File size: 9,027 Bytes
6f79a6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import numpy as np
from scipy._lib._util import _asarray_validated

__all__ = ["logsumexp", "softmax", "log_softmax"]


def logsumexp(a, axis=None, b=None, keepdims=False, return_sign=False):
    """Compute the log of the sum of exponentials of input elements.

    Parameters
    ----------
    a : array_like
        Input array.
    axis : None or int or tuple of ints, optional
        Axis or axes over which the sum is taken. By default `axis` is None,
        and all elements are summed.

        .. versionadded:: 0.11.0
    b : array-like, optional
        Scaling factor for exp(`a`) must be of the same shape as `a` or
        broadcastable to `a`. These values may be negative in order to
        implement subtraction.

        .. versionadded:: 0.12.0
    keepdims : bool, optional
        If this is set to True, the axes which are reduced are left in the
        result as dimensions with size one. With this option, the result
        will broadcast correctly against the original array.

        .. versionadded:: 0.15.0
    return_sign : bool, optional
        If this is set to True, the result will be a pair containing sign
        information; if False, results that are negative will be returned
        as NaN. Default is False (no sign information).

        .. versionadded:: 0.16.0

    Returns
    -------
    res : ndarray
        The result, ``np.log(np.sum(np.exp(a)))`` calculated in a numerically
        more stable way. If `b` is given then ``np.log(np.sum(b*np.exp(a)))``
        is returned. If ``return_sign`` is True, ``res`` contains the log of
        the absolute value of the argument.
    sgn : ndarray
        If ``return_sign`` is True, this will be an array of floating-point
        numbers matching res containing +1, 0, -1 (for real-valued inputs)
        or a complex phase (for complex inputs). This gives the sign of the
        argument of the logarithm in ``res``.
        If ``return_sign`` is False, only one result is returned.

    See Also
    --------
    numpy.logaddexp, numpy.logaddexp2

    Notes
    -----
    NumPy has a logaddexp function which is very similar to `logsumexp`, but
    only handles two arguments. `logaddexp.reduce` is similar to this
    function, but may be less stable.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.special import logsumexp
    >>> a = np.arange(10)
    >>> logsumexp(a)
    9.4586297444267107
    >>> np.log(np.sum(np.exp(a)))
    9.4586297444267107

    With weights

    >>> a = np.arange(10)
    >>> b = np.arange(10, 0, -1)
    >>> logsumexp(a, b=b)
    9.9170178533034665
    >>> np.log(np.sum(b*np.exp(a)))
    9.9170178533034647

    Returning a sign flag

    >>> logsumexp([1,2],b=[1,-1],return_sign=True)
    (1.5413248546129181, -1.0)

    Notice that `logsumexp` does not directly support masked arrays. To use it
    on a masked array, convert the mask into zero weights:

    >>> a = np.ma.array([np.log(2), 2, np.log(3)],
    ...                  mask=[False, True, False])
    >>> b = (~a.mask).astype(int)
    >>> logsumexp(a.data, b=b), np.log(5)
    1.6094379124341005, 1.6094379124341005

    """
    a = _asarray_validated(a, check_finite=False)
    if b is not None:
        a, b = np.broadcast_arrays(a, b)
        if np.any(b == 0):
            a = a + 0.  # promote to at least float
            a[b == 0] = -np.inf

    # Scale by real part for complex inputs, because this affects
    # the magnitude of the exponential.
    a_max = np.amax(a.real, axis=axis, keepdims=True)

    if a_max.ndim > 0:
        a_max[~np.isfinite(a_max)] = 0
    elif not np.isfinite(a_max):
        a_max = 0

    if b is not None:
        b = np.asarray(b)
        tmp = b * np.exp(a - a_max)
    else:
        tmp = np.exp(a - a_max)

    # suppress warnings about log of zero
    with np.errstate(divide='ignore'):
        s = np.sum(tmp, axis=axis, keepdims=keepdims)
        if return_sign:
            # For complex, use the numpy>=2.0 convention for sign.
            if np.issubdtype(s.dtype, np.complexfloating):
                sgn = s / np.where(s == 0, 1, abs(s))
            else:
                sgn = np.sign(s)
            s = abs(s)
        out = np.log(s)

    if not keepdims:
        a_max = np.squeeze(a_max, axis=axis)
    out += a_max

    if return_sign:
        return out, sgn
    else:
        return out


def softmax(x, axis=None):
    r"""Compute the softmax function.

    The softmax function transforms each element of a collection by
    computing the exponential of each element divided by the sum of the
    exponentials of all the elements. That is, if `x` is a one-dimensional
    numpy array::

        softmax(x) = np.exp(x)/sum(np.exp(x))

    Parameters
    ----------
    x : array_like
        Input array.
    axis : int or tuple of ints, optional
        Axis to compute values along. Default is None and softmax will be
        computed over the entire array `x`.

    Returns
    -------
    s : ndarray
        An array the same shape as `x`. The result will sum to 1 along the
        specified axis.

    Notes
    -----
    The formula for the softmax function :math:`\sigma(x)` for a vector
    :math:`x = \{x_0, x_1, ..., x_{n-1}\}` is

    .. math:: \sigma(x)_j = \frac{e^{x_j}}{\sum_k e^{x_k}}

    The `softmax` function is the gradient of `logsumexp`.

    The implementation uses shifting to avoid overflow. See [1]_ for more
    details.

    .. versionadded:: 1.2.0

    References
    ----------
    .. [1] P. Blanchard, D.J. Higham, N.J. Higham, "Accurately computing the
       log-sum-exp and softmax functions", IMA Journal of Numerical Analysis,
       Vol.41(4), :doi:`10.1093/imanum/draa038`.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.special import softmax
    >>> np.set_printoptions(precision=5)

    >>> x = np.array([[1, 0.5, 0.2, 3],
    ...               [1,  -1,   7, 3],
    ...               [2,  12,  13, 3]])
    ...

    Compute the softmax transformation over the entire array.

    >>> m = softmax(x)
    >>> m
    array([[  4.48309e-06,   2.71913e-06,   2.01438e-06,   3.31258e-05],
           [  4.48309e-06,   6.06720e-07,   1.80861e-03,   3.31258e-05],
           [  1.21863e-05,   2.68421e-01,   7.29644e-01,   3.31258e-05]])

    >>> m.sum()
    1.0

    Compute the softmax transformation along the first axis (i.e., the
    columns).

    >>> m = softmax(x, axis=0)

    >>> m
    array([[  2.11942e-01,   1.01300e-05,   2.75394e-06,   3.33333e-01],
           [  2.11942e-01,   2.26030e-06,   2.47262e-03,   3.33333e-01],
           [  5.76117e-01,   9.99988e-01,   9.97525e-01,   3.33333e-01]])

    >>> m.sum(axis=0)
    array([ 1.,  1.,  1.,  1.])

    Compute the softmax transformation along the second axis (i.e., the rows).

    >>> m = softmax(x, axis=1)
    >>> m
    array([[  1.05877e-01,   6.42177e-02,   4.75736e-02,   7.82332e-01],
           [  2.42746e-03,   3.28521e-04,   9.79307e-01,   1.79366e-02],
           [  1.22094e-05,   2.68929e-01,   7.31025e-01,   3.31885e-05]])

    >>> m.sum(axis=1)
    array([ 1.,  1.,  1.])

    """
    x = _asarray_validated(x, check_finite=False)
    x_max = np.amax(x, axis=axis, keepdims=True)
    exp_x_shifted = np.exp(x - x_max)
    return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True)


def log_softmax(x, axis=None):
    r"""Compute the logarithm of the softmax function.

    In principle::

        log_softmax(x) = log(softmax(x))

    but using a more accurate implementation.

    Parameters
    ----------
    x : array_like
        Input array.
    axis : int or tuple of ints, optional
        Axis to compute values along. Default is None and softmax will be
        computed over the entire array `x`.

    Returns
    -------
    s : ndarray or scalar
        An array with the same shape as `x`. Exponential of the result will
        sum to 1 along the specified axis. If `x` is a scalar, a scalar is
        returned.

    Notes
    -----
    `log_softmax` is more accurate than ``np.log(softmax(x))`` with inputs that
    make `softmax` saturate (see examples below).

    .. versionadded:: 1.5.0

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.special import log_softmax
    >>> from scipy.special import softmax
    >>> np.set_printoptions(precision=5)

    >>> x = np.array([1000.0, 1.0])

    >>> y = log_softmax(x)
    >>> y
    array([   0., -999.])

    >>> with np.errstate(divide='ignore'):
    ...   y = np.log(softmax(x))
    ...
    >>> y
    array([  0., -inf])

    """

    x = _asarray_validated(x, check_finite=False)

    x_max = np.amax(x, axis=axis, keepdims=True)

    if x_max.ndim > 0:
        x_max[~np.isfinite(x_max)] = 0
    elif not np.isfinite(x_max):
        x_max = 0

    tmp = x - x_max
    exp_tmp = np.exp(tmp)

    # suppress warnings about log of zero
    with np.errstate(divide='ignore'):
        s = np.sum(exp_tmp, axis=axis, keepdims=True)
        out = np.log(s)

    out = tmp - out
    return out