coords[c][1] for c in children[node]]
            xmin = hstart + hscale * min(childx)
            xmax = hstart + hscale * max(childx)
            result.append(
                '\t<polyline style="stroke:black; stroke-width:1; fill:none;" '
                'points="%g,%g %g,%g" />' % (xmin, y, xmax, y)
            )
            result.append(
                '\t<polyline style="stroke:black; stroke-width:1; fill:none;" '
                'points="%g,%g %g,%g" />' % (x, y, x, y - fontsize // 3)
            )

        # vertical branches from children to parents
        for child, parent in self.edges.items():
            y, _ = self.coords[parent]
            y *= vscale
            y += vstart + fontsize // 2
            childy, childx = self.coords[child]
            childx *= hscale
            childy *= vscale
            childx += hstart
            childy += vstart - fontsize
            result += [
                '\t<polyline style="stroke:white; stroke-width:10; fill:none;"'
                ' points="%g,%g %g,%g" />' % (childx, childy, childx, y + 5),
                '\t<polyline style="stroke:black; stroke-width:1; fill:none;"'
                ' points="%g,%g %g,%g" />' % (childx, childy, childx, y),
            ]

        # write nodes with coordinates
        for n, (row, column) in self.coords.items():
            node = self.nodes[n]
            x = column * hscale + hstart
            y = row * vscale + vstart
            if n in self.highlight:
                color = nodecolor if isinstance(node, Tree) else leafcolor
                if isinstance(node, Tree) and node.label().startswith("-"):
                    color = funccolor
            else:
                color = "black"
            result += [
                '\t<text style="text-anchor: middle; fill: %s; '
                'font-size: %dpx;" x="%g" y="%g">%s</text>'
                % (
                    color,
                    fontsize,
                    x,
                    y,
                    escape(
                        node.label() if isinstance(node, Tree) else node, quote=False
                    ),
                )
            ]

        result += ["</svg>"]
        return "\n".join(result)


def test():
    """Do some tree drawing tests."""

    def print_tree(n, tree, sentence=None, ansi=True, **xargs):
        print()
        print('{}: "{}"'.format(n, " ".join(sentence or tree.leaves())))
        print(tree)
        print()
        drawtree = TreePrettyPrinter(tree, sentence)
        try:
            print(drawtree.text(unicodelines=ansi, ansi=ansi, **xargs))
        except (UnicodeDecodeError, UnicodeEncodeError):
            print(drawtree.text(unicodelines=False, ansi=False, **xargs))

    from nltk.corpus import treebank

    for n in [0, 1440, 1591, 2771, 2170]:
        tree = treebank.parsed_sents()[n]
        print_tree(n, tree, nodedist=2, maxwidth=8)
    print()
    print("ASCII version:")
    print(TreePrettyPrinter(tree).text(nodedist=2))

    tree = Tree.fromstring(
        "(top (punct 8) (smain (noun 0) (verb 1) (inf (verb 5) (inf (verb 6) "
        "(conj (inf (pp (prep 2) (np (det 3) (noun 4))) (verb 7)) (inf (verb 9)) "
        "(vg 10) (inf (verb 11)))))) (punct 12))",
        read_leaf=int,
    )
    sentence = (
        "Ze had met haar moeder kunnen gaan winkelen ,"
        " zwemmen of terrassen .".split()
    )
    print_tree("Discontinuous tree", tree, sentence, nodedist=2)


__all__ = ["TreePrettyPrinter"]

if __name__ == "__main__":
    test()