Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/13.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/13.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/scipy/datasets/__init__.py +90 -0
- venv/lib/python3.10/site-packages/scipy/datasets/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/datasets/__pycache__/_download_all.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/datasets/__pycache__/_fetchers.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/datasets/__pycache__/_registry.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/datasets/__pycache__/_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/datasets/_download_all.py +57 -0
- venv/lib/python3.10/site-packages/scipy/datasets/_fetchers.py +220 -0
- venv/lib/python3.10/site-packages/scipy/datasets/_registry.py +26 -0
- venv/lib/python3.10/site-packages/scipy/datasets/_utils.py +81 -0
- venv/lib/python3.10/site-packages/scipy/datasets/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/scipy/datasets/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/datasets/tests/__pycache__/test_data.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/datasets/tests/test_data.py +123 -0
- venv/lib/python3.10/site-packages/scipy/signal/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/signal/tests/__pycache__/_scipy_spectral_test_shim.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/signal/tests/__pycache__/test_result_type.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/signal/tests/__pycache__/test_savitzky_golay.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/signal/tests/__pycache__/test_signaltools.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/signal/tests/__pycache__/test_waveforms.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/signal/tests/__pycache__/test_wavelets.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/signal/windows/__init__.py +52 -0
- venv/lib/python3.10/site-packages/scipy/signal/windows/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/signal/windows/__pycache__/_windows.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/signal/windows/__pycache__/windows.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/signal/windows/_windows.py +2374 -0
- venv/lib/python3.10/site-packages/scipy/signal/windows/windows.py +24 -0
- venv/lib/python3.10/site-packages/scipy/special/__init__.py +863 -0
- venv/lib/python3.10/site-packages/scipy/special/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/__pycache__/_add_newdocs.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/__pycache__/_basic.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/__pycache__/_ellip_harm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/__pycache__/_lambertw.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/__pycache__/_sf_error.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/__pycache__/_spherical_bessel.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/__pycache__/_testutils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/__pycache__/add_newdocs.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/__pycache__/basic.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/__pycache__/sf_error.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/__pycache__/specfun.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_add_newdocs.py +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_basic.py +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_cdflib.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_comb.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_ellip_harm.py +214 -0
- venv/lib/python3.10/site-packages/scipy/special/_ellip_harm_2.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_lambertw.py +149 -0
- venv/lib/python3.10/site-packages/scipy/special/_logsumexp.py +307 -0
ckpts/universal/global_step40/zero/13.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dca47d9e08e05365f06d99de39e3906c525902dbfb9fd433f82336907ff8c8ee
|
3 |
+
size 33555627
|
ckpts/universal/global_step40/zero/13.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:346836985993271f5166b56fa60162ce854d4b23350c1eadb9ad378f144cfdf9
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/scipy/datasets/__init__.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
================================
|
3 |
+
Datasets (:mod:`scipy.datasets`)
|
4 |
+
================================
|
5 |
+
|
6 |
+
.. currentmodule:: scipy.datasets
|
7 |
+
|
8 |
+
Dataset Methods
|
9 |
+
===============
|
10 |
+
|
11 |
+
.. autosummary::
|
12 |
+
:toctree: generated/
|
13 |
+
|
14 |
+
ascent
|
15 |
+
face
|
16 |
+
electrocardiogram
|
17 |
+
|
18 |
+
Utility Methods
|
19 |
+
===============
|
20 |
+
|
21 |
+
.. autosummary::
|
22 |
+
:toctree: generated/
|
23 |
+
|
24 |
+
download_all -- Download all the dataset files to specified path.
|
25 |
+
clear_cache -- Clear cached dataset directory.
|
26 |
+
|
27 |
+
|
28 |
+
Usage of Datasets
|
29 |
+
=================
|
30 |
+
|
31 |
+
SciPy dataset methods can be simply called as follows: ``'<dataset-name>()'``
|
32 |
+
This downloads the dataset files over the network once, and saves the cache,
|
33 |
+
before returning a `numpy.ndarray` object representing the dataset.
|
34 |
+
|
35 |
+
Note that the return data structure and data type might be different for
|
36 |
+
different dataset methods. For a more detailed example on usage, please look
|
37 |
+
into the particular dataset method documentation above.
|
38 |
+
|
39 |
+
|
40 |
+
How dataset retrieval and storage works
|
41 |
+
=======================================
|
42 |
+
|
43 |
+
SciPy dataset files are stored within individual github repositories under the
|
44 |
+
SciPy GitHub organization, following a naming convention as
|
45 |
+
``'dataset-<name>'``, for example `scipy.datasets.face` files live at
|
46 |
+
https://github.com/scipy/dataset-face. The `scipy.datasets` submodule utilizes
|
47 |
+
and depends on `Pooch <https://www.fatiando.org/pooch/latest/>`_, a Python
|
48 |
+
package built to simplify fetching data files. Pooch uses these repos to
|
49 |
+
retrieve the respective dataset files when calling the dataset function.
|
50 |
+
|
51 |
+
A registry of all the datasets, essentially a mapping of filenames with their
|
52 |
+
SHA256 hash and repo urls are maintained, which Pooch uses to handle and verify
|
53 |
+
the downloads on function call. After downloading the dataset once, the files
|
54 |
+
are saved in the system cache directory under ``'scipy-data'``.
|
55 |
+
|
56 |
+
Dataset cache locations may vary on different platforms.
|
57 |
+
|
58 |
+
For macOS::
|
59 |
+
|
60 |
+
'~/Library/Caches/scipy-data'
|
61 |
+
|
62 |
+
For Linux and other Unix-like platforms::
|
63 |
+
|
64 |
+
'~/.cache/scipy-data' # or the value of the XDG_CACHE_HOME env var, if defined
|
65 |
+
|
66 |
+
For Windows::
|
67 |
+
|
68 |
+
'C:\\Users\\<user>\\AppData\\Local\\<AppAuthor>\\scipy-data\\Cache'
|
69 |
+
|
70 |
+
|
71 |
+
In environments with constrained network connectivity for various security
|
72 |
+
reasons or on systems without continuous internet connections, one may manually
|
73 |
+
load the cache of the datasets by placing the contents of the dataset repo in
|
74 |
+
the above mentioned cache directory to avoid fetching dataset errors without
|
75 |
+
the internet connectivity.
|
76 |
+
|
77 |
+
"""
|
78 |
+
|
79 |
+
|
80 |
+
from ._fetchers import face, ascent, electrocardiogram
|
81 |
+
from ._download_all import download_all
|
82 |
+
from ._utils import clear_cache
|
83 |
+
|
84 |
+
__all__ = ['ascent', 'electrocardiogram', 'face',
|
85 |
+
'download_all', 'clear_cache']
|
86 |
+
|
87 |
+
|
88 |
+
from scipy._lib._testutils import PytestTester
|
89 |
+
test = PytestTester(__name__)
|
90 |
+
del PytestTester
|
venv/lib/python3.10/site-packages/scipy/datasets/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.99 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/datasets/__pycache__/_download_all.cpython-310.pyc
ADDED
Binary file (1.71 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/datasets/__pycache__/_fetchers.cpython-310.pyc
ADDED
Binary file (6.31 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/datasets/__pycache__/_registry.cpython-310.pyc
ADDED
Binary file (774 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/datasets/__pycache__/_utils.cpython-310.pyc
ADDED
Binary file (2.37 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/datasets/_download_all.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Platform independent script to download all the
|
3 |
+
`scipy.datasets` module data files.
|
4 |
+
This doesn't require a full scipy build.
|
5 |
+
|
6 |
+
Run: python _download_all.py <download_dir>
|
7 |
+
"""
|
8 |
+
|
9 |
+
import argparse
|
10 |
+
try:
|
11 |
+
import pooch
|
12 |
+
except ImportError:
|
13 |
+
pooch = None
|
14 |
+
|
15 |
+
|
16 |
+
if __package__ is None or __package__ == '':
|
17 |
+
# Running as python script, use absolute import
|
18 |
+
import _registry # type: ignore
|
19 |
+
else:
|
20 |
+
# Running as python module, use relative import
|
21 |
+
from . import _registry
|
22 |
+
|
23 |
+
|
24 |
+
def download_all(path=None):
|
25 |
+
"""
|
26 |
+
Utility method to download all the dataset files
|
27 |
+
for `scipy.datasets` module.
|
28 |
+
|
29 |
+
Parameters
|
30 |
+
----------
|
31 |
+
path : str, optional
|
32 |
+
Directory path to download all the dataset files.
|
33 |
+
If None, default to the system cache_dir detected by pooch.
|
34 |
+
"""
|
35 |
+
if pooch is None:
|
36 |
+
raise ImportError("Missing optional dependency 'pooch' required "
|
37 |
+
"for scipy.datasets module. Please use pip or "
|
38 |
+
"conda to install 'pooch'.")
|
39 |
+
if path is None:
|
40 |
+
path = pooch.os_cache('scipy-data')
|
41 |
+
for dataset_name, dataset_hash in _registry.registry.items():
|
42 |
+
pooch.retrieve(url=_registry.registry_urls[dataset_name],
|
43 |
+
known_hash=dataset_hash,
|
44 |
+
fname=dataset_name, path=path)
|
45 |
+
|
46 |
+
|
47 |
+
def main():
|
48 |
+
parser = argparse.ArgumentParser(description='Download SciPy data files.')
|
49 |
+
parser.add_argument("path", nargs='?', type=str,
|
50 |
+
default=pooch.os_cache('scipy-data'),
|
51 |
+
help="Directory path to download all the data files.")
|
52 |
+
args = parser.parse_args()
|
53 |
+
download_all(args.path)
|
54 |
+
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
main()
|
venv/lib/python3.10/site-packages/scipy/datasets/_fetchers.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy import array, frombuffer, load
|
2 |
+
from ._registry import registry, registry_urls
|
3 |
+
|
4 |
+
try:
|
5 |
+
import pooch
|
6 |
+
except ImportError:
|
7 |
+
pooch = None
|
8 |
+
data_fetcher = None
|
9 |
+
else:
|
10 |
+
data_fetcher = pooch.create(
|
11 |
+
# Use the default cache folder for the operating system
|
12 |
+
# Pooch uses appdirs (https://github.com/ActiveState/appdirs) to
|
13 |
+
# select an appropriate directory for the cache on each platform.
|
14 |
+
path=pooch.os_cache("scipy-data"),
|
15 |
+
|
16 |
+
# The remote data is on Github
|
17 |
+
# base_url is a required param, even though we override this
|
18 |
+
# using individual urls in the registry.
|
19 |
+
base_url="https://github.com/scipy/",
|
20 |
+
registry=registry,
|
21 |
+
urls=registry_urls
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
def fetch_data(dataset_name, data_fetcher=data_fetcher):
|
26 |
+
if data_fetcher is None:
|
27 |
+
raise ImportError("Missing optional dependency 'pooch' required "
|
28 |
+
"for scipy.datasets module. Please use pip or "
|
29 |
+
"conda to install 'pooch'.")
|
30 |
+
# The "fetch" method returns the full path to the downloaded data file.
|
31 |
+
return data_fetcher.fetch(dataset_name)
|
32 |
+
|
33 |
+
|
34 |
+
def ascent():
|
35 |
+
"""
|
36 |
+
Get an 8-bit grayscale bit-depth, 512 x 512 derived image for easy
|
37 |
+
use in demos.
|
38 |
+
|
39 |
+
The image is derived from accent-to-the-top.jpg at
|
40 |
+
http://www.public-domain-image.com/people-public-domain-images-pictures/
|
41 |
+
|
42 |
+
Parameters
|
43 |
+
----------
|
44 |
+
None
|
45 |
+
|
46 |
+
Returns
|
47 |
+
-------
|
48 |
+
ascent : ndarray
|
49 |
+
convenient image to use for testing and demonstration
|
50 |
+
|
51 |
+
Examples
|
52 |
+
--------
|
53 |
+
>>> import scipy.datasets
|
54 |
+
>>> ascent = scipy.datasets.ascent()
|
55 |
+
>>> ascent.shape
|
56 |
+
(512, 512)
|
57 |
+
>>> ascent.max()
|
58 |
+
255
|
59 |
+
|
60 |
+
>>> import matplotlib.pyplot as plt
|
61 |
+
>>> plt.gray()
|
62 |
+
>>> plt.imshow(ascent)
|
63 |
+
>>> plt.show()
|
64 |
+
|
65 |
+
"""
|
66 |
+
import pickle
|
67 |
+
|
68 |
+
# The file will be downloaded automatically the first time this is run,
|
69 |
+
# returning the path to the downloaded file. Afterwards, Pooch finds
|
70 |
+
# it in the local cache and doesn't repeat the download.
|
71 |
+
fname = fetch_data("ascent.dat")
|
72 |
+
# Now we just need to load it with our standard Python tools.
|
73 |
+
with open(fname, 'rb') as f:
|
74 |
+
ascent = array(pickle.load(f))
|
75 |
+
return ascent
|
76 |
+
|
77 |
+
|
78 |
+
def electrocardiogram():
|
79 |
+
"""
|
80 |
+
Load an electrocardiogram as an example for a 1-D signal.
|
81 |
+
|
82 |
+
The returned signal is a 5 minute long electrocardiogram (ECG), a medical
|
83 |
+
recording of the heart's electrical activity, sampled at 360 Hz.
|
84 |
+
|
85 |
+
Returns
|
86 |
+
-------
|
87 |
+
ecg : ndarray
|
88 |
+
The electrocardiogram in millivolt (mV) sampled at 360 Hz.
|
89 |
+
|
90 |
+
Notes
|
91 |
+
-----
|
92 |
+
The provided signal is an excerpt (19:35 to 24:35) from the `record 208`_
|
93 |
+
(lead MLII) provided by the MIT-BIH Arrhythmia Database [1]_ on
|
94 |
+
PhysioNet [2]_. The excerpt includes noise induced artifacts, typical
|
95 |
+
heartbeats as well as pathological changes.
|
96 |
+
|
97 |
+
.. _record 208: https://physionet.org/physiobank/database/html/mitdbdir/records.htm#208
|
98 |
+
|
99 |
+
.. versionadded:: 1.1.0
|
100 |
+
|
101 |
+
References
|
102 |
+
----------
|
103 |
+
.. [1] Moody GB, Mark RG. The impact of the MIT-BIH Arrhythmia Database.
|
104 |
+
IEEE Eng in Med and Biol 20(3):45-50 (May-June 2001).
|
105 |
+
(PMID: 11446209); :doi:`10.13026/C2F305`
|
106 |
+
.. [2] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh,
|
107 |
+
Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank,
|
108 |
+
PhysioToolkit, and PhysioNet: Components of a New Research Resource
|
109 |
+
for Complex Physiologic Signals. Circulation 101(23):e215-e220;
|
110 |
+
:doi:`10.1161/01.CIR.101.23.e215`
|
111 |
+
|
112 |
+
Examples
|
113 |
+
--------
|
114 |
+
>>> from scipy.datasets import electrocardiogram
|
115 |
+
>>> ecg = electrocardiogram()
|
116 |
+
>>> ecg
|
117 |
+
array([-0.245, -0.215, -0.185, ..., -0.405, -0.395, -0.385])
|
118 |
+
>>> ecg.shape, ecg.mean(), ecg.std()
|
119 |
+
((108000,), -0.16510875, 0.5992473991177294)
|
120 |
+
|
121 |
+
As stated the signal features several areas with a different morphology.
|
122 |
+
E.g., the first few seconds show the electrical activity of a heart in
|
123 |
+
normal sinus rhythm as seen below.
|
124 |
+
|
125 |
+
>>> import numpy as np
|
126 |
+
>>> import matplotlib.pyplot as plt
|
127 |
+
>>> fs = 360
|
128 |
+
>>> time = np.arange(ecg.size) / fs
|
129 |
+
>>> plt.plot(time, ecg)
|
130 |
+
>>> plt.xlabel("time in s")
|
131 |
+
>>> plt.ylabel("ECG in mV")
|
132 |
+
>>> plt.xlim(9, 10.2)
|
133 |
+
>>> plt.ylim(-1, 1.5)
|
134 |
+
>>> plt.show()
|
135 |
+
|
136 |
+
After second 16, however, the first premature ventricular contractions,
|
137 |
+
also called extrasystoles, appear. These have a different morphology
|
138 |
+
compared to typical heartbeats. The difference can easily be observed
|
139 |
+
in the following plot.
|
140 |
+
|
141 |
+
>>> plt.plot(time, ecg)
|
142 |
+
>>> plt.xlabel("time in s")
|
143 |
+
>>> plt.ylabel("ECG in mV")
|
144 |
+
>>> plt.xlim(46.5, 50)
|
145 |
+
>>> plt.ylim(-2, 1.5)
|
146 |
+
>>> plt.show()
|
147 |
+
|
148 |
+
At several points large artifacts disturb the recording, e.g.:
|
149 |
+
|
150 |
+
>>> plt.plot(time, ecg)
|
151 |
+
>>> plt.xlabel("time in s")
|
152 |
+
>>> plt.ylabel("ECG in mV")
|
153 |
+
>>> plt.xlim(207, 215)
|
154 |
+
>>> plt.ylim(-2, 3.5)
|
155 |
+
>>> plt.show()
|
156 |
+
|
157 |
+
Finally, examining the power spectrum reveals that most of the biosignal is
|
158 |
+
made up of lower frequencies. At 60 Hz the noise induced by the mains
|
159 |
+
electricity can be clearly observed.
|
160 |
+
|
161 |
+
>>> from scipy.signal import welch
|
162 |
+
>>> f, Pxx = welch(ecg, fs=fs, nperseg=2048, scaling="spectrum")
|
163 |
+
>>> plt.semilogy(f, Pxx)
|
164 |
+
>>> plt.xlabel("Frequency in Hz")
|
165 |
+
>>> plt.ylabel("Power spectrum of the ECG in mV**2")
|
166 |
+
>>> plt.xlim(f[[0, -1]])
|
167 |
+
>>> plt.show()
|
168 |
+
"""
|
169 |
+
fname = fetch_data("ecg.dat")
|
170 |
+
with load(fname) as file:
|
171 |
+
ecg = file["ecg"].astype(int) # np.uint16 -> int
|
172 |
+
# Convert raw output of ADC to mV: (ecg - adc_zero) / adc_gain
|
173 |
+
ecg = (ecg - 1024) / 200.0
|
174 |
+
return ecg
|
175 |
+
|
176 |
+
|
177 |
+
def face(gray=False):
|
178 |
+
"""
|
179 |
+
Get a 1024 x 768, color image of a raccoon face.
|
180 |
+
|
181 |
+
raccoon-procyon-lotor.jpg at http://www.public-domain-image.com
|
182 |
+
|
183 |
+
Parameters
|
184 |
+
----------
|
185 |
+
gray : bool, optional
|
186 |
+
If True return 8-bit grey-scale image, otherwise return a color image
|
187 |
+
|
188 |
+
Returns
|
189 |
+
-------
|
190 |
+
face : ndarray
|
191 |
+
image of a raccoon face
|
192 |
+
|
193 |
+
Examples
|
194 |
+
--------
|
195 |
+
>>> import scipy.datasets
|
196 |
+
>>> face = scipy.datasets.face()
|
197 |
+
>>> face.shape
|
198 |
+
(768, 1024, 3)
|
199 |
+
>>> face.max()
|
200 |
+
255
|
201 |
+
>>> face.dtype
|
202 |
+
dtype('uint8')
|
203 |
+
|
204 |
+
>>> import matplotlib.pyplot as plt
|
205 |
+
>>> plt.gray()
|
206 |
+
>>> plt.imshow(face)
|
207 |
+
>>> plt.show()
|
208 |
+
|
209 |
+
"""
|
210 |
+
import bz2
|
211 |
+
fname = fetch_data("face.dat")
|
212 |
+
with open(fname, 'rb') as f:
|
213 |
+
rawdata = f.read()
|
214 |
+
face_data = bz2.decompress(rawdata)
|
215 |
+
face = frombuffer(face_data, dtype='uint8')
|
216 |
+
face.shape = (768, 1024, 3)
|
217 |
+
if gray is True:
|
218 |
+
face = (0.21 * face[:, :, 0] + 0.71 * face[:, :, 1] +
|
219 |
+
0.07 * face[:, :, 2]).astype('uint8')
|
220 |
+
return face
|
venv/lib/python3.10/site-packages/scipy/datasets/_registry.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##########################################################################
|
2 |
+
# This file serves as the dataset registry for SciPy Datasets SubModule.
|
3 |
+
##########################################################################
|
4 |
+
|
5 |
+
|
6 |
+
# To generate the SHA256 hash, use the command
|
7 |
+
# openssl sha256 <filename>
|
8 |
+
registry = {
|
9 |
+
"ascent.dat": "03ce124c1afc880f87b55f6b061110e2e1e939679184f5614e38dacc6c1957e2",
|
10 |
+
"ecg.dat": "f20ad3365fb9b7f845d0e5c48b6fe67081377ee466c3a220b7f69f35c8958baf",
|
11 |
+
"face.dat": "9d8b0b4d081313e2b485748c770472e5a95ed1738146883d84c7030493e82886"
|
12 |
+
}
|
13 |
+
|
14 |
+
registry_urls = {
|
15 |
+
"ascent.dat": "https://raw.githubusercontent.com/scipy/dataset-ascent/main/ascent.dat",
|
16 |
+
"ecg.dat": "https://raw.githubusercontent.com/scipy/dataset-ecg/main/ecg.dat",
|
17 |
+
"face.dat": "https://raw.githubusercontent.com/scipy/dataset-face/main/face.dat"
|
18 |
+
}
|
19 |
+
|
20 |
+
# dataset method mapping with their associated filenames
|
21 |
+
# <method_name> : ["filename1", "filename2", ...]
|
22 |
+
method_files_map = {
|
23 |
+
"ascent": ["ascent.dat"],
|
24 |
+
"electrocardiogram": ["ecg.dat"],
|
25 |
+
"face": ["face.dat"]
|
26 |
+
}
|
venv/lib/python3.10/site-packages/scipy/datasets/_utils.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
from ._registry import method_files_map
|
4 |
+
|
5 |
+
try:
|
6 |
+
import platformdirs
|
7 |
+
except ImportError:
|
8 |
+
platformdirs = None # type: ignore[assignment]
|
9 |
+
|
10 |
+
|
11 |
+
def _clear_cache(datasets, cache_dir=None, method_map=None):
|
12 |
+
if method_map is None:
|
13 |
+
# Use SciPy Datasets method map
|
14 |
+
method_map = method_files_map
|
15 |
+
if cache_dir is None:
|
16 |
+
# Use default cache_dir path
|
17 |
+
if platformdirs is None:
|
18 |
+
# platformdirs is pooch dependency
|
19 |
+
raise ImportError("Missing optional dependency 'pooch' required "
|
20 |
+
"for scipy.datasets module. Please use pip or "
|
21 |
+
"conda to install 'pooch'.")
|
22 |
+
cache_dir = platformdirs.user_cache_dir("scipy-data")
|
23 |
+
|
24 |
+
if not os.path.exists(cache_dir):
|
25 |
+
print(f"Cache Directory {cache_dir} doesn't exist. Nothing to clear.")
|
26 |
+
return
|
27 |
+
|
28 |
+
if datasets is None:
|
29 |
+
print(f"Cleaning the cache directory {cache_dir}!")
|
30 |
+
shutil.rmtree(cache_dir)
|
31 |
+
else:
|
32 |
+
if not isinstance(datasets, (list, tuple)):
|
33 |
+
# single dataset method passed should be converted to list
|
34 |
+
datasets = [datasets, ]
|
35 |
+
for dataset in datasets:
|
36 |
+
assert callable(dataset)
|
37 |
+
dataset_name = dataset.__name__ # Name of the dataset method
|
38 |
+
if dataset_name not in method_map:
|
39 |
+
raise ValueError(f"Dataset method {dataset_name} doesn't "
|
40 |
+
"exist. Please check if the passed dataset "
|
41 |
+
"is a subset of the following dataset "
|
42 |
+
f"methods: {list(method_map.keys())}")
|
43 |
+
|
44 |
+
data_files = method_map[dataset_name]
|
45 |
+
data_filepaths = [os.path.join(cache_dir, file)
|
46 |
+
for file in data_files]
|
47 |
+
for data_filepath in data_filepaths:
|
48 |
+
if os.path.exists(data_filepath):
|
49 |
+
print("Cleaning the file "
|
50 |
+
f"{os.path.split(data_filepath)[1]} "
|
51 |
+
f"for dataset {dataset_name}")
|
52 |
+
os.remove(data_filepath)
|
53 |
+
else:
|
54 |
+
print(f"Path {data_filepath} doesn't exist. "
|
55 |
+
"Nothing to clear.")
|
56 |
+
|
57 |
+
|
58 |
+
def clear_cache(datasets=None):
|
59 |
+
"""
|
60 |
+
Cleans the scipy datasets cache directory.
|
61 |
+
|
62 |
+
If a scipy.datasets method or a list/tuple of the same is
|
63 |
+
provided, then clear_cache removes all the data files
|
64 |
+
associated to the passed dataset method callable(s).
|
65 |
+
|
66 |
+
By default, it removes all the cached data files.
|
67 |
+
|
68 |
+
Parameters
|
69 |
+
----------
|
70 |
+
datasets : callable or list/tuple of callable or None
|
71 |
+
|
72 |
+
Examples
|
73 |
+
--------
|
74 |
+
>>> from scipy import datasets
|
75 |
+
>>> ascent_array = datasets.ascent()
|
76 |
+
>>> ascent_array.shape
|
77 |
+
(512, 512)
|
78 |
+
>>> datasets.clear_cache([datasets.ascent])
|
79 |
+
Cleaning the file ascent.dat for dataset ascent
|
80 |
+
"""
|
81 |
+
_clear_cache(datasets)
|
venv/lib/python3.10/site-packages/scipy/datasets/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/scipy/datasets/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (188 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/datasets/tests/__pycache__/test_data.cpython-310.pyc
ADDED
Binary file (3.82 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/datasets/tests/test_data.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from scipy.datasets._registry import registry
|
2 |
+
from scipy.datasets._fetchers import data_fetcher
|
3 |
+
from scipy.datasets._utils import _clear_cache
|
4 |
+
from scipy.datasets import ascent, face, electrocardiogram, download_all
|
5 |
+
from numpy.testing import assert_equal, assert_almost_equal
|
6 |
+
import os
|
7 |
+
import pytest
|
8 |
+
|
9 |
+
try:
|
10 |
+
import pooch
|
11 |
+
except ImportError:
|
12 |
+
raise ImportError("Missing optional dependency 'pooch' required "
|
13 |
+
"for scipy.datasets module. Please use pip or "
|
14 |
+
"conda to install 'pooch'.")
|
15 |
+
|
16 |
+
|
17 |
+
data_dir = data_fetcher.path # type: ignore
|
18 |
+
|
19 |
+
|
20 |
+
def _has_hash(path, expected_hash):
|
21 |
+
"""Check if the provided path has the expected hash."""
|
22 |
+
if not os.path.exists(path):
|
23 |
+
return False
|
24 |
+
return pooch.file_hash(path) == expected_hash
|
25 |
+
|
26 |
+
|
27 |
+
class TestDatasets:
|
28 |
+
|
29 |
+
@pytest.fixture(scope='module', autouse=True)
|
30 |
+
def test_download_all(self):
|
31 |
+
# This fixture requires INTERNET CONNECTION
|
32 |
+
|
33 |
+
# test_setup phase
|
34 |
+
download_all()
|
35 |
+
|
36 |
+
yield
|
37 |
+
|
38 |
+
def test_existence_all(self):
|
39 |
+
assert len(os.listdir(data_dir)) >= len(registry)
|
40 |
+
|
41 |
+
def test_ascent(self):
|
42 |
+
assert_equal(ascent().shape, (512, 512))
|
43 |
+
|
44 |
+
# hash check
|
45 |
+
assert _has_hash(os.path.join(data_dir, "ascent.dat"),
|
46 |
+
registry["ascent.dat"])
|
47 |
+
|
48 |
+
def test_face(self):
|
49 |
+
assert_equal(face().shape, (768, 1024, 3))
|
50 |
+
|
51 |
+
# hash check
|
52 |
+
assert _has_hash(os.path.join(data_dir, "face.dat"),
|
53 |
+
registry["face.dat"])
|
54 |
+
|
55 |
+
def test_electrocardiogram(self):
|
56 |
+
# Test shape, dtype and stats of signal
|
57 |
+
ecg = electrocardiogram()
|
58 |
+
assert_equal(ecg.dtype, float)
|
59 |
+
assert_equal(ecg.shape, (108000,))
|
60 |
+
assert_almost_equal(ecg.mean(), -0.16510875)
|
61 |
+
assert_almost_equal(ecg.std(), 0.5992473991177294)
|
62 |
+
|
63 |
+
# hash check
|
64 |
+
assert _has_hash(os.path.join(data_dir, "ecg.dat"),
|
65 |
+
registry["ecg.dat"])
|
66 |
+
|
67 |
+
|
68 |
+
def test_clear_cache(tmp_path):
|
69 |
+
# Note: `tmp_path` is a pytest fixture, it handles cleanup
|
70 |
+
dummy_basepath = tmp_path / "dummy_cache_dir"
|
71 |
+
dummy_basepath.mkdir()
|
72 |
+
|
73 |
+
# Create three dummy dataset files for dummy dataset methods
|
74 |
+
dummy_method_map = {}
|
75 |
+
for i in range(4):
|
76 |
+
dummy_method_map[f"data{i}"] = [f"data{i}.dat"]
|
77 |
+
data_filepath = dummy_basepath / f"data{i}.dat"
|
78 |
+
data_filepath.write_text("")
|
79 |
+
|
80 |
+
# clear files associated to single dataset method data0
|
81 |
+
# also test callable argument instead of list of callables
|
82 |
+
def data0():
|
83 |
+
pass
|
84 |
+
_clear_cache(datasets=data0, cache_dir=dummy_basepath,
|
85 |
+
method_map=dummy_method_map)
|
86 |
+
assert not os.path.exists(dummy_basepath/"data0.dat")
|
87 |
+
|
88 |
+
# clear files associated to multiple dataset methods "data3" and "data4"
|
89 |
+
def data1():
|
90 |
+
pass
|
91 |
+
|
92 |
+
def data2():
|
93 |
+
pass
|
94 |
+
_clear_cache(datasets=[data1, data2], cache_dir=dummy_basepath,
|
95 |
+
method_map=dummy_method_map)
|
96 |
+
assert not os.path.exists(dummy_basepath/"data1.dat")
|
97 |
+
assert not os.path.exists(dummy_basepath/"data2.dat")
|
98 |
+
|
99 |
+
# clear multiple dataset files "data3_0.dat" and "data3_1.dat"
|
100 |
+
# associated with dataset method "data3"
|
101 |
+
def data4():
|
102 |
+
pass
|
103 |
+
# create files
|
104 |
+
(dummy_basepath / "data4_0.dat").write_text("")
|
105 |
+
(dummy_basepath / "data4_1.dat").write_text("")
|
106 |
+
|
107 |
+
dummy_method_map["data4"] = ["data4_0.dat", "data4_1.dat"]
|
108 |
+
_clear_cache(datasets=[data4], cache_dir=dummy_basepath,
|
109 |
+
method_map=dummy_method_map)
|
110 |
+
assert not os.path.exists(dummy_basepath/"data4_0.dat")
|
111 |
+
assert not os.path.exists(dummy_basepath/"data4_1.dat")
|
112 |
+
|
113 |
+
# wrong dataset method should raise ValueError since it
|
114 |
+
# doesn't exist in the dummy_method_map
|
115 |
+
def data5():
|
116 |
+
pass
|
117 |
+
with pytest.raises(ValueError):
|
118 |
+
_clear_cache(datasets=[data5], cache_dir=dummy_basepath,
|
119 |
+
method_map=dummy_method_map)
|
120 |
+
|
121 |
+
# remove all dataset cache
|
122 |
+
_clear_cache(datasets=None, cache_dir=dummy_basepath)
|
123 |
+
assert not os.path.exists(dummy_basepath)
|
venv/lib/python3.10/site-packages/scipy/signal/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (186 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/signal/tests/__pycache__/_scipy_spectral_test_shim.cpython-310.pyc
ADDED
Binary file (12.4 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/signal/tests/__pycache__/test_result_type.cpython-310.pyc
ADDED
Binary file (1.77 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/signal/tests/__pycache__/test_savitzky_golay.cpython-310.pyc
ADDED
Binary file (9.32 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/signal/tests/__pycache__/test_signaltools.cpython-310.pyc
ADDED
Binary file (117 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/signal/tests/__pycache__/test_waveforms.cpython-310.pyc
ADDED
Binary file (11.7 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/signal/tests/__pycache__/test_wavelets.cpython-310.pyc
ADDED
Binary file (5.07 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/signal/windows/__init__.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Window functions (:mod:`scipy.signal.windows`)
|
3 |
+
==============================================
|
4 |
+
|
5 |
+
The suite of window functions for filtering and spectral estimation.
|
6 |
+
|
7 |
+
.. currentmodule:: scipy.signal.windows
|
8 |
+
|
9 |
+
.. autosummary::
|
10 |
+
:toctree: generated/
|
11 |
+
|
12 |
+
get_window -- Return a window of a given length and type.
|
13 |
+
|
14 |
+
barthann -- Bartlett-Hann window
|
15 |
+
bartlett -- Bartlett window
|
16 |
+
blackman -- Blackman window
|
17 |
+
blackmanharris -- Minimum 4-term Blackman-Harris window
|
18 |
+
bohman -- Bohman window
|
19 |
+
boxcar -- Boxcar window
|
20 |
+
chebwin -- Dolph-Chebyshev window
|
21 |
+
cosine -- Cosine window
|
22 |
+
dpss -- Discrete prolate spheroidal sequences
|
23 |
+
exponential -- Exponential window
|
24 |
+
flattop -- Flat top window
|
25 |
+
gaussian -- Gaussian window
|
26 |
+
general_cosine -- Generalized Cosine window
|
27 |
+
general_gaussian -- Generalized Gaussian window
|
28 |
+
general_hamming -- Generalized Hamming window
|
29 |
+
hamming -- Hamming window
|
30 |
+
hann -- Hann window
|
31 |
+
kaiser -- Kaiser window
|
32 |
+
kaiser_bessel_derived -- Kaiser-Bessel derived window
|
33 |
+
lanczos -- Lanczos window also known as a sinc window
|
34 |
+
nuttall -- Nuttall's minimum 4-term Blackman-Harris window
|
35 |
+
parzen -- Parzen window
|
36 |
+
taylor -- Taylor window
|
37 |
+
triang -- Triangular window
|
38 |
+
tukey -- Tukey window
|
39 |
+
|
40 |
+
"""
|
41 |
+
|
42 |
+
from ._windows import *
|
43 |
+
|
44 |
+
# Deprecated namespaces, to be removed in v2.0.0
|
45 |
+
from . import windows
|
46 |
+
|
47 |
+
__all__ = ['boxcar', 'triang', 'parzen', 'bohman', 'blackman', 'nuttall',
|
48 |
+
'blackmanharris', 'flattop', 'bartlett', 'barthann',
|
49 |
+
'hamming', 'kaiser', 'kaiser_bessel_derived', 'gaussian',
|
50 |
+
'general_gaussian', 'general_cosine', 'general_hamming',
|
51 |
+
'chebwin', 'cosine', 'hann', 'exponential', 'tukey', 'taylor',
|
52 |
+
'get_window', 'dpss', 'lanczos']
|
venv/lib/python3.10/site-packages/scipy/signal/windows/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.18 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/signal/windows/__pycache__/_windows.cpython-310.pyc
ADDED
Binary file (79.6 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/signal/windows/__pycache__/windows.cpython-310.pyc
ADDED
Binary file (881 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/signal/windows/_windows.py
ADDED
@@ -0,0 +1,2374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""The suite of window functions."""
|
2 |
+
|
3 |
+
import operator
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from scipy import linalg, special, fft as sp_fft
|
8 |
+
|
9 |
+
__all__ = ['boxcar', 'triang', 'parzen', 'bohman', 'blackman', 'nuttall',
|
10 |
+
'blackmanharris', 'flattop', 'bartlett', 'barthann',
|
11 |
+
'hamming', 'kaiser', 'kaiser_bessel_derived', 'gaussian',
|
12 |
+
'general_cosine', 'general_gaussian', 'general_hamming',
|
13 |
+
'chebwin', 'cosine', 'hann', 'exponential', 'tukey', 'taylor',
|
14 |
+
'dpss', 'get_window', 'lanczos']
|
15 |
+
|
16 |
+
|
17 |
+
def _len_guards(M):
|
18 |
+
"""Handle small or incorrect window lengths"""
|
19 |
+
if int(M) != M or M < 0:
|
20 |
+
raise ValueError('Window length M must be a non-negative integer')
|
21 |
+
return M <= 1
|
22 |
+
|
23 |
+
|
24 |
+
def _extend(M, sym):
|
25 |
+
"""Extend window by 1 sample if needed for DFT-even symmetry"""
|
26 |
+
if not sym:
|
27 |
+
return M + 1, True
|
28 |
+
else:
|
29 |
+
return M, False
|
30 |
+
|
31 |
+
|
32 |
+
def _truncate(w, needed):
|
33 |
+
"""Truncate window by 1 sample if needed for DFT-even symmetry"""
|
34 |
+
if needed:
|
35 |
+
return w[:-1]
|
36 |
+
else:
|
37 |
+
return w
|
38 |
+
|
39 |
+
|
40 |
+
def general_cosine(M, a, sym=True):
|
41 |
+
r"""
|
42 |
+
Generic weighted sum of cosine terms window
|
43 |
+
|
44 |
+
Parameters
|
45 |
+
----------
|
46 |
+
M : int
|
47 |
+
Number of points in the output window
|
48 |
+
a : array_like
|
49 |
+
Sequence of weighting coefficients. This uses the convention of being
|
50 |
+
centered on the origin, so these will typically all be positive
|
51 |
+
numbers, not alternating sign.
|
52 |
+
sym : bool, optional
|
53 |
+
When True (default), generates a symmetric window, for use in filter
|
54 |
+
design.
|
55 |
+
When False, generates a periodic window, for use in spectral analysis.
|
56 |
+
|
57 |
+
Returns
|
58 |
+
-------
|
59 |
+
w : ndarray
|
60 |
+
The array of window values.
|
61 |
+
|
62 |
+
References
|
63 |
+
----------
|
64 |
+
.. [1] A. Nuttall, "Some windows with very good sidelobe behavior," IEEE
|
65 |
+
Transactions on Acoustics, Speech, and Signal Processing, vol. 29,
|
66 |
+
no. 1, pp. 84-91, Feb 1981. :doi:`10.1109/TASSP.1981.1163506`.
|
67 |
+
.. [2] Heinzel G. et al., "Spectrum and spectral density estimation by the
|
68 |
+
Discrete Fourier transform (DFT), including a comprehensive list of
|
69 |
+
window functions and some new flat-top windows", February 15, 2002
|
70 |
+
https://holometer.fnal.gov/GH_FFT.pdf
|
71 |
+
|
72 |
+
Examples
|
73 |
+
--------
|
74 |
+
Heinzel describes a flat-top window named "HFT90D" with formula: [2]_
|
75 |
+
|
76 |
+
.. math:: w_j = 1 - 1.942604 \cos(z) + 1.340318 \cos(2z)
|
77 |
+
- 0.440811 \cos(3z) + 0.043097 \cos(4z)
|
78 |
+
|
79 |
+
where
|
80 |
+
|
81 |
+
.. math:: z = \frac{2 \pi j}{N}, j = 0...N - 1
|
82 |
+
|
83 |
+
Since this uses the convention of starting at the origin, to reproduce the
|
84 |
+
window, we need to convert every other coefficient to a positive number:
|
85 |
+
|
86 |
+
>>> HFT90D = [1, 1.942604, 1.340318, 0.440811, 0.043097]
|
87 |
+
|
88 |
+
The paper states that the highest sidelobe is at -90.2 dB. Reproduce
|
89 |
+
Figure 42 by plotting the window and its frequency response, and confirm
|
90 |
+
the sidelobe level in red:
|
91 |
+
|
92 |
+
>>> import numpy as np
|
93 |
+
>>> from scipy.signal.windows import general_cosine
|
94 |
+
>>> from scipy.fft import fft, fftshift
|
95 |
+
>>> import matplotlib.pyplot as plt
|
96 |
+
|
97 |
+
>>> window = general_cosine(1000, HFT90D, sym=False)
|
98 |
+
>>> plt.plot(window)
|
99 |
+
>>> plt.title("HFT90D window")
|
100 |
+
>>> plt.ylabel("Amplitude")
|
101 |
+
>>> plt.xlabel("Sample")
|
102 |
+
|
103 |
+
>>> plt.figure()
|
104 |
+
>>> A = fft(window, 10000) / (len(window)/2.0)
|
105 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
106 |
+
>>> response = np.abs(fftshift(A / abs(A).max()))
|
107 |
+
>>> response = 20 * np.log10(np.maximum(response, 1e-10))
|
108 |
+
>>> plt.plot(freq, response)
|
109 |
+
>>> plt.axis([-50/1000, 50/1000, -140, 0])
|
110 |
+
>>> plt.title("Frequency response of the HFT90D window")
|
111 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
112 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
113 |
+
>>> plt.axhline(-90.2, color='red')
|
114 |
+
>>> plt.show()
|
115 |
+
"""
|
116 |
+
if _len_guards(M):
|
117 |
+
return np.ones(M)
|
118 |
+
M, needs_trunc = _extend(M, sym)
|
119 |
+
|
120 |
+
fac = np.linspace(-np.pi, np.pi, M)
|
121 |
+
w = np.zeros(M)
|
122 |
+
for k in range(len(a)):
|
123 |
+
w += a[k] * np.cos(k * fac)
|
124 |
+
|
125 |
+
return _truncate(w, needs_trunc)
|
126 |
+
|
127 |
+
|
128 |
+
def boxcar(M, sym=True):
|
129 |
+
"""Return a boxcar or rectangular window.
|
130 |
+
|
131 |
+
Also known as a rectangular window or Dirichlet window, this is equivalent
|
132 |
+
to no window at all.
|
133 |
+
|
134 |
+
Parameters
|
135 |
+
----------
|
136 |
+
M : int
|
137 |
+
Number of points in the output window. If zero, an empty array
|
138 |
+
is returned. An exception is thrown when it is negative.
|
139 |
+
sym : bool, optional
|
140 |
+
Whether the window is symmetric. (Has no effect for boxcar.)
|
141 |
+
|
142 |
+
Returns
|
143 |
+
-------
|
144 |
+
w : ndarray
|
145 |
+
The window, with the maximum value normalized to 1.
|
146 |
+
|
147 |
+
Examples
|
148 |
+
--------
|
149 |
+
Plot the window and its frequency response:
|
150 |
+
|
151 |
+
>>> import numpy as np
|
152 |
+
>>> from scipy import signal
|
153 |
+
>>> from scipy.fft import fft, fftshift
|
154 |
+
>>> import matplotlib.pyplot as plt
|
155 |
+
|
156 |
+
>>> window = signal.windows.boxcar(51)
|
157 |
+
>>> plt.plot(window)
|
158 |
+
>>> plt.title("Boxcar window")
|
159 |
+
>>> plt.ylabel("Amplitude")
|
160 |
+
>>> plt.xlabel("Sample")
|
161 |
+
|
162 |
+
>>> plt.figure()
|
163 |
+
>>> A = fft(window, 2048) / (len(window)/2.0)
|
164 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
165 |
+
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
166 |
+
>>> plt.plot(freq, response)
|
167 |
+
>>> plt.axis([-0.5, 0.5, -120, 0])
|
168 |
+
>>> plt.title("Frequency response of the boxcar window")
|
169 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
170 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
171 |
+
|
172 |
+
"""
|
173 |
+
if _len_guards(M):
|
174 |
+
return np.ones(M)
|
175 |
+
M, needs_trunc = _extend(M, sym)
|
176 |
+
|
177 |
+
w = np.ones(M, float)
|
178 |
+
|
179 |
+
return _truncate(w, needs_trunc)
|
180 |
+
|
181 |
+
|
182 |
+
def triang(M, sym=True):
|
183 |
+
"""Return a triangular window.
|
184 |
+
|
185 |
+
Parameters
|
186 |
+
----------
|
187 |
+
M : int
|
188 |
+
Number of points in the output window. If zero, an empty array
|
189 |
+
is returned. An exception is thrown when it is negative.
|
190 |
+
sym : bool, optional
|
191 |
+
When True (default), generates a symmetric window, for use in filter
|
192 |
+
design.
|
193 |
+
When False, generates a periodic window, for use in spectral analysis.
|
194 |
+
|
195 |
+
Returns
|
196 |
+
-------
|
197 |
+
w : ndarray
|
198 |
+
The window, with the maximum value normalized to 1 (though the value 1
|
199 |
+
does not appear if `M` is even and `sym` is True).
|
200 |
+
|
201 |
+
See Also
|
202 |
+
--------
|
203 |
+
bartlett : A triangular window that touches zero
|
204 |
+
|
205 |
+
Examples
|
206 |
+
--------
|
207 |
+
Plot the window and its frequency response:
|
208 |
+
|
209 |
+
>>> import numpy as np
|
210 |
+
>>> from scipy import signal
|
211 |
+
>>> from scipy.fft import fft, fftshift
|
212 |
+
>>> import matplotlib.pyplot as plt
|
213 |
+
|
214 |
+
>>> window = signal.windows.triang(51)
|
215 |
+
>>> plt.plot(window)
|
216 |
+
>>> plt.title("Triangular window")
|
217 |
+
>>> plt.ylabel("Amplitude")
|
218 |
+
>>> plt.xlabel("Sample")
|
219 |
+
|
220 |
+
>>> plt.figure()
|
221 |
+
>>> A = fft(window, 2048) / (len(window)/2.0)
|
222 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
223 |
+
>>> response = np.abs(fftshift(A / abs(A).max()))
|
224 |
+
>>> response = 20 * np.log10(np.maximum(response, 1e-10))
|
225 |
+
>>> plt.plot(freq, response)
|
226 |
+
>>> plt.axis([-0.5, 0.5, -120, 0])
|
227 |
+
>>> plt.title("Frequency response of the triangular window")
|
228 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
229 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
230 |
+
|
231 |
+
"""
|
232 |
+
if _len_guards(M):
|
233 |
+
return np.ones(M)
|
234 |
+
M, needs_trunc = _extend(M, sym)
|
235 |
+
|
236 |
+
n = np.arange(1, (M + 1) // 2 + 1)
|
237 |
+
if M % 2 == 0:
|
238 |
+
w = (2 * n - 1.0) / M
|
239 |
+
w = np.r_[w, w[::-1]]
|
240 |
+
else:
|
241 |
+
w = 2 * n / (M + 1.0)
|
242 |
+
w = np.r_[w, w[-2::-1]]
|
243 |
+
|
244 |
+
return _truncate(w, needs_trunc)
|
245 |
+
|
246 |
+
|
247 |
+
def parzen(M, sym=True):
|
248 |
+
"""Return a Parzen window.
|
249 |
+
|
250 |
+
Parameters
|
251 |
+
----------
|
252 |
+
M : int
|
253 |
+
Number of points in the output window. If zero, an empty array
|
254 |
+
is returned. An exception is thrown when it is negative.
|
255 |
+
sym : bool, optional
|
256 |
+
When True (default), generates a symmetric window, for use in filter
|
257 |
+
design.
|
258 |
+
When False, generates a periodic window, for use in spectral analysis.
|
259 |
+
|
260 |
+
Returns
|
261 |
+
-------
|
262 |
+
w : ndarray
|
263 |
+
The window, with the maximum value normalized to 1 (though the value 1
|
264 |
+
does not appear if `M` is even and `sym` is True).
|
265 |
+
|
266 |
+
References
|
267 |
+
----------
|
268 |
+
.. [1] E. Parzen, "Mathematical Considerations in the Estimation of
|
269 |
+
Spectra", Technometrics, Vol. 3, No. 2 (May, 1961), pp. 167-190
|
270 |
+
|
271 |
+
Examples
|
272 |
+
--------
|
273 |
+
Plot the window and its frequency response:
|
274 |
+
|
275 |
+
>>> import numpy as np
|
276 |
+
>>> from scipy import signal
|
277 |
+
>>> from scipy.fft import fft, fftshift
|
278 |
+
>>> import matplotlib.pyplot as plt
|
279 |
+
|
280 |
+
>>> window = signal.windows.parzen(51)
|
281 |
+
>>> plt.plot(window)
|
282 |
+
>>> plt.title("Parzen window")
|
283 |
+
>>> plt.ylabel("Amplitude")
|
284 |
+
>>> plt.xlabel("Sample")
|
285 |
+
|
286 |
+
>>> plt.figure()
|
287 |
+
>>> A = fft(window, 2048) / (len(window)/2.0)
|
288 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
289 |
+
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
290 |
+
>>> plt.plot(freq, response)
|
291 |
+
>>> plt.axis([-0.5, 0.5, -120, 0])
|
292 |
+
>>> plt.title("Frequency response of the Parzen window")
|
293 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
294 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
295 |
+
|
296 |
+
"""
|
297 |
+
if _len_guards(M):
|
298 |
+
return np.ones(M)
|
299 |
+
M, needs_trunc = _extend(M, sym)
|
300 |
+
|
301 |
+
n = np.arange(-(M - 1) / 2.0, (M - 1) / 2.0 + 0.5, 1.0)
|
302 |
+
na = np.extract(n < -(M - 1) / 4.0, n)
|
303 |
+
nb = np.extract(abs(n) <= (M - 1) / 4.0, n)
|
304 |
+
wa = 2 * (1 - np.abs(na) / (M / 2.0)) ** 3.0
|
305 |
+
wb = (1 - 6 * (np.abs(nb) / (M / 2.0)) ** 2.0 +
|
306 |
+
6 * (np.abs(nb) / (M / 2.0)) ** 3.0)
|
307 |
+
w = np.r_[wa, wb, wa[::-1]]
|
308 |
+
|
309 |
+
return _truncate(w, needs_trunc)
|
310 |
+
|
311 |
+
|
312 |
+
def bohman(M, sym=True):
|
313 |
+
"""Return a Bohman window.
|
314 |
+
|
315 |
+
Parameters
|
316 |
+
----------
|
317 |
+
M : int
|
318 |
+
Number of points in the output window. If zero, an empty array
|
319 |
+
is returned. An exception is thrown when it is negative.
|
320 |
+
sym : bool, optional
|
321 |
+
When True (default), generates a symmetric window, for use in filter
|
322 |
+
design.
|
323 |
+
When False, generates a periodic window, for use in spectral analysis.
|
324 |
+
|
325 |
+
Returns
|
326 |
+
-------
|
327 |
+
w : ndarray
|
328 |
+
The window, with the maximum value normalized to 1 (though the value 1
|
329 |
+
does not appear if `M` is even and `sym` is True).
|
330 |
+
|
331 |
+
Examples
|
332 |
+
--------
|
333 |
+
Plot the window and its frequency response:
|
334 |
+
|
335 |
+
>>> import numpy as np
|
336 |
+
>>> from scipy import signal
|
337 |
+
>>> from scipy.fft import fft, fftshift
|
338 |
+
>>> import matplotlib.pyplot as plt
|
339 |
+
|
340 |
+
>>> window = signal.windows.bohman(51)
|
341 |
+
>>> plt.plot(window)
|
342 |
+
>>> plt.title("Bohman window")
|
343 |
+
>>> plt.ylabel("Amplitude")
|
344 |
+
>>> plt.xlabel("Sample")
|
345 |
+
|
346 |
+
>>> plt.figure()
|
347 |
+
>>> A = fft(window, 2047) / (len(window)/2.0)
|
348 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
349 |
+
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
350 |
+
>>> plt.plot(freq, response)
|
351 |
+
>>> plt.axis([-0.5, 0.5, -120, 0])
|
352 |
+
>>> plt.title("Frequency response of the Bohman window")
|
353 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
354 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
355 |
+
|
356 |
+
"""
|
357 |
+
if _len_guards(M):
|
358 |
+
return np.ones(M)
|
359 |
+
M, needs_trunc = _extend(M, sym)
|
360 |
+
|
361 |
+
fac = np.abs(np.linspace(-1, 1, M)[1:-1])
|
362 |
+
w = (1 - fac) * np.cos(np.pi * fac) + 1.0 / np.pi * np.sin(np.pi * fac)
|
363 |
+
w = np.r_[0, w, 0]
|
364 |
+
|
365 |
+
return _truncate(w, needs_trunc)
|
366 |
+
|
367 |
+
|
368 |
+
def blackman(M, sym=True):
|
369 |
+
r"""
|
370 |
+
Return a Blackman window.
|
371 |
+
|
372 |
+
The Blackman window is a taper formed by using the first three terms of
|
373 |
+
a summation of cosines. It was designed to have close to the minimal
|
374 |
+
leakage possible. It is close to optimal, only slightly worse than a
|
375 |
+
Kaiser window.
|
376 |
+
|
377 |
+
Parameters
|
378 |
+
----------
|
379 |
+
M : int
|
380 |
+
Number of points in the output window. If zero, an empty array
|
381 |
+
is returned. An exception is thrown when it is negative.
|
382 |
+
sym : bool, optional
|
383 |
+
When True (default), generates a symmetric window, for use in filter
|
384 |
+
design.
|
385 |
+
When False, generates a periodic window, for use in spectral analysis.
|
386 |
+
|
387 |
+
Returns
|
388 |
+
-------
|
389 |
+
w : ndarray
|
390 |
+
The window, with the maximum value normalized to 1 (though the value 1
|
391 |
+
does not appear if `M` is even and `sym` is True).
|
392 |
+
|
393 |
+
Notes
|
394 |
+
-----
|
395 |
+
The Blackman window is defined as
|
396 |
+
|
397 |
+
.. math:: w(n) = 0.42 - 0.5 \cos(2\pi n/M) + 0.08 \cos(4\pi n/M)
|
398 |
+
|
399 |
+
The "exact Blackman" window was designed to null out the third and fourth
|
400 |
+
sidelobes, but has discontinuities at the boundaries, resulting in a
|
401 |
+
6 dB/oct fall-off. This window is an approximation of the "exact" window,
|
402 |
+
which does not null the sidelobes as well, but is smooth at the edges,
|
403 |
+
improving the fall-off rate to 18 dB/oct. [3]_
|
404 |
+
|
405 |
+
Most references to the Blackman window come from the signal processing
|
406 |
+
literature, where it is used as one of many windowing functions for
|
407 |
+
smoothing values. It is also known as an apodization (which means
|
408 |
+
"removing the foot", i.e. smoothing discontinuities at the beginning
|
409 |
+
and end of the sampled signal) or tapering function. It is known as a
|
410 |
+
"near optimal" tapering function, almost as good (by some measures)
|
411 |
+
as the Kaiser window.
|
412 |
+
|
413 |
+
References
|
414 |
+
----------
|
415 |
+
.. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
|
416 |
+
spectra, Dover Publications, New York.
|
417 |
+
.. [2] Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
|
418 |
+
Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.
|
419 |
+
.. [3] Harris, Fredric J. (Jan 1978). "On the use of Windows for Harmonic
|
420 |
+
Analysis with the Discrete Fourier Transform". Proceedings of the
|
421 |
+
IEEE 66 (1): 51-83. :doi:`10.1109/PROC.1978.10837`.
|
422 |
+
|
423 |
+
Examples
|
424 |
+
--------
|
425 |
+
Plot the window and its frequency response:
|
426 |
+
|
427 |
+
>>> import numpy as np
|
428 |
+
>>> from scipy import signal
|
429 |
+
>>> from scipy.fft import fft, fftshift
|
430 |
+
>>> import matplotlib.pyplot as plt
|
431 |
+
|
432 |
+
>>> window = signal.windows.blackman(51)
|
433 |
+
>>> plt.plot(window)
|
434 |
+
>>> plt.title("Blackman window")
|
435 |
+
>>> plt.ylabel("Amplitude")
|
436 |
+
>>> plt.xlabel("Sample")
|
437 |
+
|
438 |
+
>>> plt.figure()
|
439 |
+
>>> A = fft(window, 2048) / (len(window)/2.0)
|
440 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
441 |
+
>>> response = np.abs(fftshift(A / abs(A).max()))
|
442 |
+
>>> response = 20 * np.log10(np.maximum(response, 1e-10))
|
443 |
+
>>> plt.plot(freq, response)
|
444 |
+
>>> plt.axis([-0.5, 0.5, -120, 0])
|
445 |
+
>>> plt.title("Frequency response of the Blackman window")
|
446 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
447 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
448 |
+
|
449 |
+
"""
|
450 |
+
# Docstring adapted from NumPy's blackman function
|
451 |
+
return general_cosine(M, [0.42, 0.50, 0.08], sym)
|
452 |
+
|
453 |
+
|
454 |
+
def nuttall(M, sym=True):
|
455 |
+
"""Return a minimum 4-term Blackman-Harris window according to Nuttall.
|
456 |
+
|
457 |
+
This variation is called "Nuttall4c" by Heinzel. [2]_
|
458 |
+
|
459 |
+
Parameters
|
460 |
+
----------
|
461 |
+
M : int
|
462 |
+
Number of points in the output window. If zero, an empty array
|
463 |
+
is returned. An exception is thrown when it is negative.
|
464 |
+
sym : bool, optional
|
465 |
+
When True (default), generates a symmetric window, for use in filter
|
466 |
+
design.
|
467 |
+
When False, generates a periodic window, for use in spectral analysis.
|
468 |
+
|
469 |
+
Returns
|
470 |
+
-------
|
471 |
+
w : ndarray
|
472 |
+
The window, with the maximum value normalized to 1 (though the value 1
|
473 |
+
does not appear if `M` is even and `sym` is True).
|
474 |
+
|
475 |
+
References
|
476 |
+
----------
|
477 |
+
.. [1] A. Nuttall, "Some windows with very good sidelobe behavior," IEEE
|
478 |
+
Transactions on Acoustics, Speech, and Signal Processing, vol. 29,
|
479 |
+
no. 1, pp. 84-91, Feb 1981. :doi:`10.1109/TASSP.1981.1163506`.
|
480 |
+
.. [2] Heinzel G. et al., "Spectrum and spectral density estimation by the
|
481 |
+
Discrete Fourier transform (DFT), including a comprehensive list of
|
482 |
+
window functions and some new flat-top windows", February 15, 2002
|
483 |
+
https://holometer.fnal.gov/GH_FFT.pdf
|
484 |
+
|
485 |
+
Examples
|
486 |
+
--------
|
487 |
+
Plot the window and its frequency response:
|
488 |
+
|
489 |
+
>>> import numpy as np
|
490 |
+
>>> from scipy import signal
|
491 |
+
>>> from scipy.fft import fft, fftshift
|
492 |
+
>>> import matplotlib.pyplot as plt
|
493 |
+
|
494 |
+
>>> window = signal.windows.nuttall(51)
|
495 |
+
>>> plt.plot(window)
|
496 |
+
>>> plt.title("Nuttall window")
|
497 |
+
>>> plt.ylabel("Amplitude")
|
498 |
+
>>> plt.xlabel("Sample")
|
499 |
+
|
500 |
+
>>> plt.figure()
|
501 |
+
>>> A = fft(window, 2048) / (len(window)/2.0)
|
502 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
503 |
+
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
504 |
+
>>> plt.plot(freq, response)
|
505 |
+
>>> plt.axis([-0.5, 0.5, -120, 0])
|
506 |
+
>>> plt.title("Frequency response of the Nuttall window")
|
507 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
508 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
509 |
+
|
510 |
+
"""
|
511 |
+
return general_cosine(M, [0.3635819, 0.4891775, 0.1365995, 0.0106411], sym)
|
512 |
+
|
513 |
+
|
514 |
+
def blackmanharris(M, sym=True):
|
515 |
+
"""Return a minimum 4-term Blackman-Harris window.
|
516 |
+
|
517 |
+
Parameters
|
518 |
+
----------
|
519 |
+
M : int
|
520 |
+
Number of points in the output window. If zero, an empty array
|
521 |
+
is returned. An exception is thrown when it is negative.
|
522 |
+
sym : bool, optional
|
523 |
+
When True (default), generates a symmetric window, for use in filter
|
524 |
+
design.
|
525 |
+
When False, generates a periodic window, for use in spectral analysis.
|
526 |
+
|
527 |
+
Returns
|
528 |
+
-------
|
529 |
+
w : ndarray
|
530 |
+
The window, with the maximum value normalized to 1 (though the value 1
|
531 |
+
does not appear if `M` is even and `sym` is True).
|
532 |
+
|
533 |
+
Examples
|
534 |
+
--------
|
535 |
+
Plot the window and its frequency response:
|
536 |
+
|
537 |
+
>>> import numpy as np
|
538 |
+
>>> from scipy import signal
|
539 |
+
>>> from scipy.fft import fft, fftshift
|
540 |
+
>>> import matplotlib.pyplot as plt
|
541 |
+
|
542 |
+
>>> window = signal.windows.blackmanharris(51)
|
543 |
+
>>> plt.plot(window)
|
544 |
+
>>> plt.title("Blackman-Harris window")
|
545 |
+
>>> plt.ylabel("Amplitude")
|
546 |
+
>>> plt.xlabel("Sample")
|
547 |
+
|
548 |
+
>>> plt.figure()
|
549 |
+
>>> A = fft(window, 2048) / (len(window)/2.0)
|
550 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
551 |
+
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
552 |
+
>>> plt.plot(freq, response)
|
553 |
+
>>> plt.axis([-0.5, 0.5, -120, 0])
|
554 |
+
>>> plt.title("Frequency response of the Blackman-Harris window")
|
555 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
556 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
557 |
+
|
558 |
+
"""
|
559 |
+
return general_cosine(M, [0.35875, 0.48829, 0.14128, 0.01168], sym)
|
560 |
+
|
561 |
+
|
562 |
+
def flattop(M, sym=True):
|
563 |
+
"""Return a flat top window.
|
564 |
+
|
565 |
+
Parameters
|
566 |
+
----------
|
567 |
+
M : int
|
568 |
+
Number of points in the output window. If zero, an empty array
|
569 |
+
is returned. An exception is thrown when it is negative.
|
570 |
+
sym : bool, optional
|
571 |
+
When True (default), generates a symmetric window, for use in filter
|
572 |
+
design.
|
573 |
+
When False, generates a periodic window, for use in spectral analysis.
|
574 |
+
|
575 |
+
Returns
|
576 |
+
-------
|
577 |
+
w : ndarray
|
578 |
+
The window, with the maximum value normalized to 1 (though the value 1
|
579 |
+
does not appear if `M` is even and `sym` is True).
|
580 |
+
|
581 |
+
Notes
|
582 |
+
-----
|
583 |
+
Flat top windows are used for taking accurate measurements of signal
|
584 |
+
amplitude in the frequency domain, with minimal scalloping error from the
|
585 |
+
center of a frequency bin to its edges, compared to others. This is a
|
586 |
+
5th-order cosine window, with the 5 terms optimized to make the main lobe
|
587 |
+
maximally flat. [1]_
|
588 |
+
|
589 |
+
References
|
590 |
+
----------
|
591 |
+
.. [1] D'Antona, Gabriele, and A. Ferrero, "Digital Signal Processing for
|
592 |
+
Measurement Systems", Springer Media, 2006, p. 70
|
593 |
+
:doi:`10.1007/0-387-28666-7`.
|
594 |
+
|
595 |
+
Examples
|
596 |
+
--------
|
597 |
+
Plot the window and its frequency response:
|
598 |
+
|
599 |
+
>>> import numpy as np
|
600 |
+
>>> from scipy import signal
|
601 |
+
>>> from scipy.fft import fft, fftshift
|
602 |
+
>>> import matplotlib.pyplot as plt
|
603 |
+
|
604 |
+
>>> window = signal.windows.flattop(51)
|
605 |
+
>>> plt.plot(window)
|
606 |
+
>>> plt.title("Flat top window")
|
607 |
+
>>> plt.ylabel("Amplitude")
|
608 |
+
>>> plt.xlabel("Sample")
|
609 |
+
|
610 |
+
>>> plt.figure()
|
611 |
+
>>> A = fft(window, 2048) / (len(window)/2.0)
|
612 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
613 |
+
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
614 |
+
>>> plt.plot(freq, response)
|
615 |
+
>>> plt.axis([-0.5, 0.5, -120, 0])
|
616 |
+
>>> plt.title("Frequency response of the flat top window")
|
617 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
618 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
619 |
+
|
620 |
+
"""
|
621 |
+
a = [0.21557895, 0.41663158, 0.277263158, 0.083578947, 0.006947368]
|
622 |
+
return general_cosine(M, a, sym)
|
623 |
+
|
624 |
+
|
625 |
+
def bartlett(M, sym=True):
|
626 |
+
r"""
|
627 |
+
Return a Bartlett window.
|
628 |
+
|
629 |
+
The Bartlett window is very similar to a triangular window, except
|
630 |
+
that the end points are at zero. It is often used in signal
|
631 |
+
processing for tapering a signal, without generating too much
|
632 |
+
ripple in the frequency domain.
|
633 |
+
|
634 |
+
Parameters
|
635 |
+
----------
|
636 |
+
M : int
|
637 |
+
Number of points in the output window. If zero, an empty array
|
638 |
+
is returned. An exception is thrown when it is negative.
|
639 |
+
sym : bool, optional
|
640 |
+
When True (default), generates a symmetric window, for use in filter
|
641 |
+
design.
|
642 |
+
When False, generates a periodic window, for use in spectral analysis.
|
643 |
+
|
644 |
+
Returns
|
645 |
+
-------
|
646 |
+
w : ndarray
|
647 |
+
The triangular window, with the first and last samples equal to zero
|
648 |
+
and the maximum value normalized to 1 (though the value 1 does not
|
649 |
+
appear if `M` is even and `sym` is True).
|
650 |
+
|
651 |
+
See Also
|
652 |
+
--------
|
653 |
+
triang : A triangular window that does not touch zero at the ends
|
654 |
+
|
655 |
+
Notes
|
656 |
+
-----
|
657 |
+
The Bartlett window is defined as
|
658 |
+
|
659 |
+
.. math:: w(n) = \frac{2}{M-1} \left(
|
660 |
+
\frac{M-1}{2} - \left|n - \frac{M-1}{2}\right|
|
661 |
+
\right)
|
662 |
+
|
663 |
+
Most references to the Bartlett window come from the signal
|
664 |
+
processing literature, where it is used as one of many windowing
|
665 |
+
functions for smoothing values. Note that convolution with this
|
666 |
+
window produces linear interpolation. It is also known as an
|
667 |
+
apodization (which means"removing the foot", i.e. smoothing
|
668 |
+
discontinuities at the beginning and end of the sampled signal) or
|
669 |
+
tapering function. The Fourier transform of the Bartlett is the product
|
670 |
+
of two sinc functions.
|
671 |
+
Note the excellent discussion in Kanasewich. [2]_
|
672 |
+
|
673 |
+
References
|
674 |
+
----------
|
675 |
+
.. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra",
|
676 |
+
Biometrika 37, 1-16, 1950.
|
677 |
+
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics",
|
678 |
+
The University of Alberta Press, 1975, pp. 109-110.
|
679 |
+
.. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal
|
680 |
+
Processing", Prentice-Hall, 1999, pp. 468-471.
|
681 |
+
.. [4] Wikipedia, "Window function",
|
682 |
+
https://en.wikipedia.org/wiki/Window_function
|
683 |
+
.. [5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
|
684 |
+
"Numerical Recipes", Cambridge University Press, 1986, page 429.
|
685 |
+
|
686 |
+
Examples
|
687 |
+
--------
|
688 |
+
Plot the window and its frequency response:
|
689 |
+
|
690 |
+
>>> import numpy as np
|
691 |
+
>>> from scipy import signal
|
692 |
+
>>> from scipy.fft import fft, fftshift
|
693 |
+
>>> import matplotlib.pyplot as plt
|
694 |
+
|
695 |
+
>>> window = signal.windows.bartlett(51)
|
696 |
+
>>> plt.plot(window)
|
697 |
+
>>> plt.title("Bartlett window")
|
698 |
+
>>> plt.ylabel("Amplitude")
|
699 |
+
>>> plt.xlabel("Sample")
|
700 |
+
|
701 |
+
>>> plt.figure()
|
702 |
+
>>> A = fft(window, 2048) / (len(window)/2.0)
|
703 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
704 |
+
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
705 |
+
>>> plt.plot(freq, response)
|
706 |
+
>>> plt.axis([-0.5, 0.5, -120, 0])
|
707 |
+
>>> plt.title("Frequency response of the Bartlett window")
|
708 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
709 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
710 |
+
|
711 |
+
"""
|
712 |
+
# Docstring adapted from NumPy's bartlett function
|
713 |
+
if _len_guards(M):
|
714 |
+
return np.ones(M)
|
715 |
+
M, needs_trunc = _extend(M, sym)
|
716 |
+
|
717 |
+
n = np.arange(0, M)
|
718 |
+
w = np.where(np.less_equal(n, (M - 1) / 2.0),
|
719 |
+
2.0 * n / (M - 1), 2.0 - 2.0 * n / (M - 1))
|
720 |
+
|
721 |
+
return _truncate(w, needs_trunc)
|
722 |
+
|
723 |
+
|
724 |
+
def hann(M, sym=True):
|
725 |
+
r"""
|
726 |
+
Return a Hann window.
|
727 |
+
|
728 |
+
The Hann window is a taper formed by using a raised cosine or sine-squared
|
729 |
+
with ends that touch zero.
|
730 |
+
|
731 |
+
Parameters
|
732 |
+
----------
|
733 |
+
M : int
|
734 |
+
Number of points in the output window. If zero, an empty array
|
735 |
+
is returned. An exception is thrown when it is negative.
|
736 |
+
sym : bool, optional
|
737 |
+
When True (default), generates a symmetric window, for use in filter
|
738 |
+
design.
|
739 |
+
When False, generates a periodic window, for use in spectral analysis.
|
740 |
+
|
741 |
+
Returns
|
742 |
+
-------
|
743 |
+
w : ndarray
|
744 |
+
The window, with the maximum value normalized to 1 (though the value 1
|
745 |
+
does not appear if `M` is even and `sym` is True).
|
746 |
+
|
747 |
+
Notes
|
748 |
+
-----
|
749 |
+
The Hann window is defined as
|
750 |
+
|
751 |
+
.. math:: w(n) = 0.5 - 0.5 \cos\left(\frac{2\pi{n}}{M-1}\right)
|
752 |
+
\qquad 0 \leq n \leq M-1
|
753 |
+
|
754 |
+
The window was named for Julius von Hann, an Austrian meteorologist. It is
|
755 |
+
also known as the Cosine Bell. It is sometimes erroneously referred to as
|
756 |
+
the "Hanning" window, from the use of "hann" as a verb in the original
|
757 |
+
paper and confusion with the very similar Hamming window.
|
758 |
+
|
759 |
+
Most references to the Hann window come from the signal processing
|
760 |
+
literature, where it is used as one of many windowing functions for
|
761 |
+
smoothing values. It is also known as an apodization (which means
|
762 |
+
"removing the foot", i.e. smoothing discontinuities at the beginning
|
763 |
+
and end of the sampled signal) or tapering function.
|
764 |
+
|
765 |
+
References
|
766 |
+
----------
|
767 |
+
.. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
|
768 |
+
spectra, Dover Publications, New York.
|
769 |
+
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics",
|
770 |
+
The University of Alberta Press, 1975, pp. 106-108.
|
771 |
+
.. [3] Wikipedia, "Window function",
|
772 |
+
https://en.wikipedia.org/wiki/Window_function
|
773 |
+
.. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
|
774 |
+
"Numerical Recipes", Cambridge University Press, 1986, page 425.
|
775 |
+
|
776 |
+
Examples
|
777 |
+
--------
|
778 |
+
Plot the window and its frequency response:
|
779 |
+
|
780 |
+
>>> import numpy as np
|
781 |
+
>>> from scipy import signal
|
782 |
+
>>> from scipy.fft import fft, fftshift
|
783 |
+
>>> import matplotlib.pyplot as plt
|
784 |
+
|
785 |
+
>>> window = signal.windows.hann(51)
|
786 |
+
>>> plt.plot(window)
|
787 |
+
>>> plt.title("Hann window")
|
788 |
+
>>> plt.ylabel("Amplitude")
|
789 |
+
>>> plt.xlabel("Sample")
|
790 |
+
|
791 |
+
>>> plt.figure()
|
792 |
+
>>> A = fft(window, 2048) / (len(window)/2.0)
|
793 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
794 |
+
>>> response = np.abs(fftshift(A / abs(A).max()))
|
795 |
+
>>> response = 20 * np.log10(np.maximum(response, 1e-10))
|
796 |
+
>>> plt.plot(freq, response)
|
797 |
+
>>> plt.axis([-0.5, 0.5, -120, 0])
|
798 |
+
>>> plt.title("Frequency response of the Hann window")
|
799 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
800 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
801 |
+
|
802 |
+
"""
|
803 |
+
# Docstring adapted from NumPy's hanning function
|
804 |
+
return general_hamming(M, 0.5, sym)
|
805 |
+
|
806 |
+
|
807 |
+
def tukey(M, alpha=0.5, sym=True):
|
808 |
+
r"""Return a Tukey window, also known as a tapered cosine window.
|
809 |
+
|
810 |
+
Parameters
|
811 |
+
----------
|
812 |
+
M : int
|
813 |
+
Number of points in the output window. If zero, an empty array
|
814 |
+
is returned. An exception is thrown when it is negative.
|
815 |
+
alpha : float, optional
|
816 |
+
Shape parameter of the Tukey window, representing the fraction of the
|
817 |
+
window inside the cosine tapered region.
|
818 |
+
If zero, the Tukey window is equivalent to a rectangular window.
|
819 |
+
If one, the Tukey window is equivalent to a Hann window.
|
820 |
+
sym : bool, optional
|
821 |
+
When True (default), generates a symmetric window, for use in filter
|
822 |
+
design.
|
823 |
+
When False, generates a periodic window, for use in spectral analysis.
|
824 |
+
|
825 |
+
Returns
|
826 |
+
-------
|
827 |
+
w : ndarray
|
828 |
+
The window, with the maximum value normalized to 1 (though the value 1
|
829 |
+
does not appear if `M` is even and `sym` is True).
|
830 |
+
|
831 |
+
References
|
832 |
+
----------
|
833 |
+
.. [1] Harris, Fredric J. (Jan 1978). "On the use of Windows for Harmonic
|
834 |
+
Analysis with the Discrete Fourier Transform". Proceedings of the
|
835 |
+
IEEE 66 (1): 51-83. :doi:`10.1109/PROC.1978.10837`
|
836 |
+
.. [2] Wikipedia, "Window function",
|
837 |
+
https://en.wikipedia.org/wiki/Window_function#Tukey_window
|
838 |
+
|
839 |
+
Examples
|
840 |
+
--------
|
841 |
+
Plot the window and its frequency response:
|
842 |
+
|
843 |
+
>>> import numpy as np
|
844 |
+
>>> from scipy import signal
|
845 |
+
>>> from scipy.fft import fft, fftshift
|
846 |
+
>>> import matplotlib.pyplot as plt
|
847 |
+
|
848 |
+
>>> window = signal.windows.tukey(51)
|
849 |
+
>>> plt.plot(window)
|
850 |
+
>>> plt.title("Tukey window")
|
851 |
+
>>> plt.ylabel("Amplitude")
|
852 |
+
>>> plt.xlabel("Sample")
|
853 |
+
>>> plt.ylim([0, 1.1])
|
854 |
+
|
855 |
+
>>> plt.figure()
|
856 |
+
>>> A = fft(window, 2048) / (len(window)/2.0)
|
857 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
858 |
+
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
859 |
+
>>> plt.plot(freq, response)
|
860 |
+
>>> plt.axis([-0.5, 0.5, -120, 0])
|
861 |
+
>>> plt.title("Frequency response of the Tukey window")
|
862 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
863 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
864 |
+
|
865 |
+
"""
|
866 |
+
if _len_guards(M):
|
867 |
+
return np.ones(M)
|
868 |
+
|
869 |
+
if alpha <= 0:
|
870 |
+
return np.ones(M, 'd')
|
871 |
+
elif alpha >= 1.0:
|
872 |
+
return hann(M, sym=sym)
|
873 |
+
|
874 |
+
M, needs_trunc = _extend(M, sym)
|
875 |
+
|
876 |
+
n = np.arange(0, M)
|
877 |
+
width = int(np.floor(alpha*(M-1)/2.0))
|
878 |
+
n1 = n[0:width+1]
|
879 |
+
n2 = n[width+1:M-width-1]
|
880 |
+
n3 = n[M-width-1:]
|
881 |
+
|
882 |
+
w1 = 0.5 * (1 + np.cos(np.pi * (-1 + 2.0*n1/alpha/(M-1))))
|
883 |
+
w2 = np.ones(n2.shape)
|
884 |
+
w3 = 0.5 * (1 + np.cos(np.pi * (-2.0/alpha + 1 + 2.0*n3/alpha/(M-1))))
|
885 |
+
|
886 |
+
w = np.concatenate((w1, w2, w3))
|
887 |
+
|
888 |
+
return _truncate(w, needs_trunc)
|
889 |
+
|
890 |
+
|
891 |
+
def barthann(M, sym=True):
|
892 |
+
"""Return a modified Bartlett-Hann window.
|
893 |
+
|
894 |
+
Parameters
|
895 |
+
----------
|
896 |
+
M : int
|
897 |
+
Number of points in the output window. If zero, an empty array
|
898 |
+
is returned. An exception is thrown when it is negative.
|
899 |
+
sym : bool, optional
|
900 |
+
When True (default), generates a symmetric window, for use in filter
|
901 |
+
design.
|
902 |
+
When False, generates a periodic window, for use in spectral analysis.
|
903 |
+
|
904 |
+
Returns
|
905 |
+
-------
|
906 |
+
w : ndarray
|
907 |
+
The window, with the maximum value normalized to 1 (though the value 1
|
908 |
+
does not appear if `M` is even and `sym` is True).
|
909 |
+
|
910 |
+
Examples
|
911 |
+
--------
|
912 |
+
Plot the window and its frequency response:
|
913 |
+
|
914 |
+
>>> import numpy as np
|
915 |
+
>>> from scipy import signal
|
916 |
+
>>> from scipy.fft import fft, fftshift
|
917 |
+
>>> import matplotlib.pyplot as plt
|
918 |
+
|
919 |
+
>>> window = signal.windows.barthann(51)
|
920 |
+
>>> plt.plot(window)
|
921 |
+
>>> plt.title("Bartlett-Hann window")
|
922 |
+
>>> plt.ylabel("Amplitude")
|
923 |
+
>>> plt.xlabel("Sample")
|
924 |
+
|
925 |
+
>>> plt.figure()
|
926 |
+
>>> A = fft(window, 2048) / (len(window)/2.0)
|
927 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
928 |
+
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
929 |
+
>>> plt.plot(freq, response)
|
930 |
+
>>> plt.axis([-0.5, 0.5, -120, 0])
|
931 |
+
>>> plt.title("Frequency response of the Bartlett-Hann window")
|
932 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
933 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
934 |
+
|
935 |
+
"""
|
936 |
+
if _len_guards(M):
|
937 |
+
return np.ones(M)
|
938 |
+
M, needs_trunc = _extend(M, sym)
|
939 |
+
|
940 |
+
n = np.arange(0, M)
|
941 |
+
fac = np.abs(n / (M - 1.0) - 0.5)
|
942 |
+
w = 0.62 - 0.48 * fac + 0.38 * np.cos(2 * np.pi * fac)
|
943 |
+
|
944 |
+
return _truncate(w, needs_trunc)
|
945 |
+
|
946 |
+
|
947 |
+
def general_hamming(M, alpha, sym=True):
|
948 |
+
r"""Return a generalized Hamming window.
|
949 |
+
|
950 |
+
The generalized Hamming window is constructed by multiplying a rectangular
|
951 |
+
window by one period of a cosine function [1]_.
|
952 |
+
|
953 |
+
Parameters
|
954 |
+
----------
|
955 |
+
M : int
|
956 |
+
Number of points in the output window. If zero, an empty array
|
957 |
+
is returned. An exception is thrown when it is negative.
|
958 |
+
alpha : float
|
959 |
+
The window coefficient, :math:`\alpha`
|
960 |
+
sym : bool, optional
|
961 |
+
When True (default), generates a symmetric window, for use in filter
|
962 |
+
design.
|
963 |
+
When False, generates a periodic window, for use in spectral analysis.
|
964 |
+
|
965 |
+
Returns
|
966 |
+
-------
|
967 |
+
w : ndarray
|
968 |
+
The window, with the maximum value normalized to 1 (though the value 1
|
969 |
+
does not appear if `M` is even and `sym` is True).
|
970 |
+
|
971 |
+
See Also
|
972 |
+
--------
|
973 |
+
hamming, hann
|
974 |
+
|
975 |
+
Notes
|
976 |
+
-----
|
977 |
+
The generalized Hamming window is defined as
|
978 |
+
|
979 |
+
.. math:: w(n) = \alpha - \left(1 - \alpha\right)
|
980 |
+
\cos\left(\frac{2\pi{n}}{M-1}\right) \qquad 0 \leq n \leq M-1
|
981 |
+
|
982 |
+
Both the common Hamming window and Hann window are special cases of the
|
983 |
+
generalized Hamming window with :math:`\alpha` = 0.54 and :math:`\alpha` =
|
984 |
+
0.5, respectively [2]_.
|
985 |
+
|
986 |
+
References
|
987 |
+
----------
|
988 |
+
.. [1] DSPRelated, "Generalized Hamming Window Family",
|
989 |
+
https://www.dsprelated.com/freebooks/sasp/Generalized_Hamming_Window_Family.html
|
990 |
+
.. [2] Wikipedia, "Window function",
|
991 |
+
https://en.wikipedia.org/wiki/Window_function
|
992 |
+
.. [3] Riccardo Piantanida ESA, "Sentinel-1 Level 1 Detailed Algorithm
|
993 |
+
Definition",
|
994 |
+
https://sentinel.esa.int/documents/247904/1877131/Sentinel-1-Level-1-Detailed-Algorithm-Definition
|
995 |
+
.. [4] Matthieu Bourbigot ESA, "Sentinel-1 Product Definition",
|
996 |
+
https://sentinel.esa.int/documents/247904/1877131/Sentinel-1-Product-Definition
|
997 |
+
|
998 |
+
Examples
|
999 |
+
--------
|
1000 |
+
The Sentinel-1A/B Instrument Processing Facility uses generalized Hamming
|
1001 |
+
windows in the processing of spaceborne Synthetic Aperture Radar (SAR)
|
1002 |
+
data [3]_. The facility uses various values for the :math:`\alpha`
|
1003 |
+
parameter based on operating mode of the SAR instrument. Some common
|
1004 |
+
:math:`\alpha` values include 0.75, 0.7 and 0.52 [4]_. As an example, we
|
1005 |
+
plot these different windows.
|
1006 |
+
|
1007 |
+
>>> import numpy as np
|
1008 |
+
>>> from scipy.signal.windows import general_hamming
|
1009 |
+
>>> from scipy.fft import fft, fftshift
|
1010 |
+
>>> import matplotlib.pyplot as plt
|
1011 |
+
|
1012 |
+
>>> fig1, spatial_plot = plt.subplots()
|
1013 |
+
>>> spatial_plot.set_title("Generalized Hamming Windows")
|
1014 |
+
>>> spatial_plot.set_ylabel("Amplitude")
|
1015 |
+
>>> spatial_plot.set_xlabel("Sample")
|
1016 |
+
|
1017 |
+
>>> fig2, freq_plot = plt.subplots()
|
1018 |
+
>>> freq_plot.set_title("Frequency Responses")
|
1019 |
+
>>> freq_plot.set_ylabel("Normalized magnitude [dB]")
|
1020 |
+
>>> freq_plot.set_xlabel("Normalized frequency [cycles per sample]")
|
1021 |
+
|
1022 |
+
>>> for alpha in [0.75, 0.7, 0.52]:
|
1023 |
+
... window = general_hamming(41, alpha)
|
1024 |
+
... spatial_plot.plot(window, label="{:.2f}".format(alpha))
|
1025 |
+
... A = fft(window, 2048) / (len(window)/2.0)
|
1026 |
+
... freq = np.linspace(-0.5, 0.5, len(A))
|
1027 |
+
... response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
1028 |
+
... freq_plot.plot(freq, response, label="{:.2f}".format(alpha))
|
1029 |
+
>>> freq_plot.legend(loc="upper right")
|
1030 |
+
>>> spatial_plot.legend(loc="upper right")
|
1031 |
+
|
1032 |
+
"""
|
1033 |
+
return general_cosine(M, [alpha, 1. - alpha], sym)
|
1034 |
+
|
1035 |
+
|
1036 |
+
def hamming(M, sym=True):
|
1037 |
+
r"""Return a Hamming window.
|
1038 |
+
|
1039 |
+
The Hamming window is a taper formed by using a raised cosine with
|
1040 |
+
non-zero endpoints, optimized to minimize the nearest side lobe.
|
1041 |
+
|
1042 |
+
Parameters
|
1043 |
+
----------
|
1044 |
+
M : int
|
1045 |
+
Number of points in the output window. If zero, an empty array
|
1046 |
+
is returned. An exception is thrown when it is negative.
|
1047 |
+
sym : bool, optional
|
1048 |
+
When True (default), generates a symmetric window, for use in filter
|
1049 |
+
design.
|
1050 |
+
When False, generates a periodic window, for use in spectral analysis.
|
1051 |
+
|
1052 |
+
Returns
|
1053 |
+
-------
|
1054 |
+
w : ndarray
|
1055 |
+
The window, with the maximum value normalized to 1 (though the value 1
|
1056 |
+
does not appear if `M` is even and `sym` is True).
|
1057 |
+
|
1058 |
+
Notes
|
1059 |
+
-----
|
1060 |
+
The Hamming window is defined as
|
1061 |
+
|
1062 |
+
.. math:: w(n) = 0.54 - 0.46 \cos\left(\frac{2\pi{n}}{M-1}\right)
|
1063 |
+
\qquad 0 \leq n \leq M-1
|
1064 |
+
|
1065 |
+
The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and
|
1066 |
+
is described in Blackman and Tukey. It was recommended for smoothing the
|
1067 |
+
truncated autocovariance function in the time domain.
|
1068 |
+
Most references to the Hamming window come from the signal processing
|
1069 |
+
literature, where it is used as one of many windowing functions for
|
1070 |
+
smoothing values. It is also known as an apodization (which means
|
1071 |
+
"removing the foot", i.e. smoothing discontinuities at the beginning
|
1072 |
+
and end of the sampled signal) or tapering function.
|
1073 |
+
|
1074 |
+
References
|
1075 |
+
----------
|
1076 |
+
.. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
|
1077 |
+
spectra, Dover Publications, New York.
|
1078 |
+
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The
|
1079 |
+
University of Alberta Press, 1975, pp. 109-110.
|
1080 |
+
.. [3] Wikipedia, "Window function",
|
1081 |
+
https://en.wikipedia.org/wiki/Window_function
|
1082 |
+
.. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
|
1083 |
+
"Numerical Recipes", Cambridge University Press, 1986, page 425.
|
1084 |
+
|
1085 |
+
Examples
|
1086 |
+
--------
|
1087 |
+
Plot the window and its frequency response:
|
1088 |
+
|
1089 |
+
>>> import numpy as np
|
1090 |
+
>>> from scipy import signal
|
1091 |
+
>>> from scipy.fft import fft, fftshift
|
1092 |
+
>>> import matplotlib.pyplot as plt
|
1093 |
+
|
1094 |
+
>>> window = signal.windows.hamming(51)
|
1095 |
+
>>> plt.plot(window)
|
1096 |
+
>>> plt.title("Hamming window")
|
1097 |
+
>>> plt.ylabel("Amplitude")
|
1098 |
+
>>> plt.xlabel("Sample")
|
1099 |
+
|
1100 |
+
>>> plt.figure()
|
1101 |
+
>>> A = fft(window, 2048) / (len(window)/2.0)
|
1102 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
1103 |
+
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
1104 |
+
>>> plt.plot(freq, response)
|
1105 |
+
>>> plt.axis([-0.5, 0.5, -120, 0])
|
1106 |
+
>>> plt.title("Frequency response of the Hamming window")
|
1107 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
1108 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
1109 |
+
|
1110 |
+
"""
|
1111 |
+
# Docstring adapted from NumPy's hamming function
|
1112 |
+
return general_hamming(M, 0.54, sym)
|
1113 |
+
|
1114 |
+
|
1115 |
+
def kaiser(M, beta, sym=True):
|
1116 |
+
r"""Return a Kaiser window.
|
1117 |
+
|
1118 |
+
The Kaiser window is a taper formed by using a Bessel function.
|
1119 |
+
|
1120 |
+
Parameters
|
1121 |
+
----------
|
1122 |
+
M : int
|
1123 |
+
Number of points in the output window. If zero, an empty array
|
1124 |
+
is returned. An exception is thrown when it is negative.
|
1125 |
+
beta : float
|
1126 |
+
Shape parameter, determines trade-off between main-lobe width and
|
1127 |
+
side lobe level. As beta gets large, the window narrows.
|
1128 |
+
sym : bool, optional
|
1129 |
+
When True (default), generates a symmetric window, for use in filter
|
1130 |
+
design.
|
1131 |
+
When False, generates a periodic window, for use in spectral analysis.
|
1132 |
+
|
1133 |
+
Returns
|
1134 |
+
-------
|
1135 |
+
w : ndarray
|
1136 |
+
The window, with the maximum value normalized to 1 (though the value 1
|
1137 |
+
does not appear if `M` is even and `sym` is True).
|
1138 |
+
|
1139 |
+
Notes
|
1140 |
+
-----
|
1141 |
+
The Kaiser window is defined as
|
1142 |
+
|
1143 |
+
.. math:: w(n) = I_0\left( \beta \sqrt{1-\frac{4n^2}{(M-1)^2}}
|
1144 |
+
\right)/I_0(\beta)
|
1145 |
+
|
1146 |
+
with
|
1147 |
+
|
1148 |
+
.. math:: \quad -\frac{M-1}{2} \leq n \leq \frac{M-1}{2},
|
1149 |
+
|
1150 |
+
where :math:`I_0` is the modified zeroth-order Bessel function.
|
1151 |
+
|
1152 |
+
The Kaiser was named for Jim Kaiser, who discovered a simple approximation
|
1153 |
+
to the DPSS window based on Bessel functions.
|
1154 |
+
The Kaiser window is a very good approximation to the Digital Prolate
|
1155 |
+
Spheroidal Sequence, or Slepian window, which is the transform which
|
1156 |
+
maximizes the energy in the main lobe of the window relative to total
|
1157 |
+
energy.
|
1158 |
+
|
1159 |
+
The Kaiser can approximate other windows by varying the beta parameter.
|
1160 |
+
(Some literature uses alpha = beta/pi.) [4]_
|
1161 |
+
|
1162 |
+
==== =======================
|
1163 |
+
beta Window shape
|
1164 |
+
==== =======================
|
1165 |
+
0 Rectangular
|
1166 |
+
5 Similar to a Hamming
|
1167 |
+
6 Similar to a Hann
|
1168 |
+
8.6 Similar to a Blackman
|
1169 |
+
==== =======================
|
1170 |
+
|
1171 |
+
A beta value of 14 is probably a good starting point. Note that as beta
|
1172 |
+
gets large, the window narrows, and so the number of samples needs to be
|
1173 |
+
large enough to sample the increasingly narrow spike, otherwise NaNs will
|
1174 |
+
be returned.
|
1175 |
+
|
1176 |
+
Most references to the Kaiser window come from the signal processing
|
1177 |
+
literature, where it is used as one of many windowing functions for
|
1178 |
+
smoothing values. It is also known as an apodization (which means
|
1179 |
+
"removing the foot", i.e. smoothing discontinuities at the beginning
|
1180 |
+
and end of the sampled signal) or tapering function.
|
1181 |
+
|
1182 |
+
References
|
1183 |
+
----------
|
1184 |
+
.. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by
|
1185 |
+
digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285.
|
1186 |
+
John Wiley and Sons, New York, (1966).
|
1187 |
+
.. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The
|
1188 |
+
University of Alberta Press, 1975, pp. 177-178.
|
1189 |
+
.. [3] Wikipedia, "Window function",
|
1190 |
+
https://en.wikipedia.org/wiki/Window_function
|
1191 |
+
.. [4] F. J. Harris, "On the use of windows for harmonic analysis with the
|
1192 |
+
discrete Fourier transform," Proceedings of the IEEE, vol. 66,
|
1193 |
+
no. 1, pp. 51-83, Jan. 1978. :doi:`10.1109/PROC.1978.10837`.
|
1194 |
+
|
1195 |
+
Examples
|
1196 |
+
--------
|
1197 |
+
Plot the window and its frequency response:
|
1198 |
+
|
1199 |
+
>>> import numpy as np
|
1200 |
+
>>> from scipy import signal
|
1201 |
+
>>> from scipy.fft import fft, fftshift
|
1202 |
+
>>> import matplotlib.pyplot as plt
|
1203 |
+
|
1204 |
+
>>> window = signal.windows.kaiser(51, beta=14)
|
1205 |
+
>>> plt.plot(window)
|
1206 |
+
>>> plt.title(r"Kaiser window ($\beta$=14)")
|
1207 |
+
>>> plt.ylabel("Amplitude")
|
1208 |
+
>>> plt.xlabel("Sample")
|
1209 |
+
|
1210 |
+
>>> plt.figure()
|
1211 |
+
>>> A = fft(window, 2048) / (len(window)/2.0)
|
1212 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
1213 |
+
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
1214 |
+
>>> plt.plot(freq, response)
|
1215 |
+
>>> plt.axis([-0.5, 0.5, -120, 0])
|
1216 |
+
>>> plt.title(r"Frequency response of the Kaiser window ($\beta$=14)")
|
1217 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
1218 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
1219 |
+
|
1220 |
+
"""
|
1221 |
+
# Docstring adapted from NumPy's kaiser function
|
1222 |
+
if _len_guards(M):
|
1223 |
+
return np.ones(M)
|
1224 |
+
M, needs_trunc = _extend(M, sym)
|
1225 |
+
|
1226 |
+
n = np.arange(0, M)
|
1227 |
+
alpha = (M - 1) / 2.0
|
1228 |
+
w = (special.i0(beta * np.sqrt(1 - ((n - alpha) / alpha) ** 2.0)) /
|
1229 |
+
special.i0(beta))
|
1230 |
+
|
1231 |
+
return _truncate(w, needs_trunc)
|
1232 |
+
|
1233 |
+
|
1234 |
+
def kaiser_bessel_derived(M, beta, *, sym=True):
|
1235 |
+
"""Return a Kaiser-Bessel derived window.
|
1236 |
+
|
1237 |
+
Parameters
|
1238 |
+
----------
|
1239 |
+
M : int
|
1240 |
+
Number of points in the output window. If zero, an empty array
|
1241 |
+
is returned. An exception is thrown when it is negative.
|
1242 |
+
Note that this window is only defined for an even
|
1243 |
+
number of points.
|
1244 |
+
beta : float
|
1245 |
+
Kaiser window shape parameter.
|
1246 |
+
sym : bool, optional
|
1247 |
+
This parameter only exists to comply with the interface offered by
|
1248 |
+
the other window functions and to be callable by `get_window`.
|
1249 |
+
When True (default), generates a symmetric window, for use in filter
|
1250 |
+
design.
|
1251 |
+
|
1252 |
+
Returns
|
1253 |
+
-------
|
1254 |
+
w : ndarray
|
1255 |
+
The window, normalized to fulfil the Princen-Bradley condition.
|
1256 |
+
|
1257 |
+
See Also
|
1258 |
+
--------
|
1259 |
+
kaiser
|
1260 |
+
|
1261 |
+
Notes
|
1262 |
+
-----
|
1263 |
+
It is designed to be suitable for use with the modified discrete cosine
|
1264 |
+
transform (MDCT) and is mainly used in audio signal processing and
|
1265 |
+
audio coding.
|
1266 |
+
|
1267 |
+
.. versionadded:: 1.9.0
|
1268 |
+
|
1269 |
+
References
|
1270 |
+
----------
|
1271 |
+
.. [1] Bosi, Marina, and Richard E. Goldberg. Introduction to Digital
|
1272 |
+
Audio Coding and Standards. Dordrecht: Kluwer, 2003.
|
1273 |
+
.. [2] Wikipedia, "Kaiser window",
|
1274 |
+
https://en.wikipedia.org/wiki/Kaiser_window
|
1275 |
+
|
1276 |
+
Examples
|
1277 |
+
--------
|
1278 |
+
Plot the Kaiser-Bessel derived window based on the wikipedia
|
1279 |
+
reference [2]_:
|
1280 |
+
|
1281 |
+
>>> import numpy as np
|
1282 |
+
>>> from scipy import signal
|
1283 |
+
>>> import matplotlib.pyplot as plt
|
1284 |
+
>>> fig, ax = plt.subplots()
|
1285 |
+
>>> N = 50
|
1286 |
+
>>> for alpha in [0.64, 2.55, 7.64, 31.83]:
|
1287 |
+
... ax.plot(signal.windows.kaiser_bessel_derived(2*N, np.pi*alpha),
|
1288 |
+
... label=f"{alpha=}")
|
1289 |
+
>>> ax.grid(True)
|
1290 |
+
>>> ax.set_title("Kaiser-Bessel derived window")
|
1291 |
+
>>> ax.set_ylabel("Amplitude")
|
1292 |
+
>>> ax.set_xlabel("Sample")
|
1293 |
+
>>> ax.set_xticks([0, N, 2*N-1])
|
1294 |
+
>>> ax.set_xticklabels(["0", "N", "2N+1"]) # doctest: +SKIP
|
1295 |
+
>>> ax.set_yticks([0.0, 0.2, 0.4, 0.6, 0.707, 0.8, 1.0])
|
1296 |
+
>>> fig.legend(loc="center")
|
1297 |
+
>>> fig.tight_layout()
|
1298 |
+
>>> fig.show()
|
1299 |
+
"""
|
1300 |
+
if not sym:
|
1301 |
+
raise ValueError(
|
1302 |
+
"Kaiser-Bessel Derived windows are only defined for symmetric "
|
1303 |
+
"shapes"
|
1304 |
+
)
|
1305 |
+
elif M < 1:
|
1306 |
+
return np.array([])
|
1307 |
+
elif M % 2:
|
1308 |
+
raise ValueError(
|
1309 |
+
"Kaiser-Bessel Derived windows are only defined for even number "
|
1310 |
+
"of points"
|
1311 |
+
)
|
1312 |
+
|
1313 |
+
kaiser_window = kaiser(M // 2 + 1, beta)
|
1314 |
+
csum = np.cumsum(kaiser_window)
|
1315 |
+
half_window = np.sqrt(csum[:-1] / csum[-1])
|
1316 |
+
w = np.concatenate((half_window, half_window[::-1]), axis=0)
|
1317 |
+
return w
|
1318 |
+
|
1319 |
+
|
1320 |
+
def gaussian(M, std, sym=True):
|
1321 |
+
r"""Return a Gaussian window.
|
1322 |
+
|
1323 |
+
Parameters
|
1324 |
+
----------
|
1325 |
+
M : int
|
1326 |
+
Number of points in the output window. If zero, an empty array
|
1327 |
+
is returned. An exception is thrown when it is negative.
|
1328 |
+
std : float
|
1329 |
+
The standard deviation, sigma.
|
1330 |
+
sym : bool, optional
|
1331 |
+
When True (default), generates a symmetric window, for use in filter
|
1332 |
+
design.
|
1333 |
+
When False, generates a periodic window, for use in spectral analysis.
|
1334 |
+
|
1335 |
+
Returns
|
1336 |
+
-------
|
1337 |
+
w : ndarray
|
1338 |
+
The window, with the maximum value normalized to 1 (though the value 1
|
1339 |
+
does not appear if `M` is even and `sym` is True).
|
1340 |
+
|
1341 |
+
Notes
|
1342 |
+
-----
|
1343 |
+
The Gaussian window is defined as
|
1344 |
+
|
1345 |
+
.. math:: w(n) = e^{ -\frac{1}{2}\left(\frac{n}{\sigma}\right)^2 }
|
1346 |
+
|
1347 |
+
Examples
|
1348 |
+
--------
|
1349 |
+
Plot the window and its frequency response:
|
1350 |
+
|
1351 |
+
>>> import numpy as np
|
1352 |
+
>>> from scipy import signal
|
1353 |
+
>>> from scipy.fft import fft, fftshift
|
1354 |
+
>>> import matplotlib.pyplot as plt
|
1355 |
+
|
1356 |
+
>>> window = signal.windows.gaussian(51, std=7)
|
1357 |
+
>>> plt.plot(window)
|
1358 |
+
>>> plt.title(r"Gaussian window ($\sigma$=7)")
|
1359 |
+
>>> plt.ylabel("Amplitude")
|
1360 |
+
>>> plt.xlabel("Sample")
|
1361 |
+
|
1362 |
+
>>> plt.figure()
|
1363 |
+
>>> A = fft(window, 2048) / (len(window)/2.0)
|
1364 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
1365 |
+
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
1366 |
+
>>> plt.plot(freq, response)
|
1367 |
+
>>> plt.axis([-0.5, 0.5, -120, 0])
|
1368 |
+
>>> plt.title(r"Frequency response of the Gaussian window ($\sigma$=7)")
|
1369 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
1370 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
1371 |
+
|
1372 |
+
"""
|
1373 |
+
if _len_guards(M):
|
1374 |
+
return np.ones(M)
|
1375 |
+
M, needs_trunc = _extend(M, sym)
|
1376 |
+
|
1377 |
+
n = np.arange(0, M) - (M - 1.0) / 2.0
|
1378 |
+
sig2 = 2 * std * std
|
1379 |
+
w = np.exp(-n ** 2 / sig2)
|
1380 |
+
|
1381 |
+
return _truncate(w, needs_trunc)
|
1382 |
+
|
1383 |
+
|
1384 |
+
def general_gaussian(M, p, sig, sym=True):
|
1385 |
+
r"""Return a window with a generalized Gaussian shape.
|
1386 |
+
|
1387 |
+
Parameters
|
1388 |
+
----------
|
1389 |
+
M : int
|
1390 |
+
Number of points in the output window. If zero, an empty array
|
1391 |
+
is returned. An exception is thrown when it is negative.
|
1392 |
+
p : float
|
1393 |
+
Shape parameter. p = 1 is identical to `gaussian`, p = 0.5 is
|
1394 |
+
the same shape as the Laplace distribution.
|
1395 |
+
sig : float
|
1396 |
+
The standard deviation, sigma.
|
1397 |
+
sym : bool, optional
|
1398 |
+
When True (default), generates a symmetric window, for use in filter
|
1399 |
+
design.
|
1400 |
+
When False, generates a periodic window, for use in spectral analysis.
|
1401 |
+
|
1402 |
+
Returns
|
1403 |
+
-------
|
1404 |
+
w : ndarray
|
1405 |
+
The window, with the maximum value normalized to 1 (though the value 1
|
1406 |
+
does not appear if `M` is even and `sym` is True).
|
1407 |
+
|
1408 |
+
Notes
|
1409 |
+
-----
|
1410 |
+
The generalized Gaussian window is defined as
|
1411 |
+
|
1412 |
+
.. math:: w(n) = e^{ -\frac{1}{2}\left|\frac{n}{\sigma}\right|^{2p} }
|
1413 |
+
|
1414 |
+
the half-power point is at
|
1415 |
+
|
1416 |
+
.. math:: (2 \log(2))^{1/(2 p)} \sigma
|
1417 |
+
|
1418 |
+
Examples
|
1419 |
+
--------
|
1420 |
+
Plot the window and its frequency response:
|
1421 |
+
|
1422 |
+
>>> import numpy as np
|
1423 |
+
>>> from scipy import signal
|
1424 |
+
>>> from scipy.fft import fft, fftshift
|
1425 |
+
>>> import matplotlib.pyplot as plt
|
1426 |
+
|
1427 |
+
>>> window = signal.windows.general_gaussian(51, p=1.5, sig=7)
|
1428 |
+
>>> plt.plot(window)
|
1429 |
+
>>> plt.title(r"Generalized Gaussian window (p=1.5, $\sigma$=7)")
|
1430 |
+
>>> plt.ylabel("Amplitude")
|
1431 |
+
>>> plt.xlabel("Sample")
|
1432 |
+
|
1433 |
+
>>> plt.figure()
|
1434 |
+
>>> A = fft(window, 2048) / (len(window)/2.0)
|
1435 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
1436 |
+
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
1437 |
+
>>> plt.plot(freq, response)
|
1438 |
+
>>> plt.axis([-0.5, 0.5, -120, 0])
|
1439 |
+
>>> plt.title(r"Freq. resp. of the gen. Gaussian "
|
1440 |
+
... r"window (p=1.5, $\sigma$=7)")
|
1441 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
1442 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
1443 |
+
|
1444 |
+
"""
|
1445 |
+
if _len_guards(M):
|
1446 |
+
return np.ones(M)
|
1447 |
+
M, needs_trunc = _extend(M, sym)
|
1448 |
+
|
1449 |
+
n = np.arange(0, M) - (M - 1.0) / 2.0
|
1450 |
+
w = np.exp(-0.5 * np.abs(n / sig) ** (2 * p))
|
1451 |
+
|
1452 |
+
return _truncate(w, needs_trunc)
|
1453 |
+
|
1454 |
+
|
1455 |
+
# `chebwin` contributed by Kumar Appaiah.
|
1456 |
+
def chebwin(M, at, sym=True):
|
1457 |
+
r"""Return a Dolph-Chebyshev window.
|
1458 |
+
|
1459 |
+
Parameters
|
1460 |
+
----------
|
1461 |
+
M : int
|
1462 |
+
Number of points in the output window. If zero, an empty array
|
1463 |
+
is returned. An exception is thrown when it is negative.
|
1464 |
+
at : float
|
1465 |
+
Attenuation (in dB).
|
1466 |
+
sym : bool, optional
|
1467 |
+
When True (default), generates a symmetric window, for use in filter
|
1468 |
+
design.
|
1469 |
+
When False, generates a periodic window, for use in spectral analysis.
|
1470 |
+
|
1471 |
+
Returns
|
1472 |
+
-------
|
1473 |
+
w : ndarray
|
1474 |
+
The window, with the maximum value always normalized to 1
|
1475 |
+
|
1476 |
+
Notes
|
1477 |
+
-----
|
1478 |
+
This window optimizes for the narrowest main lobe width for a given order
|
1479 |
+
`M` and sidelobe equiripple attenuation `at`, using Chebyshev
|
1480 |
+
polynomials. It was originally developed by Dolph to optimize the
|
1481 |
+
directionality of radio antenna arrays.
|
1482 |
+
|
1483 |
+
Unlike most windows, the Dolph-Chebyshev is defined in terms of its
|
1484 |
+
frequency response:
|
1485 |
+
|
1486 |
+
.. math:: W(k) = \frac
|
1487 |
+
{\cos\{M \cos^{-1}[\beta \cos(\frac{\pi k}{M})]\}}
|
1488 |
+
{\cosh[M \cosh^{-1}(\beta)]}
|
1489 |
+
|
1490 |
+
where
|
1491 |
+
|
1492 |
+
.. math:: \beta = \cosh \left [\frac{1}{M}
|
1493 |
+
\cosh^{-1}(10^\frac{A}{20}) \right ]
|
1494 |
+
|
1495 |
+
and 0 <= abs(k) <= M-1. A is the attenuation in decibels (`at`).
|
1496 |
+
|
1497 |
+
The time domain window is then generated using the IFFT, so
|
1498 |
+
power-of-two `M` are the fastest to generate, and prime number `M` are
|
1499 |
+
the slowest.
|
1500 |
+
|
1501 |
+
The equiripple condition in the frequency domain creates impulses in the
|
1502 |
+
time domain, which appear at the ends of the window.
|
1503 |
+
|
1504 |
+
References
|
1505 |
+
----------
|
1506 |
+
.. [1] C. Dolph, "A current distribution for broadside arrays which
|
1507 |
+
optimizes the relationship between beam width and side-lobe level",
|
1508 |
+
Proceedings of the IEEE, Vol. 34, Issue 6
|
1509 |
+
.. [2] Peter Lynch, "The Dolph-Chebyshev Window: A Simple Optimal Filter",
|
1510 |
+
American Meteorological Society (April 1997)
|
1511 |
+
http://mathsci.ucd.ie/~plynch/Publications/Dolph.pdf
|
1512 |
+
.. [3] F. J. Harris, "On the use of windows for harmonic analysis with the
|
1513 |
+
discrete Fourier transforms", Proceedings of the IEEE, Vol. 66,
|
1514 |
+
No. 1, January 1978
|
1515 |
+
|
1516 |
+
Examples
|
1517 |
+
--------
|
1518 |
+
Plot the window and its frequency response:
|
1519 |
+
|
1520 |
+
>>> import numpy as np
|
1521 |
+
>>> from scipy import signal
|
1522 |
+
>>> from scipy.fft import fft, fftshift
|
1523 |
+
>>> import matplotlib.pyplot as plt
|
1524 |
+
|
1525 |
+
>>> window = signal.windows.chebwin(51, at=100)
|
1526 |
+
>>> plt.plot(window)
|
1527 |
+
>>> plt.title("Dolph-Chebyshev window (100 dB)")
|
1528 |
+
>>> plt.ylabel("Amplitude")
|
1529 |
+
>>> plt.xlabel("Sample")
|
1530 |
+
|
1531 |
+
>>> plt.figure()
|
1532 |
+
>>> A = fft(window, 2048) / (len(window)/2.0)
|
1533 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
1534 |
+
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
1535 |
+
>>> plt.plot(freq, response)
|
1536 |
+
>>> plt.axis([-0.5, 0.5, -120, 0])
|
1537 |
+
>>> plt.title("Frequency response of the Dolph-Chebyshev window (100 dB)")
|
1538 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
1539 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
1540 |
+
|
1541 |
+
"""
|
1542 |
+
if np.abs(at) < 45:
|
1543 |
+
warnings.warn("This window is not suitable for spectral analysis "
|
1544 |
+
"for attenuation values lower than about 45dB because "
|
1545 |
+
"the equivalent noise bandwidth of a Chebyshev window "
|
1546 |
+
"does not grow monotonically with increasing sidelobe "
|
1547 |
+
"attenuation when the attenuation is smaller than "
|
1548 |
+
"about 45 dB.",
|
1549 |
+
stacklevel=2)
|
1550 |
+
if _len_guards(M):
|
1551 |
+
return np.ones(M)
|
1552 |
+
M, needs_trunc = _extend(M, sym)
|
1553 |
+
|
1554 |
+
# compute the parameter beta
|
1555 |
+
order = M - 1.0
|
1556 |
+
beta = np.cosh(1.0 / order * np.arccosh(10 ** (np.abs(at) / 20.)))
|
1557 |
+
k = np.r_[0:M] * 1.0
|
1558 |
+
x = beta * np.cos(np.pi * k / M)
|
1559 |
+
# Find the window's DFT coefficients
|
1560 |
+
# Use analytic definition of Chebyshev polynomial instead of expansion
|
1561 |
+
# from scipy.special. Using the expansion in scipy.special leads to errors.
|
1562 |
+
p = np.zeros(x.shape)
|
1563 |
+
p[x > 1] = np.cosh(order * np.arccosh(x[x > 1]))
|
1564 |
+
p[x < -1] = (2 * (M % 2) - 1) * np.cosh(order * np.arccosh(-x[x < -1]))
|
1565 |
+
p[np.abs(x) <= 1] = np.cos(order * np.arccos(x[np.abs(x) <= 1]))
|
1566 |
+
|
1567 |
+
# Appropriate IDFT and filling up
|
1568 |
+
# depending on even/odd M
|
1569 |
+
if M % 2:
|
1570 |
+
w = np.real(sp_fft.fft(p))
|
1571 |
+
n = (M + 1) // 2
|
1572 |
+
w = w[:n]
|
1573 |
+
w = np.concatenate((w[n - 1:0:-1], w))
|
1574 |
+
else:
|
1575 |
+
p = p * np.exp(1.j * np.pi / M * np.r_[0:M])
|
1576 |
+
w = np.real(sp_fft.fft(p))
|
1577 |
+
n = M // 2 + 1
|
1578 |
+
w = np.concatenate((w[n - 1:0:-1], w[1:n]))
|
1579 |
+
w = w / max(w)
|
1580 |
+
|
1581 |
+
return _truncate(w, needs_trunc)
|
1582 |
+
|
1583 |
+
|
1584 |
+
def cosine(M, sym=True):
|
1585 |
+
"""Return a window with a simple cosine shape.
|
1586 |
+
|
1587 |
+
Parameters
|
1588 |
+
----------
|
1589 |
+
M : int
|
1590 |
+
Number of points in the output window. If zero, an empty array
|
1591 |
+
is returned. An exception is thrown when it is negative.
|
1592 |
+
sym : bool, optional
|
1593 |
+
When True (default), generates a symmetric window, for use in filter
|
1594 |
+
design.
|
1595 |
+
When False, generates a periodic window, for use in spectral analysis.
|
1596 |
+
|
1597 |
+
Returns
|
1598 |
+
-------
|
1599 |
+
w : ndarray
|
1600 |
+
The window, with the maximum value normalized to 1 (though the value 1
|
1601 |
+
does not appear if `M` is even and `sym` is True).
|
1602 |
+
|
1603 |
+
Notes
|
1604 |
+
-----
|
1605 |
+
|
1606 |
+
.. versionadded:: 0.13.0
|
1607 |
+
|
1608 |
+
Examples
|
1609 |
+
--------
|
1610 |
+
Plot the window and its frequency response:
|
1611 |
+
|
1612 |
+
>>> import numpy as np
|
1613 |
+
>>> from scipy import signal
|
1614 |
+
>>> from scipy.fft import fft, fftshift
|
1615 |
+
>>> import matplotlib.pyplot as plt
|
1616 |
+
|
1617 |
+
>>> window = signal.windows.cosine(51)
|
1618 |
+
>>> plt.plot(window)
|
1619 |
+
>>> plt.title("Cosine window")
|
1620 |
+
>>> plt.ylabel("Amplitude")
|
1621 |
+
>>> plt.xlabel("Sample")
|
1622 |
+
|
1623 |
+
>>> plt.figure()
|
1624 |
+
>>> A = fft(window, 2047) / (len(window)/2.0)
|
1625 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
1626 |
+
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
1627 |
+
>>> plt.plot(freq, response)
|
1628 |
+
>>> plt.axis([-0.5, 0.5, -120, 0])
|
1629 |
+
>>> plt.title("Frequency response of the cosine window")
|
1630 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
1631 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
1632 |
+
>>> plt.show()
|
1633 |
+
|
1634 |
+
"""
|
1635 |
+
if _len_guards(M):
|
1636 |
+
return np.ones(M)
|
1637 |
+
M, needs_trunc = _extend(M, sym)
|
1638 |
+
|
1639 |
+
w = np.sin(np.pi / M * (np.arange(0, M) + .5))
|
1640 |
+
|
1641 |
+
return _truncate(w, needs_trunc)
|
1642 |
+
|
1643 |
+
|
1644 |
+
def exponential(M, center=None, tau=1., sym=True):
|
1645 |
+
r"""Return an exponential (or Poisson) window.
|
1646 |
+
|
1647 |
+
Parameters
|
1648 |
+
----------
|
1649 |
+
M : int
|
1650 |
+
Number of points in the output window. If zero, an empty array
|
1651 |
+
is returned. An exception is thrown when it is negative.
|
1652 |
+
center : float, optional
|
1653 |
+
Parameter defining the center location of the window function.
|
1654 |
+
The default value if not given is ``center = (M-1) / 2``. This
|
1655 |
+
parameter must take its default value for symmetric windows.
|
1656 |
+
tau : float, optional
|
1657 |
+
Parameter defining the decay. For ``center = 0`` use
|
1658 |
+
``tau = -(M-1) / ln(x)`` if ``x`` is the fraction of the window
|
1659 |
+
remaining at the end.
|
1660 |
+
sym : bool, optional
|
1661 |
+
When True (default), generates a symmetric window, for use in filter
|
1662 |
+
design.
|
1663 |
+
When False, generates a periodic window, for use in spectral analysis.
|
1664 |
+
|
1665 |
+
Returns
|
1666 |
+
-------
|
1667 |
+
w : ndarray
|
1668 |
+
The window, with the maximum value normalized to 1 (though the value 1
|
1669 |
+
does not appear if `M` is even and `sym` is True).
|
1670 |
+
|
1671 |
+
Notes
|
1672 |
+
-----
|
1673 |
+
The Exponential window is defined as
|
1674 |
+
|
1675 |
+
.. math:: w(n) = e^{-|n-center| / \tau}
|
1676 |
+
|
1677 |
+
References
|
1678 |
+
----------
|
1679 |
+
.. [1] S. Gade and H. Herlufsen, "Windows to FFT analysis (Part I)",
|
1680 |
+
Technical Review 3, Bruel & Kjaer, 1987.
|
1681 |
+
|
1682 |
+
Examples
|
1683 |
+
--------
|
1684 |
+
Plot the symmetric window and its frequency response:
|
1685 |
+
|
1686 |
+
>>> import numpy as np
|
1687 |
+
>>> from scipy import signal
|
1688 |
+
>>> from scipy.fft import fft, fftshift
|
1689 |
+
>>> import matplotlib.pyplot as plt
|
1690 |
+
|
1691 |
+
>>> M = 51
|
1692 |
+
>>> tau = 3.0
|
1693 |
+
>>> window = signal.windows.exponential(M, tau=tau)
|
1694 |
+
>>> plt.plot(window)
|
1695 |
+
>>> plt.title("Exponential Window (tau=3.0)")
|
1696 |
+
>>> plt.ylabel("Amplitude")
|
1697 |
+
>>> plt.xlabel("Sample")
|
1698 |
+
|
1699 |
+
>>> plt.figure()
|
1700 |
+
>>> A = fft(window, 2048) / (len(window)/2.0)
|
1701 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
1702 |
+
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
1703 |
+
>>> plt.plot(freq, response)
|
1704 |
+
>>> plt.axis([-0.5, 0.5, -35, 0])
|
1705 |
+
>>> plt.title("Frequency response of the Exponential window (tau=3.0)")
|
1706 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
1707 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
1708 |
+
|
1709 |
+
This function can also generate non-symmetric windows:
|
1710 |
+
|
1711 |
+
>>> tau2 = -(M-1) / np.log(0.01)
|
1712 |
+
>>> window2 = signal.windows.exponential(M, 0, tau2, False)
|
1713 |
+
>>> plt.figure()
|
1714 |
+
>>> plt.plot(window2)
|
1715 |
+
>>> plt.ylabel("Amplitude")
|
1716 |
+
>>> plt.xlabel("Sample")
|
1717 |
+
"""
|
1718 |
+
if sym and center is not None:
|
1719 |
+
raise ValueError("If sym==True, center must be None.")
|
1720 |
+
if _len_guards(M):
|
1721 |
+
return np.ones(M)
|
1722 |
+
M, needs_trunc = _extend(M, sym)
|
1723 |
+
|
1724 |
+
if center is None:
|
1725 |
+
center = (M-1) / 2
|
1726 |
+
|
1727 |
+
n = np.arange(0, M)
|
1728 |
+
w = np.exp(-np.abs(n-center) / tau)
|
1729 |
+
|
1730 |
+
return _truncate(w, needs_trunc)
|
1731 |
+
|
1732 |
+
|
1733 |
+
def taylor(M, nbar=4, sll=30, norm=True, sym=True):
|
1734 |
+
"""
|
1735 |
+
Return a Taylor window.
|
1736 |
+
|
1737 |
+
The Taylor window taper function approximates the Dolph-Chebyshev window's
|
1738 |
+
constant sidelobe level for a parameterized number of near-in sidelobes,
|
1739 |
+
but then allows a taper beyond [2]_.
|
1740 |
+
|
1741 |
+
The SAR (synthetic aperture radar) community commonly uses Taylor
|
1742 |
+
weighting for image formation processing because it provides strong,
|
1743 |
+
selectable sidelobe suppression with minimum broadening of the
|
1744 |
+
mainlobe [1]_.
|
1745 |
+
|
1746 |
+
Parameters
|
1747 |
+
----------
|
1748 |
+
M : int
|
1749 |
+
Number of points in the output window. If zero, an empty array
|
1750 |
+
is returned. An exception is thrown when it is negative.
|
1751 |
+
nbar : int, optional
|
1752 |
+
Number of nearly constant level sidelobes adjacent to the mainlobe.
|
1753 |
+
sll : float, optional
|
1754 |
+
Desired suppression of sidelobe level in decibels (dB) relative to the
|
1755 |
+
DC gain of the mainlobe. This should be a positive number.
|
1756 |
+
norm : bool, optional
|
1757 |
+
When True (default), divides the window by the largest (middle) value
|
1758 |
+
for odd-length windows or the value that would occur between the two
|
1759 |
+
repeated middle values for even-length windows such that all values
|
1760 |
+
are less than or equal to 1. When False the DC gain will remain at 1
|
1761 |
+
(0 dB) and the sidelobes will be `sll` dB down.
|
1762 |
+
sym : bool, optional
|
1763 |
+
When True (default), generates a symmetric window, for use in filter
|
1764 |
+
design.
|
1765 |
+
When False, generates a periodic window, for use in spectral analysis.
|
1766 |
+
|
1767 |
+
Returns
|
1768 |
+
-------
|
1769 |
+
out : array
|
1770 |
+
The window. When `norm` is True (default), the maximum value is
|
1771 |
+
normalized to 1 (though the value 1 does not appear if `M` is
|
1772 |
+
even and `sym` is True).
|
1773 |
+
|
1774 |
+
See Also
|
1775 |
+
--------
|
1776 |
+
chebwin, kaiser, bartlett, blackman, hamming, hann
|
1777 |
+
|
1778 |
+
References
|
1779 |
+
----------
|
1780 |
+
.. [1] W. Carrara, R. Goodman, and R. Majewski, "Spotlight Synthetic
|
1781 |
+
Aperture Radar: Signal Processing Algorithms" Pages 512-513,
|
1782 |
+
July 1995.
|
1783 |
+
.. [2] Armin Doerry, "Catalog of Window Taper Functions for
|
1784 |
+
Sidelobe Control", 2017.
|
1785 |
+
https://www.researchgate.net/profile/Armin_Doerry/publication/316281181_Catalog_of_Window_Taper_Functions_for_Sidelobe_Control/links/58f92cb2a6fdccb121c9d54d/Catalog-of-Window-Taper-Functions-for-Sidelobe-Control.pdf
|
1786 |
+
|
1787 |
+
Examples
|
1788 |
+
--------
|
1789 |
+
Plot the window and its frequency response:
|
1790 |
+
|
1791 |
+
>>> import numpy as np
|
1792 |
+
>>> from scipy import signal
|
1793 |
+
>>> from scipy.fft import fft, fftshift
|
1794 |
+
>>> import matplotlib.pyplot as plt
|
1795 |
+
|
1796 |
+
>>> window = signal.windows.taylor(51, nbar=20, sll=100, norm=False)
|
1797 |
+
>>> plt.plot(window)
|
1798 |
+
>>> plt.title("Taylor window (100 dB)")
|
1799 |
+
>>> plt.ylabel("Amplitude")
|
1800 |
+
>>> plt.xlabel("Sample")
|
1801 |
+
|
1802 |
+
>>> plt.figure()
|
1803 |
+
>>> A = fft(window, 2048) / (len(window)/2.0)
|
1804 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
1805 |
+
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
1806 |
+
>>> plt.plot(freq, response)
|
1807 |
+
>>> plt.axis([-0.5, 0.5, -120, 0])
|
1808 |
+
>>> plt.title("Frequency response of the Taylor window (100 dB)")
|
1809 |
+
>>> plt.ylabel("Normalized magnitude [dB]")
|
1810 |
+
>>> plt.xlabel("Normalized frequency [cycles per sample]")
|
1811 |
+
|
1812 |
+
""" # noqa: E501
|
1813 |
+
if _len_guards(M):
|
1814 |
+
return np.ones(M)
|
1815 |
+
M, needs_trunc = _extend(M, sym)
|
1816 |
+
|
1817 |
+
# Original text uses a negative sidelobe level parameter and then negates
|
1818 |
+
# it in the calculation of B. To keep consistent with other methods we
|
1819 |
+
# assume the sidelobe level parameter to be positive.
|
1820 |
+
B = 10**(sll / 20)
|
1821 |
+
A = np.arccosh(B) / np.pi
|
1822 |
+
s2 = nbar**2 / (A**2 + (nbar - 0.5)**2)
|
1823 |
+
ma = np.arange(1, nbar)
|
1824 |
+
|
1825 |
+
Fm = np.empty(nbar-1)
|
1826 |
+
signs = np.empty_like(ma)
|
1827 |
+
signs[::2] = 1
|
1828 |
+
signs[1::2] = -1
|
1829 |
+
m2 = ma*ma
|
1830 |
+
for mi, m in enumerate(ma):
|
1831 |
+
numer = signs[mi] * np.prod(1 - m2[mi]/s2/(A**2 + (ma - 0.5)**2))
|
1832 |
+
denom = 2 * np.prod(1 - m2[mi]/m2[:mi]) * np.prod(1 - m2[mi]/m2[mi+1:])
|
1833 |
+
Fm[mi] = numer / denom
|
1834 |
+
|
1835 |
+
def W(n):
|
1836 |
+
return 1 + 2*np.dot(Fm, np.cos(
|
1837 |
+
2*np.pi*ma[:, np.newaxis]*(n-M/2.+0.5)/M))
|
1838 |
+
|
1839 |
+
w = W(np.arange(M))
|
1840 |
+
|
1841 |
+
# normalize (Note that this is not described in the original text [1])
|
1842 |
+
if norm:
|
1843 |
+
scale = 1.0 / W((M - 1) / 2)
|
1844 |
+
w *= scale
|
1845 |
+
|
1846 |
+
return _truncate(w, needs_trunc)
|
1847 |
+
|
1848 |
+
|
1849 |
+
def dpss(M, NW, Kmax=None, sym=True, norm=None, return_ratios=False):
|
1850 |
+
"""
|
1851 |
+
Compute the Discrete Prolate Spheroidal Sequences (DPSS).
|
1852 |
+
|
1853 |
+
DPSS (or Slepian sequences) are often used in multitaper power spectral
|
1854 |
+
density estimation (see [1]_). The first window in the sequence can be
|
1855 |
+
used to maximize the energy concentration in the main lobe, and is also
|
1856 |
+
called the Slepian window.
|
1857 |
+
|
1858 |
+
Parameters
|
1859 |
+
----------
|
1860 |
+
M : int
|
1861 |
+
Window length.
|
1862 |
+
NW : float
|
1863 |
+
Standardized half bandwidth corresponding to ``2*NW = BW/f0 = BW*M*dt``
|
1864 |
+
where ``dt`` is taken as 1.
|
1865 |
+
Kmax : int | None, optional
|
1866 |
+
Number of DPSS windows to return (orders ``0`` through ``Kmax-1``).
|
1867 |
+
If None (default), return only a single window of shape ``(M,)``
|
1868 |
+
instead of an array of windows of shape ``(Kmax, M)``.
|
1869 |
+
sym : bool, optional
|
1870 |
+
When True (default), generates a symmetric window, for use in filter
|
1871 |
+
design.
|
1872 |
+
When False, generates a periodic window, for use in spectral analysis.
|
1873 |
+
norm : {2, 'approximate', 'subsample'} | None, optional
|
1874 |
+
If 'approximate' or 'subsample', then the windows are normalized by the
|
1875 |
+
maximum, and a correction scale-factor for even-length windows
|
1876 |
+
is applied either using ``M**2/(M**2+NW)`` ("approximate") or
|
1877 |
+
a FFT-based subsample shift ("subsample"), see Notes for details.
|
1878 |
+
If None, then "approximate" is used when ``Kmax=None`` and 2 otherwise
|
1879 |
+
(which uses the l2 norm).
|
1880 |
+
return_ratios : bool, optional
|
1881 |
+
If True, also return the concentration ratios in addition to the
|
1882 |
+
windows.
|
1883 |
+
|
1884 |
+
Returns
|
1885 |
+
-------
|
1886 |
+
v : ndarray, shape (Kmax, M) or (M,)
|
1887 |
+
The DPSS windows. Will be 1D if `Kmax` is None.
|
1888 |
+
r : ndarray, shape (Kmax,) or float, optional
|
1889 |
+
The concentration ratios for the windows. Only returned if
|
1890 |
+
`return_ratios` evaluates to True. Will be 0D if `Kmax` is None.
|
1891 |
+
|
1892 |
+
Notes
|
1893 |
+
-----
|
1894 |
+
This computation uses the tridiagonal eigenvector formulation given
|
1895 |
+
in [2]_.
|
1896 |
+
|
1897 |
+
The default normalization for ``Kmax=None``, i.e. window-generation mode,
|
1898 |
+
simply using the l-infinity norm would create a window with two unity
|
1899 |
+
values, which creates slight normalization differences between even and odd
|
1900 |
+
orders. The approximate correction of ``M**2/float(M**2+NW)`` for even
|
1901 |
+
sample numbers is used to counteract this effect (see Examples below).
|
1902 |
+
|
1903 |
+
For very long signals (e.g., 1e6 elements), it can be useful to compute
|
1904 |
+
windows orders of magnitude shorter and use interpolation (e.g.,
|
1905 |
+
`scipy.interpolate.interp1d`) to obtain tapers of length `M`,
|
1906 |
+
but this in general will not preserve orthogonality between the tapers.
|
1907 |
+
|
1908 |
+
.. versionadded:: 1.1
|
1909 |
+
|
1910 |
+
References
|
1911 |
+
----------
|
1912 |
+
.. [1] Percival DB, Walden WT. Spectral Analysis for Physical Applications:
|
1913 |
+
Multitaper and Conventional Univariate Techniques.
|
1914 |
+
Cambridge University Press; 1993.
|
1915 |
+
.. [2] Slepian, D. Prolate spheroidal wave functions, Fourier analysis, and
|
1916 |
+
uncertainty V: The discrete case. Bell System Technical Journal,
|
1917 |
+
Volume 57 (1978), 1371430.
|
1918 |
+
.. [3] Kaiser, JF, Schafer RW. On the Use of the I0-Sinh Window for
|
1919 |
+
Spectrum Analysis. IEEE Transactions on Acoustics, Speech and
|
1920 |
+
Signal Processing. ASSP-28 (1): 105-107; 1980.
|
1921 |
+
|
1922 |
+
Examples
|
1923 |
+
--------
|
1924 |
+
We can compare the window to `kaiser`, which was invented as an alternative
|
1925 |
+
that was easier to calculate [3]_ (example adapted from
|
1926 |
+
`here <https://ccrma.stanford.edu/~jos/sasp/Kaiser_DPSS_Windows_Compared.html>`_):
|
1927 |
+
|
1928 |
+
>>> import numpy as np
|
1929 |
+
>>> import matplotlib.pyplot as plt
|
1930 |
+
>>> from scipy.signal import windows, freqz
|
1931 |
+
>>> M = 51
|
1932 |
+
>>> fig, axes = plt.subplots(3, 2, figsize=(5, 7))
|
1933 |
+
>>> for ai, alpha in enumerate((1, 3, 5)):
|
1934 |
+
... win_dpss = windows.dpss(M, alpha)
|
1935 |
+
... beta = alpha*np.pi
|
1936 |
+
... win_kaiser = windows.kaiser(M, beta)
|
1937 |
+
... for win, c in ((win_dpss, 'k'), (win_kaiser, 'r')):
|
1938 |
+
... win /= win.sum()
|
1939 |
+
... axes[ai, 0].plot(win, color=c, lw=1.)
|
1940 |
+
... axes[ai, 0].set(xlim=[0, M-1], title=r'$\\alpha$ = %s' % alpha,
|
1941 |
+
... ylabel='Amplitude')
|
1942 |
+
... w, h = freqz(win)
|
1943 |
+
... axes[ai, 1].plot(w, 20 * np.log10(np.abs(h)), color=c, lw=1.)
|
1944 |
+
... axes[ai, 1].set(xlim=[0, np.pi],
|
1945 |
+
... title=r'$\\beta$ = %0.2f' % beta,
|
1946 |
+
... ylabel='Magnitude (dB)')
|
1947 |
+
>>> for ax in axes.ravel():
|
1948 |
+
... ax.grid(True)
|
1949 |
+
>>> axes[2, 1].legend(['DPSS', 'Kaiser'])
|
1950 |
+
>>> fig.tight_layout()
|
1951 |
+
>>> plt.show()
|
1952 |
+
|
1953 |
+
And here are examples of the first four windows, along with their
|
1954 |
+
concentration ratios:
|
1955 |
+
|
1956 |
+
>>> M = 512
|
1957 |
+
>>> NW = 2.5
|
1958 |
+
>>> win, eigvals = windows.dpss(M, NW, 4, return_ratios=True)
|
1959 |
+
>>> fig, ax = plt.subplots(1)
|
1960 |
+
>>> ax.plot(win.T, linewidth=1.)
|
1961 |
+
>>> ax.set(xlim=[0, M-1], ylim=[-0.1, 0.1], xlabel='Samples',
|
1962 |
+
... title='DPSS, M=%d, NW=%0.1f' % (M, NW))
|
1963 |
+
>>> ax.legend(['win[%d] (%0.4f)' % (ii, ratio)
|
1964 |
+
... for ii, ratio in enumerate(eigvals)])
|
1965 |
+
>>> fig.tight_layout()
|
1966 |
+
>>> plt.show()
|
1967 |
+
|
1968 |
+
Using a standard :math:`l_{\\infty}` norm would produce two unity values
|
1969 |
+
for even `M`, but only one unity value for odd `M`. This produces uneven
|
1970 |
+
window power that can be counteracted by the approximate correction
|
1971 |
+
``M**2/float(M**2+NW)``, which can be selected by using
|
1972 |
+
``norm='approximate'`` (which is the same as ``norm=None`` when
|
1973 |
+
``Kmax=None``, as is the case here). Alternatively, the slower
|
1974 |
+
``norm='subsample'`` can be used, which uses subsample shifting in the
|
1975 |
+
frequency domain (FFT) to compute the correction:
|
1976 |
+
|
1977 |
+
>>> Ms = np.arange(1, 41)
|
1978 |
+
>>> factors = (50, 20, 10, 5, 2.0001)
|
1979 |
+
>>> energy = np.empty((3, len(Ms), len(factors)))
|
1980 |
+
>>> for mi, M in enumerate(Ms):
|
1981 |
+
... for fi, factor in enumerate(factors):
|
1982 |
+
... NW = M / float(factor)
|
1983 |
+
... # Corrected using empirical approximation (default)
|
1984 |
+
... win = windows.dpss(M, NW)
|
1985 |
+
... energy[0, mi, fi] = np.sum(win ** 2) / np.sqrt(M)
|
1986 |
+
... # Corrected using subsample shifting
|
1987 |
+
... win = windows.dpss(M, NW, norm='subsample')
|
1988 |
+
... energy[1, mi, fi] = np.sum(win ** 2) / np.sqrt(M)
|
1989 |
+
... # Uncorrected (using l-infinity norm)
|
1990 |
+
... win /= win.max()
|
1991 |
+
... energy[2, mi, fi] = np.sum(win ** 2) / np.sqrt(M)
|
1992 |
+
>>> fig, ax = plt.subplots(1)
|
1993 |
+
>>> hs = ax.plot(Ms, energy[2], '-o', markersize=4,
|
1994 |
+
... markeredgecolor='none')
|
1995 |
+
>>> leg = [hs[-1]]
|
1996 |
+
>>> for hi, hh in enumerate(hs):
|
1997 |
+
... h1 = ax.plot(Ms, energy[0, :, hi], '-o', markersize=4,
|
1998 |
+
... color=hh.get_color(), markeredgecolor='none',
|
1999 |
+
... alpha=0.66)
|
2000 |
+
... h2 = ax.plot(Ms, energy[1, :, hi], '-o', markersize=4,
|
2001 |
+
... color=hh.get_color(), markeredgecolor='none',
|
2002 |
+
... alpha=0.33)
|
2003 |
+
... if hi == len(hs) - 1:
|
2004 |
+
... leg.insert(0, h1[0])
|
2005 |
+
... leg.insert(0, h2[0])
|
2006 |
+
>>> ax.set(xlabel='M (samples)', ylabel=r'Power / $\\sqrt{M}$')
|
2007 |
+
>>> ax.legend(leg, ['Uncorrected', r'Corrected: $\\frac{M^2}{M^2+NW}$',
|
2008 |
+
... 'Corrected (subsample)'])
|
2009 |
+
>>> fig.tight_layout()
|
2010 |
+
|
2011 |
+
"""
|
2012 |
+
if _len_guards(M):
|
2013 |
+
return np.ones(M)
|
2014 |
+
if norm is None:
|
2015 |
+
norm = 'approximate' if Kmax is None else 2
|
2016 |
+
known_norms = (2, 'approximate', 'subsample')
|
2017 |
+
if norm not in known_norms:
|
2018 |
+
raise ValueError(f'norm must be one of {known_norms}, got {norm}')
|
2019 |
+
if Kmax is None:
|
2020 |
+
singleton = True
|
2021 |
+
Kmax = 1
|
2022 |
+
else:
|
2023 |
+
singleton = False
|
2024 |
+
Kmax = operator.index(Kmax)
|
2025 |
+
if not 0 < Kmax <= M:
|
2026 |
+
raise ValueError('Kmax must be greater than 0 and less than M')
|
2027 |
+
if NW >= M/2.:
|
2028 |
+
raise ValueError('NW must be less than M/2.')
|
2029 |
+
if NW <= 0:
|
2030 |
+
raise ValueError('NW must be positive')
|
2031 |
+
M, needs_trunc = _extend(M, sym)
|
2032 |
+
W = float(NW) / M
|
2033 |
+
nidx = np.arange(M)
|
2034 |
+
|
2035 |
+
# Here we want to set up an optimization problem to find a sequence
|
2036 |
+
# whose energy is maximally concentrated within band [-W,W].
|
2037 |
+
# Thus, the measure lambda(T,W) is the ratio between the energy within
|
2038 |
+
# that band, and the total energy. This leads to the eigen-system
|
2039 |
+
# (A - (l1)I)v = 0, where the eigenvector corresponding to the largest
|
2040 |
+
# eigenvalue is the sequence with maximally concentrated energy. The
|
2041 |
+
# collection of eigenvectors of this system are called Slepian
|
2042 |
+
# sequences, or discrete prolate spheroidal sequences (DPSS). Only the
|
2043 |
+
# first K, K = 2NW/dt orders of DPSS will exhibit good spectral
|
2044 |
+
# concentration
|
2045 |
+
# [see https://en.wikipedia.org/wiki/Spectral_concentration_problem]
|
2046 |
+
|
2047 |
+
# Here we set up an alternative symmetric tri-diagonal eigenvalue
|
2048 |
+
# problem such that
|
2049 |
+
# (B - (l2)I)v = 0, and v are our DPSS (but eigenvalues l2 != l1)
|
2050 |
+
# the main diagonal = ([M-1-2*t]/2)**2 cos(2PIW), t=[0,1,2,...,M-1]
|
2051 |
+
# and the first off-diagonal = t(M-t)/2, t=[1,2,...,M-1]
|
2052 |
+
# [see Percival and Walden, 1993]
|
2053 |
+
d = ((M - 1 - 2 * nidx) / 2.) ** 2 * np.cos(2 * np.pi * W)
|
2054 |
+
e = nidx[1:] * (M - nidx[1:]) / 2.
|
2055 |
+
|
2056 |
+
# only calculate the highest Kmax eigenvalues
|
2057 |
+
w, windows = linalg.eigh_tridiagonal(
|
2058 |
+
d, e, select='i', select_range=(M - Kmax, M - 1))
|
2059 |
+
w = w[::-1]
|
2060 |
+
windows = windows[:, ::-1].T
|
2061 |
+
|
2062 |
+
# By convention (Percival and Walden, 1993 pg 379)
|
2063 |
+
# * symmetric tapers (k=0,2,4,...) should have a positive average.
|
2064 |
+
fix_even = (windows[::2].sum(axis=1) < 0)
|
2065 |
+
for i, f in enumerate(fix_even):
|
2066 |
+
if f:
|
2067 |
+
windows[2 * i] *= -1
|
2068 |
+
# * antisymmetric tapers should begin with a positive lobe
|
2069 |
+
# (this depends on the definition of "lobe", here we'll take the first
|
2070 |
+
# point above the numerical noise, which should be good enough for
|
2071 |
+
# sufficiently smooth functions, and more robust than relying on an
|
2072 |
+
# algorithm that uses max(abs(w)), which is susceptible to numerical
|
2073 |
+
# noise problems)
|
2074 |
+
thresh = max(1e-7, 1. / M)
|
2075 |
+
for i, w in enumerate(windows[1::2]):
|
2076 |
+
if w[w * w > thresh][0] < 0:
|
2077 |
+
windows[2 * i + 1] *= -1
|
2078 |
+
|
2079 |
+
# Now find the eigenvalues of the original spectral concentration problem
|
2080 |
+
# Use the autocorr sequence technique from Percival and Walden, 1993 pg 390
|
2081 |
+
if return_ratios:
|
2082 |
+
dpss_rxx = _fftautocorr(windows)
|
2083 |
+
r = 4 * W * np.sinc(2 * W * nidx)
|
2084 |
+
r[0] = 2 * W
|
2085 |
+
ratios = np.dot(dpss_rxx, r)
|
2086 |
+
if singleton:
|
2087 |
+
ratios = ratios[0]
|
2088 |
+
# Deal with sym and Kmax=None
|
2089 |
+
if norm != 2:
|
2090 |
+
windows /= windows.max()
|
2091 |
+
if M % 2 == 0:
|
2092 |
+
if norm == 'approximate':
|
2093 |
+
correction = M**2 / float(M**2 + NW)
|
2094 |
+
else:
|
2095 |
+
s = sp_fft.rfft(windows[0])
|
2096 |
+
shift = -(1 - 1./M) * np.arange(1, M//2 + 1)
|
2097 |
+
s[1:] *= 2 * np.exp(-1j * np.pi * shift)
|
2098 |
+
correction = M / s.real.sum()
|
2099 |
+
windows *= correction
|
2100 |
+
# else we're already l2 normed, so do nothing
|
2101 |
+
if needs_trunc:
|
2102 |
+
windows = windows[:, :-1]
|
2103 |
+
if singleton:
|
2104 |
+
windows = windows[0]
|
2105 |
+
return (windows, ratios) if return_ratios else windows
|
2106 |
+
|
2107 |
+
|
2108 |
+
def lanczos(M, *, sym=True):
|
2109 |
+
r"""Return a Lanczos window also known as a sinc window.
|
2110 |
+
|
2111 |
+
Parameters
|
2112 |
+
----------
|
2113 |
+
M : int
|
2114 |
+
Number of points in the output window. If zero, an empty array
|
2115 |
+
is returned. An exception is thrown when it is negative.
|
2116 |
+
sym : bool, optional
|
2117 |
+
When True (default), generates a symmetric window, for use in filter
|
2118 |
+
design.
|
2119 |
+
When False, generates a periodic window, for use in spectral analysis.
|
2120 |
+
|
2121 |
+
Returns
|
2122 |
+
-------
|
2123 |
+
w : ndarray
|
2124 |
+
The window, with the maximum value normalized to 1 (though the value 1
|
2125 |
+
does not appear if `M` is even and `sym` is True).
|
2126 |
+
|
2127 |
+
Notes
|
2128 |
+
-----
|
2129 |
+
The Lanczos window is defined as
|
2130 |
+
|
2131 |
+
.. math:: w(n) = sinc \left( \frac{2n}{M - 1} - 1 \right)
|
2132 |
+
|
2133 |
+
where
|
2134 |
+
|
2135 |
+
.. math:: sinc(x) = \frac{\sin(\pi x)}{\pi x}
|
2136 |
+
|
2137 |
+
The Lanczos window has reduced Gibbs oscillations and is widely used for
|
2138 |
+
filtering climate timeseries with good properties in the physical and
|
2139 |
+
spectral domains.
|
2140 |
+
|
2141 |
+
.. versionadded:: 1.10
|
2142 |
+
|
2143 |
+
References
|
2144 |
+
----------
|
2145 |
+
.. [1] Lanczos, C., and Teichmann, T. (1957). Applied analysis.
|
2146 |
+
Physics Today, 10, 44.
|
2147 |
+
.. [2] Duchon C. E. (1979) Lanczos Filtering in One and Two Dimensions.
|
2148 |
+
Journal of Applied Meteorology, Vol 18, pp 1016-1022.
|
2149 |
+
.. [3] Thomson, R. E. and Emery, W. J. (2014) Data Analysis Methods in
|
2150 |
+
Physical Oceanography (Third Edition), Elsevier, pp 593-637.
|
2151 |
+
.. [4] Wikipedia, "Window function",
|
2152 |
+
http://en.wikipedia.org/wiki/Window_function
|
2153 |
+
|
2154 |
+
Examples
|
2155 |
+
--------
|
2156 |
+
Plot the window
|
2157 |
+
|
2158 |
+
>>> import numpy as np
|
2159 |
+
>>> from scipy.signal.windows import lanczos
|
2160 |
+
>>> from scipy.fft import fft, fftshift
|
2161 |
+
>>> import matplotlib.pyplot as plt
|
2162 |
+
>>> fig, ax = plt.subplots(1)
|
2163 |
+
>>> window = lanczos(51)
|
2164 |
+
>>> ax.plot(window)
|
2165 |
+
>>> ax.set_title("Lanczos window")
|
2166 |
+
>>> ax.set_ylabel("Amplitude")
|
2167 |
+
>>> ax.set_xlabel("Sample")
|
2168 |
+
>>> fig.tight_layout()
|
2169 |
+
>>> plt.show()
|
2170 |
+
|
2171 |
+
and its frequency response:
|
2172 |
+
|
2173 |
+
>>> fig, ax = plt.subplots(1)
|
2174 |
+
>>> A = fft(window, 2048) / (len(window)/2.0)
|
2175 |
+
>>> freq = np.linspace(-0.5, 0.5, len(A))
|
2176 |
+
>>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max())))
|
2177 |
+
>>> ax.plot(freq, response)
|
2178 |
+
>>> ax.set_xlim(-0.5, 0.5)
|
2179 |
+
>>> ax.set_ylim(-120, 0)
|
2180 |
+
>>> ax.set_title("Frequency response of the lanczos window")
|
2181 |
+
>>> ax.set_ylabel("Normalized magnitude [dB]")
|
2182 |
+
>>> ax.set_xlabel("Normalized frequency [cycles per sample]")
|
2183 |
+
>>> fig.tight_layout()
|
2184 |
+
>>> plt.show()
|
2185 |
+
"""
|
2186 |
+
if _len_guards(M):
|
2187 |
+
return np.ones(M)
|
2188 |
+
M, needs_trunc = _extend(M, sym)
|
2189 |
+
|
2190 |
+
# To make sure that the window is symmetric, we concatenate the right hand
|
2191 |
+
# half of the window and the flipped one which is the left hand half of
|
2192 |
+
# the window.
|
2193 |
+
def _calc_right_side_lanczos(n, m):
|
2194 |
+
return np.sinc(2. * np.arange(n, m) / (m - 1) - 1.0)
|
2195 |
+
|
2196 |
+
if M % 2 == 0:
|
2197 |
+
wh = _calc_right_side_lanczos(M/2, M)
|
2198 |
+
w = np.r_[np.flip(wh), wh]
|
2199 |
+
else:
|
2200 |
+
wh = _calc_right_side_lanczos((M+1)/2, M)
|
2201 |
+
w = np.r_[np.flip(wh), 1.0, wh]
|
2202 |
+
|
2203 |
+
return _truncate(w, needs_trunc)
|
2204 |
+
|
2205 |
+
|
2206 |
+
def _fftautocorr(x):
|
2207 |
+
"""Compute the autocorrelation of a real array and crop the result."""
|
2208 |
+
N = x.shape[-1]
|
2209 |
+
use_N = sp_fft.next_fast_len(2*N-1)
|
2210 |
+
x_fft = sp_fft.rfft(x, use_N, axis=-1)
|
2211 |
+
cxy = sp_fft.irfft(x_fft * x_fft.conj(), n=use_N)[:, :N]
|
2212 |
+
# Or equivalently (but in most cases slower):
|
2213 |
+
# cxy = np.array([np.convolve(xx, yy[::-1], mode='full')
|
2214 |
+
# for xx, yy in zip(x, x)])[:, N-1:2*N-1]
|
2215 |
+
return cxy
|
2216 |
+
|
2217 |
+
|
2218 |
+
_win_equiv_raw = {
|
2219 |
+
('barthann', 'brthan', 'bth'): (barthann, False),
|
2220 |
+
('bartlett', 'bart', 'brt'): (bartlett, False),
|
2221 |
+
('blackman', 'black', 'blk'): (blackman, False),
|
2222 |
+
('blackmanharris', 'blackharr', 'bkh'): (blackmanharris, False),
|
2223 |
+
('bohman', 'bman', 'bmn'): (bohman, False),
|
2224 |
+
('boxcar', 'box', 'ones',
|
2225 |
+
'rect', 'rectangular'): (boxcar, False),
|
2226 |
+
('chebwin', 'cheb'): (chebwin, True),
|
2227 |
+
('cosine', 'halfcosine'): (cosine, False),
|
2228 |
+
('dpss',): (dpss, True),
|
2229 |
+
('exponential', 'poisson'): (exponential, False),
|
2230 |
+
('flattop', 'flat', 'flt'): (flattop, False),
|
2231 |
+
('gaussian', 'gauss', 'gss'): (gaussian, True),
|
2232 |
+
('general cosine', 'general_cosine'): (general_cosine, True),
|
2233 |
+
('general gaussian', 'general_gaussian',
|
2234 |
+
'general gauss', 'general_gauss', 'ggs'): (general_gaussian, True),
|
2235 |
+
('general hamming', 'general_hamming'): (general_hamming, True),
|
2236 |
+
('hamming', 'hamm', 'ham'): (hamming, False),
|
2237 |
+
('hann', 'han'): (hann, False),
|
2238 |
+
('kaiser', 'ksr'): (kaiser, True),
|
2239 |
+
('kaiser bessel derived', 'kbd'): (kaiser_bessel_derived, True),
|
2240 |
+
('lanczos', 'sinc'): (lanczos, False),
|
2241 |
+
('nuttall', 'nutl', 'nut'): (nuttall, False),
|
2242 |
+
('parzen', 'parz', 'par'): (parzen, False),
|
2243 |
+
('taylor', 'taylorwin'): (taylor, False),
|
2244 |
+
('triangle', 'triang', 'tri'): (triang, False),
|
2245 |
+
('tukey', 'tuk'): (tukey, False),
|
2246 |
+
}
|
2247 |
+
|
2248 |
+
# Fill dict with all valid window name strings
|
2249 |
+
_win_equiv = {}
|
2250 |
+
for k, v in _win_equiv_raw.items():
|
2251 |
+
for key in k:
|
2252 |
+
_win_equiv[key] = v[0]
|
2253 |
+
|
2254 |
+
# Keep track of which windows need additional parameters
|
2255 |
+
_needs_param = set()
|
2256 |
+
for k, v in _win_equiv_raw.items():
|
2257 |
+
if v[1]:
|
2258 |
+
_needs_param.update(k)
|
2259 |
+
|
2260 |
+
|
2261 |
+
def get_window(window, Nx, fftbins=True):
|
2262 |
+
"""
|
2263 |
+
Return a window of a given length and type.
|
2264 |
+
|
2265 |
+
Parameters
|
2266 |
+
----------
|
2267 |
+
window : string, float, or tuple
|
2268 |
+
The type of window to create. See below for more details.
|
2269 |
+
Nx : int
|
2270 |
+
The number of samples in the window.
|
2271 |
+
fftbins : bool, optional
|
2272 |
+
If True (default), create a "periodic" window, ready to use with
|
2273 |
+
`ifftshift` and be multiplied by the result of an FFT (see also
|
2274 |
+
:func:`~scipy.fft.fftfreq`).
|
2275 |
+
If False, create a "symmetric" window, for use in filter design.
|
2276 |
+
|
2277 |
+
Returns
|
2278 |
+
-------
|
2279 |
+
get_window : ndarray
|
2280 |
+
Returns a window of length `Nx` and type `window`
|
2281 |
+
|
2282 |
+
Notes
|
2283 |
+
-----
|
2284 |
+
Window types:
|
2285 |
+
|
2286 |
+
- `~scipy.signal.windows.boxcar`
|
2287 |
+
- `~scipy.signal.windows.triang`
|
2288 |
+
- `~scipy.signal.windows.blackman`
|
2289 |
+
- `~scipy.signal.windows.hamming`
|
2290 |
+
- `~scipy.signal.windows.hann`
|
2291 |
+
- `~scipy.signal.windows.bartlett`
|
2292 |
+
- `~scipy.signal.windows.flattop`
|
2293 |
+
- `~scipy.signal.windows.parzen`
|
2294 |
+
- `~scipy.signal.windows.bohman`
|
2295 |
+
- `~scipy.signal.windows.blackmanharris`
|
2296 |
+
- `~scipy.signal.windows.nuttall`
|
2297 |
+
- `~scipy.signal.windows.barthann`
|
2298 |
+
- `~scipy.signal.windows.cosine`
|
2299 |
+
- `~scipy.signal.windows.exponential`
|
2300 |
+
- `~scipy.signal.windows.tukey`
|
2301 |
+
- `~scipy.signal.windows.taylor`
|
2302 |
+
- `~scipy.signal.windows.lanczos`
|
2303 |
+
- `~scipy.signal.windows.kaiser` (needs beta)
|
2304 |
+
- `~scipy.signal.windows.kaiser_bessel_derived` (needs beta)
|
2305 |
+
- `~scipy.signal.windows.gaussian` (needs standard deviation)
|
2306 |
+
- `~scipy.signal.windows.general_cosine` (needs weighting coefficients)
|
2307 |
+
- `~scipy.signal.windows.general_gaussian` (needs power, width)
|
2308 |
+
- `~scipy.signal.windows.general_hamming` (needs window coefficient)
|
2309 |
+
- `~scipy.signal.windows.dpss` (needs normalized half-bandwidth)
|
2310 |
+
- `~scipy.signal.windows.chebwin` (needs attenuation)
|
2311 |
+
|
2312 |
+
|
2313 |
+
If the window requires no parameters, then `window` can be a string.
|
2314 |
+
|
2315 |
+
If the window requires parameters, then `window` must be a tuple
|
2316 |
+
with the first argument the string name of the window, and the next
|
2317 |
+
arguments the needed parameters.
|
2318 |
+
|
2319 |
+
If `window` is a floating point number, it is interpreted as the beta
|
2320 |
+
parameter of the `~scipy.signal.windows.kaiser` window.
|
2321 |
+
|
2322 |
+
Each of the window types listed above is also the name of
|
2323 |
+
a function that can be called directly to create a window of
|
2324 |
+
that type.
|
2325 |
+
|
2326 |
+
Examples
|
2327 |
+
--------
|
2328 |
+
>>> from scipy import signal
|
2329 |
+
>>> signal.get_window('triang', 7)
|
2330 |
+
array([ 0.125, 0.375, 0.625, 0.875, 0.875, 0.625, 0.375])
|
2331 |
+
>>> signal.get_window(('kaiser', 4.0), 9)
|
2332 |
+
array([ 0.08848053, 0.29425961, 0.56437221, 0.82160913, 0.97885093,
|
2333 |
+
0.97885093, 0.82160913, 0.56437221, 0.29425961])
|
2334 |
+
>>> signal.get_window(('exponential', None, 1.), 9)
|
2335 |
+
array([ 0.011109 , 0.03019738, 0.082085 , 0.22313016, 0.60653066,
|
2336 |
+
0.60653066, 0.22313016, 0.082085 , 0.03019738])
|
2337 |
+
>>> signal.get_window(4.0, 9)
|
2338 |
+
array([ 0.08848053, 0.29425961, 0.56437221, 0.82160913, 0.97885093,
|
2339 |
+
0.97885093, 0.82160913, 0.56437221, 0.29425961])
|
2340 |
+
|
2341 |
+
"""
|
2342 |
+
sym = not fftbins
|
2343 |
+
try:
|
2344 |
+
beta = float(window)
|
2345 |
+
except (TypeError, ValueError) as e:
|
2346 |
+
args = ()
|
2347 |
+
if isinstance(window, tuple):
|
2348 |
+
winstr = window[0]
|
2349 |
+
if len(window) > 1:
|
2350 |
+
args = window[1:]
|
2351 |
+
elif isinstance(window, str):
|
2352 |
+
if window in _needs_param:
|
2353 |
+
raise ValueError("The '" + window + "' window needs one or "
|
2354 |
+
"more parameters -- pass a tuple.") from e
|
2355 |
+
else:
|
2356 |
+
winstr = window
|
2357 |
+
else:
|
2358 |
+
raise ValueError("%s as window type is not supported." %
|
2359 |
+
str(type(window))) from e
|
2360 |
+
|
2361 |
+
try:
|
2362 |
+
winfunc = _win_equiv[winstr]
|
2363 |
+
except KeyError as e:
|
2364 |
+
raise ValueError("Unknown window type.") from e
|
2365 |
+
|
2366 |
+
if winfunc is dpss:
|
2367 |
+
params = (Nx,) + args + (None,)
|
2368 |
+
else:
|
2369 |
+
params = (Nx,) + args
|
2370 |
+
else:
|
2371 |
+
winfunc = kaiser
|
2372 |
+
params = (Nx, beta)
|
2373 |
+
|
2374 |
+
return winfunc(*params, sym=sym)
|
venv/lib/python3.10/site-packages/scipy/signal/windows/windows.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.signal.windows` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
__all__ = [ # noqa: F822
|
8 |
+
'boxcar', 'triang', 'parzen', 'bohman', 'blackman', 'nuttall',
|
9 |
+
'blackmanharris', 'flattop', 'bartlett', 'barthann',
|
10 |
+
'hamming', 'kaiser', 'gaussian', 'general_cosine',
|
11 |
+
'general_gaussian', 'general_hamming', 'chebwin', 'cosine',
|
12 |
+
'hann', 'exponential', 'tukey', 'taylor', 'dpss', 'get_window',
|
13 |
+
'linalg', 'sp_fft', 'k', 'v', 'key'
|
14 |
+
]
|
15 |
+
|
16 |
+
|
17 |
+
def __dir__():
|
18 |
+
return __all__
|
19 |
+
|
20 |
+
|
21 |
+
def __getattr__(name):
|
22 |
+
return _sub_module_deprecation(sub_package="signal.windows", module="windows",
|
23 |
+
private_modules=["_windows"], all=__all__,
|
24 |
+
attribute=name)
|
venv/lib/python3.10/site-packages/scipy/special/__init__.py
ADDED
@@ -0,0 +1,863 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
========================================
|
3 |
+
Special functions (:mod:`scipy.special`)
|
4 |
+
========================================
|
5 |
+
|
6 |
+
.. currentmodule:: scipy.special
|
7 |
+
|
8 |
+
Almost all of the functions below accept NumPy arrays as input
|
9 |
+
arguments as well as single numbers. This means they follow
|
10 |
+
broadcasting and automatic array-looping rules. Technically,
|
11 |
+
they are `NumPy universal functions
|
12 |
+
<https://numpy.org/doc/stable/user/basics.ufuncs.html#ufuncs-basics>`_.
|
13 |
+
Functions which do not accept NumPy arrays are marked by a warning
|
14 |
+
in the section description.
|
15 |
+
|
16 |
+
.. seealso::
|
17 |
+
|
18 |
+
`scipy.special.cython_special` -- Typed Cython versions of special functions
|
19 |
+
|
20 |
+
|
21 |
+
Error handling
|
22 |
+
==============
|
23 |
+
|
24 |
+
Errors are handled by returning NaNs or other appropriate values.
|
25 |
+
Some of the special function routines can emit warnings or raise
|
26 |
+
exceptions when an error occurs. By default this is disabled; to
|
27 |
+
query and control the current error handling state the following
|
28 |
+
functions are provided.
|
29 |
+
|
30 |
+
.. autosummary::
|
31 |
+
:toctree: generated/
|
32 |
+
|
33 |
+
geterr -- Get the current way of handling special-function errors.
|
34 |
+
seterr -- Set how special-function errors are handled.
|
35 |
+
errstate -- Context manager for special-function error handling.
|
36 |
+
SpecialFunctionWarning -- Warning that can be emitted by special functions.
|
37 |
+
SpecialFunctionError -- Exception that can be raised by special functions.
|
38 |
+
|
39 |
+
Available functions
|
40 |
+
===================
|
41 |
+
|
42 |
+
Airy functions
|
43 |
+
--------------
|
44 |
+
|
45 |
+
.. autosummary::
|
46 |
+
:toctree: generated/
|
47 |
+
|
48 |
+
airy -- Airy functions and their derivatives.
|
49 |
+
airye -- Exponentially scaled Airy functions and their derivatives.
|
50 |
+
ai_zeros -- Compute `nt` zeros and values of the Airy function Ai and its derivative.
|
51 |
+
bi_zeros -- Compute `nt` zeros and values of the Airy function Bi and its derivative.
|
52 |
+
itairy -- Integrals of Airy functions
|
53 |
+
|
54 |
+
|
55 |
+
Elliptic functions and integrals
|
56 |
+
--------------------------------
|
57 |
+
|
58 |
+
.. autosummary::
|
59 |
+
:toctree: generated/
|
60 |
+
|
61 |
+
ellipj -- Jacobian elliptic functions.
|
62 |
+
ellipk -- Complete elliptic integral of the first kind.
|
63 |
+
ellipkm1 -- Complete elliptic integral of the first kind around `m` = 1.
|
64 |
+
ellipkinc -- Incomplete elliptic integral of the first kind.
|
65 |
+
ellipe -- Complete elliptic integral of the second kind.
|
66 |
+
ellipeinc -- Incomplete elliptic integral of the second kind.
|
67 |
+
elliprc -- Degenerate symmetric integral RC.
|
68 |
+
elliprd -- Symmetric elliptic integral of the second kind.
|
69 |
+
elliprf -- Completely-symmetric elliptic integral of the first kind.
|
70 |
+
elliprg -- Completely-symmetric elliptic integral of the second kind.
|
71 |
+
elliprj -- Symmetric elliptic integral of the third kind.
|
72 |
+
|
73 |
+
Bessel functions
|
74 |
+
----------------
|
75 |
+
|
76 |
+
.. autosummary::
|
77 |
+
:toctree: generated/
|
78 |
+
|
79 |
+
jv -- Bessel function of the first kind of real order and \
|
80 |
+
complex argument.
|
81 |
+
jve -- Exponentially scaled Bessel function of order `v`.
|
82 |
+
yn -- Bessel function of the second kind of integer order and \
|
83 |
+
real argument.
|
84 |
+
yv -- Bessel function of the second kind of real order and \
|
85 |
+
complex argument.
|
86 |
+
yve -- Exponentially scaled Bessel function of the second kind \
|
87 |
+
of real order.
|
88 |
+
kn -- Modified Bessel function of the second kind of integer \
|
89 |
+
order `n`
|
90 |
+
kv -- Modified Bessel function of the second kind of real order \
|
91 |
+
`v`
|
92 |
+
kve -- Exponentially scaled modified Bessel function of the \
|
93 |
+
second kind.
|
94 |
+
iv -- Modified Bessel function of the first kind of real order.
|
95 |
+
ive -- Exponentially scaled modified Bessel function of the \
|
96 |
+
first kind.
|
97 |
+
hankel1 -- Hankel function of the first kind.
|
98 |
+
hankel1e -- Exponentially scaled Hankel function of the first kind.
|
99 |
+
hankel2 -- Hankel function of the second kind.
|
100 |
+
hankel2e -- Exponentially scaled Hankel function of the second kind.
|
101 |
+
wright_bessel -- Wright's generalized Bessel function.
|
102 |
+
|
103 |
+
The following function does not accept NumPy arrays (it is not a
|
104 |
+
universal function):
|
105 |
+
|
106 |
+
.. autosummary::
|
107 |
+
:toctree: generated/
|
108 |
+
|
109 |
+
lmbda -- Jahnke-Emden Lambda function, Lambdav(x).
|
110 |
+
|
111 |
+
Zeros of Bessel functions
|
112 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^
|
113 |
+
|
114 |
+
The following functions do not accept NumPy arrays (they are not
|
115 |
+
universal functions):
|
116 |
+
|
117 |
+
.. autosummary::
|
118 |
+
:toctree: generated/
|
119 |
+
|
120 |
+
jnjnp_zeros -- Compute zeros of integer-order Bessel functions Jn and Jn'.
|
121 |
+
jnyn_zeros -- Compute nt zeros of Bessel functions Jn(x), Jn'(x), Yn(x), and Yn'(x).
|
122 |
+
jn_zeros -- Compute zeros of integer-order Bessel function Jn(x).
|
123 |
+
jnp_zeros -- Compute zeros of integer-order Bessel function derivative Jn'(x).
|
124 |
+
yn_zeros -- Compute zeros of integer-order Bessel function Yn(x).
|
125 |
+
ynp_zeros -- Compute zeros of integer-order Bessel function derivative Yn'(x).
|
126 |
+
y0_zeros -- Compute nt zeros of Bessel function Y0(z), and derivative at each zero.
|
127 |
+
y1_zeros -- Compute nt zeros of Bessel function Y1(z), and derivative at each zero.
|
128 |
+
y1p_zeros -- Compute nt zeros of Bessel derivative Y1'(z), and value at each zero.
|
129 |
+
|
130 |
+
Faster versions of common Bessel functions
|
131 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
132 |
+
|
133 |
+
.. autosummary::
|
134 |
+
:toctree: generated/
|
135 |
+
|
136 |
+
j0 -- Bessel function of the first kind of order 0.
|
137 |
+
j1 -- Bessel function of the first kind of order 1.
|
138 |
+
y0 -- Bessel function of the second kind of order 0.
|
139 |
+
y1 -- Bessel function of the second kind of order 1.
|
140 |
+
i0 -- Modified Bessel function of order 0.
|
141 |
+
i0e -- Exponentially scaled modified Bessel function of order 0.
|
142 |
+
i1 -- Modified Bessel function of order 1.
|
143 |
+
i1e -- Exponentially scaled modified Bessel function of order 1.
|
144 |
+
k0 -- Modified Bessel function of the second kind of order 0, :math:`K_0`.
|
145 |
+
k0e -- Exponentially scaled modified Bessel function K of order 0
|
146 |
+
k1 -- Modified Bessel function of the second kind of order 1, :math:`K_1(x)`.
|
147 |
+
k1e -- Exponentially scaled modified Bessel function K of order 1.
|
148 |
+
|
149 |
+
Integrals of Bessel functions
|
150 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
151 |
+
|
152 |
+
.. autosummary::
|
153 |
+
:toctree: generated/
|
154 |
+
|
155 |
+
itj0y0 -- Integrals of Bessel functions of order 0.
|
156 |
+
it2j0y0 -- Integrals related to Bessel functions of order 0.
|
157 |
+
iti0k0 -- Integrals of modified Bessel functions of order 0.
|
158 |
+
it2i0k0 -- Integrals related to modified Bessel functions of order 0.
|
159 |
+
besselpoly -- Weighted integral of a Bessel function.
|
160 |
+
|
161 |
+
Derivatives of Bessel functions
|
162 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
163 |
+
|
164 |
+
.. autosummary::
|
165 |
+
:toctree: generated/
|
166 |
+
|
167 |
+
jvp -- Compute nth derivative of Bessel function Jv(z) with respect to `z`.
|
168 |
+
yvp -- Compute nth derivative of Bessel function Yv(z) with respect to `z`.
|
169 |
+
kvp -- Compute nth derivative of real-order modified Bessel function Kv(z)
|
170 |
+
ivp -- Compute nth derivative of modified Bessel function Iv(z) with respect to `z`.
|
171 |
+
h1vp -- Compute nth derivative of Hankel function H1v(z) with respect to `z`.
|
172 |
+
h2vp -- Compute nth derivative of Hankel function H2v(z) with respect to `z`.
|
173 |
+
|
174 |
+
Spherical Bessel functions
|
175 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^
|
176 |
+
|
177 |
+
.. autosummary::
|
178 |
+
:toctree: generated/
|
179 |
+
|
180 |
+
spherical_jn -- Spherical Bessel function of the first kind or its derivative.
|
181 |
+
spherical_yn -- Spherical Bessel function of the second kind or its derivative.
|
182 |
+
spherical_in -- Modified spherical Bessel function of the first kind or its derivative.
|
183 |
+
spherical_kn -- Modified spherical Bessel function of the second kind or its derivative.
|
184 |
+
|
185 |
+
Riccati-Bessel functions
|
186 |
+
^^^^^^^^^^^^^^^^^^^^^^^^
|
187 |
+
|
188 |
+
The following functions do not accept NumPy arrays (they are not
|
189 |
+
universal functions):
|
190 |
+
|
191 |
+
.. autosummary::
|
192 |
+
:toctree: generated/
|
193 |
+
|
194 |
+
riccati_jn -- Compute Ricatti-Bessel function of the first kind and its derivative.
|
195 |
+
riccati_yn -- Compute Ricatti-Bessel function of the second kind and its derivative.
|
196 |
+
|
197 |
+
Struve functions
|
198 |
+
----------------
|
199 |
+
|
200 |
+
.. autosummary::
|
201 |
+
:toctree: generated/
|
202 |
+
|
203 |
+
struve -- Struve function.
|
204 |
+
modstruve -- Modified Struve function.
|
205 |
+
itstruve0 -- Integral of the Struve function of order 0.
|
206 |
+
it2struve0 -- Integral related to the Struve function of order 0.
|
207 |
+
itmodstruve0 -- Integral of the modified Struve function of order 0.
|
208 |
+
|
209 |
+
|
210 |
+
Raw statistical functions
|
211 |
+
-------------------------
|
212 |
+
|
213 |
+
.. seealso:: :mod:`scipy.stats`: Friendly versions of these functions.
|
214 |
+
|
215 |
+
Binomial distribution
|
216 |
+
^^^^^^^^^^^^^^^^^^^^^
|
217 |
+
|
218 |
+
.. autosummary::
|
219 |
+
:toctree: generated/
|
220 |
+
|
221 |
+
bdtr -- Binomial distribution cumulative distribution function.
|
222 |
+
bdtrc -- Binomial distribution survival function.
|
223 |
+
bdtri -- Inverse function to `bdtr` with respect to `p`.
|
224 |
+
bdtrik -- Inverse function to `bdtr` with respect to `k`.
|
225 |
+
bdtrin -- Inverse function to `bdtr` with respect to `n`.
|
226 |
+
|
227 |
+
Beta distribution
|
228 |
+
^^^^^^^^^^^^^^^^^
|
229 |
+
|
230 |
+
.. autosummary::
|
231 |
+
:toctree: generated/
|
232 |
+
|
233 |
+
btdtr -- Cumulative distribution function of the beta distribution.
|
234 |
+
btdtri -- The `p`-th quantile of the beta distribution.
|
235 |
+
btdtria -- Inverse of `btdtr` with respect to `a`.
|
236 |
+
btdtrib -- btdtria(a, p, x).
|
237 |
+
|
238 |
+
F distribution
|
239 |
+
^^^^^^^^^^^^^^
|
240 |
+
|
241 |
+
.. autosummary::
|
242 |
+
:toctree: generated/
|
243 |
+
|
244 |
+
fdtr -- F cumulative distribution function.
|
245 |
+
fdtrc -- F survival function.
|
246 |
+
fdtri -- The `p`-th quantile of the F-distribution.
|
247 |
+
fdtridfd -- Inverse to `fdtr` vs dfd.
|
248 |
+
|
249 |
+
Gamma distribution
|
250 |
+
^^^^^^^^^^^^^^^^^^
|
251 |
+
|
252 |
+
.. autosummary::
|
253 |
+
:toctree: generated/
|
254 |
+
|
255 |
+
gdtr -- Gamma distribution cumulative distribution function.
|
256 |
+
gdtrc -- Gamma distribution survival function.
|
257 |
+
gdtria -- Inverse of `gdtr` vs a.
|
258 |
+
gdtrib -- Inverse of `gdtr` vs b.
|
259 |
+
gdtrix -- Inverse of `gdtr` vs x.
|
260 |
+
|
261 |
+
Negative binomial distribution
|
262 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
263 |
+
|
264 |
+
.. autosummary::
|
265 |
+
:toctree: generated/
|
266 |
+
|
267 |
+
nbdtr -- Negative binomial cumulative distribution function.
|
268 |
+
nbdtrc -- Negative binomial survival function.
|
269 |
+
nbdtri -- Inverse of `nbdtr` vs `p`.
|
270 |
+
nbdtrik -- Inverse of `nbdtr` vs `k`.
|
271 |
+
nbdtrin -- Inverse of `nbdtr` vs `n`.
|
272 |
+
|
273 |
+
Noncentral F distribution
|
274 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^
|
275 |
+
|
276 |
+
.. autosummary::
|
277 |
+
:toctree: generated/
|
278 |
+
|
279 |
+
ncfdtr -- Cumulative distribution function of the non-central F distribution.
|
280 |
+
ncfdtridfd -- Calculate degrees of freedom (denominator) for the noncentral F-distribution.
|
281 |
+
ncfdtridfn -- Calculate degrees of freedom (numerator) for the noncentral F-distribution.
|
282 |
+
ncfdtri -- Inverse cumulative distribution function of the non-central F distribution.
|
283 |
+
ncfdtrinc -- Calculate non-centrality parameter for non-central F distribution.
|
284 |
+
|
285 |
+
Noncentral t distribution
|
286 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^
|
287 |
+
|
288 |
+
.. autosummary::
|
289 |
+
:toctree: generated/
|
290 |
+
|
291 |
+
nctdtr -- Cumulative distribution function of the non-central `t` distribution.
|
292 |
+
nctdtridf -- Calculate degrees of freedom for non-central t distribution.
|
293 |
+
nctdtrit -- Inverse cumulative distribution function of the non-central t distribution.
|
294 |
+
nctdtrinc -- Calculate non-centrality parameter for non-central t distribution.
|
295 |
+
|
296 |
+
Normal distribution
|
297 |
+
^^^^^^^^^^^^^^^^^^^
|
298 |
+
|
299 |
+
.. autosummary::
|
300 |
+
:toctree: generated/
|
301 |
+
|
302 |
+
nrdtrimn -- Calculate mean of normal distribution given other params.
|
303 |
+
nrdtrisd -- Calculate standard deviation of normal distribution given other params.
|
304 |
+
ndtr -- Normal cumulative distribution function.
|
305 |
+
log_ndtr -- Logarithm of normal cumulative distribution function.
|
306 |
+
ndtri -- Inverse of `ndtr` vs x.
|
307 |
+
ndtri_exp -- Inverse of `log_ndtr` vs x.
|
308 |
+
|
309 |
+
Poisson distribution
|
310 |
+
^^^^^^^^^^^^^^^^^^^^
|
311 |
+
|
312 |
+
.. autosummary::
|
313 |
+
:toctree: generated/
|
314 |
+
|
315 |
+
pdtr -- Poisson cumulative distribution function.
|
316 |
+
pdtrc -- Poisson survival function.
|
317 |
+
pdtri -- Inverse to `pdtr` vs m.
|
318 |
+
pdtrik -- Inverse to `pdtr` vs k.
|
319 |
+
|
320 |
+
Student t distribution
|
321 |
+
^^^^^^^^^^^^^^^^^^^^^^
|
322 |
+
|
323 |
+
.. autosummary::
|
324 |
+
:toctree: generated/
|
325 |
+
|
326 |
+
stdtr -- Student t distribution cumulative distribution function.
|
327 |
+
stdtridf -- Inverse of `stdtr` vs df.
|
328 |
+
stdtrit -- Inverse of `stdtr` vs `t`.
|
329 |
+
|
330 |
+
Chi square distribution
|
331 |
+
^^^^^^^^^^^^^^^^^^^^^^^
|
332 |
+
|
333 |
+
.. autosummary::
|
334 |
+
:toctree: generated/
|
335 |
+
|
336 |
+
chdtr -- Chi square cumulative distribution function.
|
337 |
+
chdtrc -- Chi square survival function.
|
338 |
+
chdtri -- Inverse to `chdtrc`.
|
339 |
+
chdtriv -- Inverse to `chdtr` vs `v`.
|
340 |
+
|
341 |
+
Non-central chi square distribution
|
342 |
+
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
343 |
+
|
344 |
+
.. autosummary::
|
345 |
+
:toctree: generated/
|
346 |
+
|
347 |
+
chndtr -- Non-central chi square cumulative distribution function.
|
348 |
+
chndtridf -- Inverse to `chndtr` vs `df`.
|
349 |
+
chndtrinc -- Inverse to `chndtr` vs `nc`.
|
350 |
+
chndtrix -- Inverse to `chndtr` vs `x`.
|
351 |
+
|
352 |
+
Kolmogorov distribution
|
353 |
+
^^^^^^^^^^^^^^^^^^^^^^^
|
354 |
+
|
355 |
+
.. autosummary::
|
356 |
+
:toctree: generated/
|
357 |
+
|
358 |
+
smirnov -- Kolmogorov-Smirnov complementary cumulative distribution function.
|
359 |
+
smirnovi -- Inverse to `smirnov`.
|
360 |
+
kolmogorov -- Complementary cumulative distribution function of Kolmogorov distribution.
|
361 |
+
kolmogi -- Inverse function to `kolmogorov`.
|
362 |
+
|
363 |
+
Box-Cox transformation
|
364 |
+
^^^^^^^^^^^^^^^^^^^^^^
|
365 |
+
|
366 |
+
.. autosummary::
|
367 |
+
:toctree: generated/
|
368 |
+
|
369 |
+
boxcox -- Compute the Box-Cox transformation.
|
370 |
+
boxcox1p -- Compute the Box-Cox transformation of 1 + `x`.
|
371 |
+
inv_boxcox -- Compute the inverse of the Box-Cox transformation.
|
372 |
+
inv_boxcox1p -- Compute the inverse of the Box-Cox transformation.
|
373 |
+
|
374 |
+
|
375 |
+
Sigmoidal functions
|
376 |
+
^^^^^^^^^^^^^^^^^^^
|
377 |
+
|
378 |
+
.. autosummary::
|
379 |
+
:toctree: generated/
|
380 |
+
|
381 |
+
logit -- Logit ufunc for ndarrays.
|
382 |
+
expit -- Logistic sigmoid function.
|
383 |
+
log_expit -- Logarithm of the logistic sigmoid function.
|
384 |
+
|
385 |
+
Miscellaneous
|
386 |
+
^^^^^^^^^^^^^
|
387 |
+
|
388 |
+
.. autosummary::
|
389 |
+
:toctree: generated/
|
390 |
+
|
391 |
+
tklmbda -- Tukey-Lambda cumulative distribution function.
|
392 |
+
owens_t -- Owen's T Function.
|
393 |
+
|
394 |
+
|
395 |
+
Information Theory functions
|
396 |
+
----------------------------
|
397 |
+
|
398 |
+
.. autosummary::
|
399 |
+
:toctree: generated/
|
400 |
+
|
401 |
+
entr -- Elementwise function for computing entropy.
|
402 |
+
rel_entr -- Elementwise function for computing relative entropy.
|
403 |
+
kl_div -- Elementwise function for computing Kullback-Leibler divergence.
|
404 |
+
huber -- Huber loss function.
|
405 |
+
pseudo_huber -- Pseudo-Huber loss function.
|
406 |
+
|
407 |
+
|
408 |
+
Gamma and related functions
|
409 |
+
---------------------------
|
410 |
+
|
411 |
+
.. autosummary::
|
412 |
+
:toctree: generated/
|
413 |
+
|
414 |
+
gamma -- Gamma function.
|
415 |
+
gammaln -- Logarithm of the absolute value of the Gamma function for real inputs.
|
416 |
+
loggamma -- Principal branch of the logarithm of the Gamma function.
|
417 |
+
gammasgn -- Sign of the gamma function.
|
418 |
+
gammainc -- Regularized lower incomplete gamma function.
|
419 |
+
gammaincinv -- Inverse to `gammainc`.
|
420 |
+
gammaincc -- Regularized upper incomplete gamma function.
|
421 |
+
gammainccinv -- Inverse to `gammaincc`.
|
422 |
+
beta -- Beta function.
|
423 |
+
betaln -- Natural logarithm of absolute value of beta function.
|
424 |
+
betainc -- Incomplete beta integral.
|
425 |
+
betaincc -- Complemented incomplete beta integral.
|
426 |
+
betaincinv -- Inverse function to beta integral.
|
427 |
+
betainccinv -- Inverse of the complemented incomplete beta integral.
|
428 |
+
psi -- The digamma function.
|
429 |
+
rgamma -- Gamma function inverted.
|
430 |
+
polygamma -- Polygamma function n.
|
431 |
+
multigammaln -- Returns the log of multivariate gamma, also sometimes called the generalized gamma.
|
432 |
+
digamma -- psi(x[, out]).
|
433 |
+
poch -- Rising factorial (z)_m.
|
434 |
+
|
435 |
+
|
436 |
+
Error function and Fresnel integrals
|
437 |
+
------------------------------------
|
438 |
+
|
439 |
+
.. autosummary::
|
440 |
+
:toctree: generated/
|
441 |
+
|
442 |
+
erf -- Returns the error function of complex argument.
|
443 |
+
erfc -- Complementary error function, ``1 - erf(x)``.
|
444 |
+
erfcx -- Scaled complementary error function, ``exp(x**2) * erfc(x)``.
|
445 |
+
erfi -- Imaginary error function, ``-i erf(i z)``.
|
446 |
+
erfinv -- Inverse function for erf.
|
447 |
+
erfcinv -- Inverse function for erfc.
|
448 |
+
wofz -- Faddeeva function.
|
449 |
+
dawsn -- Dawson's integral.
|
450 |
+
fresnel -- Fresnel sin and cos integrals.
|
451 |
+
fresnel_zeros -- Compute nt complex zeros of sine and cosine Fresnel integrals S(z) and C(z).
|
452 |
+
modfresnelp -- Modified Fresnel positive integrals.
|
453 |
+
modfresnelm -- Modified Fresnel negative integrals.
|
454 |
+
voigt_profile -- Voigt profile.
|
455 |
+
|
456 |
+
The following functions do not accept NumPy arrays (they are not
|
457 |
+
universal functions):
|
458 |
+
|
459 |
+
.. autosummary::
|
460 |
+
:toctree: generated/
|
461 |
+
|
462 |
+
erf_zeros -- Compute nt complex zeros of error function erf(z).
|
463 |
+
fresnelc_zeros -- Compute nt complex zeros of cosine Fresnel integral C(z).
|
464 |
+
fresnels_zeros -- Compute nt complex zeros of sine Fresnel integral S(z).
|
465 |
+
|
466 |
+
Legendre functions
|
467 |
+
------------------
|
468 |
+
|
469 |
+
.. autosummary::
|
470 |
+
:toctree: generated/
|
471 |
+
|
472 |
+
lpmv -- Associated Legendre function of integer order and real degree.
|
473 |
+
sph_harm -- Compute spherical harmonics.
|
474 |
+
|
475 |
+
The following functions do not accept NumPy arrays (they are not
|
476 |
+
universal functions):
|
477 |
+
|
478 |
+
.. autosummary::
|
479 |
+
:toctree: generated/
|
480 |
+
|
481 |
+
clpmn -- Associated Legendre function of the first kind for complex arguments.
|
482 |
+
lpn -- Legendre function of the first kind.
|
483 |
+
lqn -- Legendre function of the second kind.
|
484 |
+
lpmn -- Sequence of associated Legendre functions of the first kind.
|
485 |
+
lqmn -- Sequence of associated Legendre functions of the second kind.
|
486 |
+
|
487 |
+
Ellipsoidal harmonics
|
488 |
+
---------------------
|
489 |
+
|
490 |
+
.. autosummary::
|
491 |
+
:toctree: generated/
|
492 |
+
|
493 |
+
ellip_harm -- Ellipsoidal harmonic functions E^p_n(l).
|
494 |
+
ellip_harm_2 -- Ellipsoidal harmonic functions F^p_n(l).
|
495 |
+
ellip_normal -- Ellipsoidal harmonic normalization constants gamma^p_n.
|
496 |
+
|
497 |
+
Orthogonal polynomials
|
498 |
+
----------------------
|
499 |
+
|
500 |
+
The following functions evaluate values of orthogonal polynomials:
|
501 |
+
|
502 |
+
.. autosummary::
|
503 |
+
:toctree: generated/
|
504 |
+
|
505 |
+
assoc_laguerre -- Compute the generalized (associated) Laguerre polynomial of degree n and order k.
|
506 |
+
eval_legendre -- Evaluate Legendre polynomial at a point.
|
507 |
+
eval_chebyt -- Evaluate Chebyshev polynomial of the first kind at a point.
|
508 |
+
eval_chebyu -- Evaluate Chebyshev polynomial of the second kind at a point.
|
509 |
+
eval_chebyc -- Evaluate Chebyshev polynomial of the first kind on [-2, 2] at a point.
|
510 |
+
eval_chebys -- Evaluate Chebyshev polynomial of the second kind on [-2, 2] at a point.
|
511 |
+
eval_jacobi -- Evaluate Jacobi polynomial at a point.
|
512 |
+
eval_laguerre -- Evaluate Laguerre polynomial at a point.
|
513 |
+
eval_genlaguerre -- Evaluate generalized Laguerre polynomial at a point.
|
514 |
+
eval_hermite -- Evaluate physicist's Hermite polynomial at a point.
|
515 |
+
eval_hermitenorm -- Evaluate probabilist's (normalized) Hermite polynomial at a point.
|
516 |
+
eval_gegenbauer -- Evaluate Gegenbauer polynomial at a point.
|
517 |
+
eval_sh_legendre -- Evaluate shifted Legendre polynomial at a point.
|
518 |
+
eval_sh_chebyt -- Evaluate shifted Chebyshev polynomial of the first kind at a point.
|
519 |
+
eval_sh_chebyu -- Evaluate shifted Chebyshev polynomial of the second kind at a point.
|
520 |
+
eval_sh_jacobi -- Evaluate shifted Jacobi polynomial at a point.
|
521 |
+
|
522 |
+
The following functions compute roots and quadrature weights for
|
523 |
+
orthogonal polynomials:
|
524 |
+
|
525 |
+
.. autosummary::
|
526 |
+
:toctree: generated/
|
527 |
+
|
528 |
+
roots_legendre -- Gauss-Legendre quadrature.
|
529 |
+
roots_chebyt -- Gauss-Chebyshev (first kind) quadrature.
|
530 |
+
roots_chebyu -- Gauss-Chebyshev (second kind) quadrature.
|
531 |
+
roots_chebyc -- Gauss-Chebyshev (first kind) quadrature.
|
532 |
+
roots_chebys -- Gauss-Chebyshev (second kind) quadrature.
|
533 |
+
roots_jacobi -- Gauss-Jacobi quadrature.
|
534 |
+
roots_laguerre -- Gauss-Laguerre quadrature.
|
535 |
+
roots_genlaguerre -- Gauss-generalized Laguerre quadrature.
|
536 |
+
roots_hermite -- Gauss-Hermite (physicst's) quadrature.
|
537 |
+
roots_hermitenorm -- Gauss-Hermite (statistician's) quadrature.
|
538 |
+
roots_gegenbauer -- Gauss-Gegenbauer quadrature.
|
539 |
+
roots_sh_legendre -- Gauss-Legendre (shifted) quadrature.
|
540 |
+
roots_sh_chebyt -- Gauss-Chebyshev (first kind, shifted) quadrature.
|
541 |
+
roots_sh_chebyu -- Gauss-Chebyshev (second kind, shifted) quadrature.
|
542 |
+
roots_sh_jacobi -- Gauss-Jacobi (shifted) quadrature.
|
543 |
+
|
544 |
+
The functions below, in turn, return the polynomial coefficients in
|
545 |
+
``orthopoly1d`` objects, which function similarly as `numpy.poly1d`.
|
546 |
+
The ``orthopoly1d`` class also has an attribute ``weights``, which returns
|
547 |
+
the roots, weights, and total weights for the appropriate form of Gaussian
|
548 |
+
quadrature. These are returned in an ``n x 3`` array with roots in the first
|
549 |
+
column, weights in the second column, and total weights in the final column.
|
550 |
+
Note that ``orthopoly1d`` objects are converted to `~numpy.poly1d` when doing
|
551 |
+
arithmetic, and lose information of the original orthogonal polynomial.
|
552 |
+
|
553 |
+
.. autosummary::
|
554 |
+
:toctree: generated/
|
555 |
+
|
556 |
+
legendre -- Legendre polynomial.
|
557 |
+
chebyt -- Chebyshev polynomial of the first kind.
|
558 |
+
chebyu -- Chebyshev polynomial of the second kind.
|
559 |
+
chebyc -- Chebyshev polynomial of the first kind on :math:`[-2, 2]`.
|
560 |
+
chebys -- Chebyshev polynomial of the second kind on :math:`[-2, 2]`.
|
561 |
+
jacobi -- Jacobi polynomial.
|
562 |
+
laguerre -- Laguerre polynomial.
|
563 |
+
genlaguerre -- Generalized (associated) Laguerre polynomial.
|
564 |
+
hermite -- Physicist's Hermite polynomial.
|
565 |
+
hermitenorm -- Normalized (probabilist's) Hermite polynomial.
|
566 |
+
gegenbauer -- Gegenbauer (ultraspherical) polynomial.
|
567 |
+
sh_legendre -- Shifted Legendre polynomial.
|
568 |
+
sh_chebyt -- Shifted Chebyshev polynomial of the first kind.
|
569 |
+
sh_chebyu -- Shifted Chebyshev polynomial of the second kind.
|
570 |
+
sh_jacobi -- Shifted Jacobi polynomial.
|
571 |
+
|
572 |
+
.. warning::
|
573 |
+
|
574 |
+
Computing values of high-order polynomials (around ``order > 20``) using
|
575 |
+
polynomial coefficients is numerically unstable. To evaluate polynomial
|
576 |
+
values, the ``eval_*`` functions should be used instead.
|
577 |
+
|
578 |
+
|
579 |
+
Hypergeometric functions
|
580 |
+
------------------------
|
581 |
+
|
582 |
+
.. autosummary::
|
583 |
+
:toctree: generated/
|
584 |
+
|
585 |
+
hyp2f1 -- Gauss hypergeometric function 2F1(a, b; c; z).
|
586 |
+
hyp1f1 -- Confluent hypergeometric function 1F1(a, b; x).
|
587 |
+
hyperu -- Confluent hypergeometric function U(a, b, x) of the second kind.
|
588 |
+
hyp0f1 -- Confluent hypergeometric limit function 0F1.
|
589 |
+
|
590 |
+
|
591 |
+
Parabolic cylinder functions
|
592 |
+
----------------------------
|
593 |
+
|
594 |
+
.. autosummary::
|
595 |
+
:toctree: generated/
|
596 |
+
|
597 |
+
pbdv -- Parabolic cylinder function D.
|
598 |
+
pbvv -- Parabolic cylinder function V.
|
599 |
+
pbwa -- Parabolic cylinder function W.
|
600 |
+
|
601 |
+
The following functions do not accept NumPy arrays (they are not
|
602 |
+
universal functions):
|
603 |
+
|
604 |
+
.. autosummary::
|
605 |
+
:toctree: generated/
|
606 |
+
|
607 |
+
pbdv_seq -- Parabolic cylinder functions Dv(x) and derivatives.
|
608 |
+
pbvv_seq -- Parabolic cylinder functions Vv(x) and derivatives.
|
609 |
+
pbdn_seq -- Parabolic cylinder functions Dn(z) and derivatives.
|
610 |
+
|
611 |
+
Mathieu and related functions
|
612 |
+
-----------------------------
|
613 |
+
|
614 |
+
.. autosummary::
|
615 |
+
:toctree: generated/
|
616 |
+
|
617 |
+
mathieu_a -- Characteristic value of even Mathieu functions.
|
618 |
+
mathieu_b -- Characteristic value of odd Mathieu functions.
|
619 |
+
|
620 |
+
The following functions do not accept NumPy arrays (they are not
|
621 |
+
universal functions):
|
622 |
+
|
623 |
+
.. autosummary::
|
624 |
+
:toctree: generated/
|
625 |
+
|
626 |
+
mathieu_even_coef -- Fourier coefficients for even Mathieu and modified Mathieu functions.
|
627 |
+
mathieu_odd_coef -- Fourier coefficients for even Mathieu and modified Mathieu functions.
|
628 |
+
|
629 |
+
The following return both function and first derivative:
|
630 |
+
|
631 |
+
.. autosummary::
|
632 |
+
:toctree: generated/
|
633 |
+
|
634 |
+
mathieu_cem -- Even Mathieu function and its derivative.
|
635 |
+
mathieu_sem -- Odd Mathieu function and its derivative.
|
636 |
+
mathieu_modcem1 -- Even modified Mathieu function of the first kind and its derivative.
|
637 |
+
mathieu_modcem2 -- Even modified Mathieu function of the second kind and its derivative.
|
638 |
+
mathieu_modsem1 -- Odd modified Mathieu function of the first kind and its derivative.
|
639 |
+
mathieu_modsem2 -- Odd modified Mathieu function of the second kind and its derivative.
|
640 |
+
|
641 |
+
Spheroidal wave functions
|
642 |
+
-------------------------
|
643 |
+
|
644 |
+
.. autosummary::
|
645 |
+
:toctree: generated/
|
646 |
+
|
647 |
+
pro_ang1 -- Prolate spheroidal angular function of the first kind and its derivative.
|
648 |
+
pro_rad1 -- Prolate spheroidal radial function of the first kind and its derivative.
|
649 |
+
pro_rad2 -- Prolate spheroidal radial function of the second kind and its derivative.
|
650 |
+
obl_ang1 -- Oblate spheroidal angular function of the first kind and its derivative.
|
651 |
+
obl_rad1 -- Oblate spheroidal radial function of the first kind and its derivative.
|
652 |
+
obl_rad2 -- Oblate spheroidal radial function of the second kind and its derivative.
|
653 |
+
pro_cv -- Characteristic value of prolate spheroidal function.
|
654 |
+
obl_cv -- Characteristic value of oblate spheroidal function.
|
655 |
+
pro_cv_seq -- Characteristic values for prolate spheroidal wave functions.
|
656 |
+
obl_cv_seq -- Characteristic values for oblate spheroidal wave functions.
|
657 |
+
|
658 |
+
The following functions require pre-computed characteristic value:
|
659 |
+
|
660 |
+
.. autosummary::
|
661 |
+
:toctree: generated/
|
662 |
+
|
663 |
+
pro_ang1_cv -- Prolate spheroidal angular function pro_ang1 for precomputed characteristic value.
|
664 |
+
pro_rad1_cv -- Prolate spheroidal radial function pro_rad1 for precomputed characteristic value.
|
665 |
+
pro_rad2_cv -- Prolate spheroidal radial function pro_rad2 for precomputed characteristic value.
|
666 |
+
obl_ang1_cv -- Oblate spheroidal angular function obl_ang1 for precomputed characteristic value.
|
667 |
+
obl_rad1_cv -- Oblate spheroidal radial function obl_rad1 for precomputed characteristic value.
|
668 |
+
obl_rad2_cv -- Oblate spheroidal radial function obl_rad2 for precomputed characteristic value.
|
669 |
+
|
670 |
+
Kelvin functions
|
671 |
+
----------------
|
672 |
+
|
673 |
+
.. autosummary::
|
674 |
+
:toctree: generated/
|
675 |
+
|
676 |
+
kelvin -- Kelvin functions as complex numbers.
|
677 |
+
kelvin_zeros -- Compute nt zeros of all Kelvin functions.
|
678 |
+
ber -- Kelvin function ber.
|
679 |
+
bei -- Kelvin function bei
|
680 |
+
berp -- Derivative of the Kelvin function `ber`.
|
681 |
+
beip -- Derivative of the Kelvin function `bei`.
|
682 |
+
ker -- Kelvin function ker.
|
683 |
+
kei -- Kelvin function ker.
|
684 |
+
kerp -- Derivative of the Kelvin function ker.
|
685 |
+
keip -- Derivative of the Kelvin function kei.
|
686 |
+
|
687 |
+
The following functions do not accept NumPy arrays (they are not
|
688 |
+
universal functions):
|
689 |
+
|
690 |
+
.. autosummary::
|
691 |
+
:toctree: generated/
|
692 |
+
|
693 |
+
ber_zeros -- Compute nt zeros of the Kelvin function ber(x).
|
694 |
+
bei_zeros -- Compute nt zeros of the Kelvin function bei(x).
|
695 |
+
berp_zeros -- Compute nt zeros of the Kelvin function ber'(x).
|
696 |
+
beip_zeros -- Compute nt zeros of the Kelvin function bei'(x).
|
697 |
+
ker_zeros -- Compute nt zeros of the Kelvin function ker(x).
|
698 |
+
kei_zeros -- Compute nt zeros of the Kelvin function kei(x).
|
699 |
+
kerp_zeros -- Compute nt zeros of the Kelvin function ker'(x).
|
700 |
+
keip_zeros -- Compute nt zeros of the Kelvin function kei'(x).
|
701 |
+
|
702 |
+
Combinatorics
|
703 |
+
-------------
|
704 |
+
|
705 |
+
.. autosummary::
|
706 |
+
:toctree: generated/
|
707 |
+
|
708 |
+
comb -- The number of combinations of N things taken k at a time.
|
709 |
+
perm -- Permutations of N things taken k at a time, i.e., k-permutations of N.
|
710 |
+
stirling2 -- Stirling numbers of the second kind.
|
711 |
+
|
712 |
+
Lambert W and related functions
|
713 |
+
-------------------------------
|
714 |
+
|
715 |
+
.. autosummary::
|
716 |
+
:toctree: generated/
|
717 |
+
|
718 |
+
lambertw -- Lambert W function.
|
719 |
+
wrightomega -- Wright Omega function.
|
720 |
+
|
721 |
+
Other special functions
|
722 |
+
-----------------------
|
723 |
+
|
724 |
+
.. autosummary::
|
725 |
+
:toctree: generated/
|
726 |
+
|
727 |
+
agm -- Arithmetic, Geometric Mean.
|
728 |
+
bernoulli -- Bernoulli numbers B0..Bn (inclusive).
|
729 |
+
binom -- Binomial coefficient
|
730 |
+
diric -- Periodic sinc function, also called the Dirichlet function.
|
731 |
+
euler -- Euler numbers E0..En (inclusive).
|
732 |
+
expn -- Exponential integral E_n.
|
733 |
+
exp1 -- Exponential integral E_1 of complex argument z.
|
734 |
+
expi -- Exponential integral Ei.
|
735 |
+
factorial -- The factorial of a number or array of numbers.
|
736 |
+
factorial2 -- Double factorial.
|
737 |
+
factorialk -- Multifactorial of n of order k, n(!!...!).
|
738 |
+
shichi -- Hyperbolic sine and cosine integrals.
|
739 |
+
sici -- Sine and cosine integrals.
|
740 |
+
softmax -- Softmax function.
|
741 |
+
log_softmax -- Logarithm of softmax function.
|
742 |
+
spence -- Spence's function, also known as the dilogarithm.
|
743 |
+
zeta -- Riemann zeta function.
|
744 |
+
zetac -- Riemann zeta function minus 1.
|
745 |
+
|
746 |
+
Convenience functions
|
747 |
+
---------------------
|
748 |
+
|
749 |
+
.. autosummary::
|
750 |
+
:toctree: generated/
|
751 |
+
|
752 |
+
cbrt -- Cube root of `x`.
|
753 |
+
exp10 -- 10**x.
|
754 |
+
exp2 -- 2**x.
|
755 |
+
radian -- Convert from degrees to radians.
|
756 |
+
cosdg -- Cosine of the angle `x` given in degrees.
|
757 |
+
sindg -- Sine of angle given in degrees.
|
758 |
+
tandg -- Tangent of angle x given in degrees.
|
759 |
+
cotdg -- Cotangent of the angle `x` given in degrees.
|
760 |
+
log1p -- Calculates log(1+x) for use when `x` is near zero.
|
761 |
+
expm1 -- ``exp(x) - 1`` for use when `x` is near zero.
|
762 |
+
cosm1 -- ``cos(x) - 1`` for use when `x` is near zero.
|
763 |
+
powm1 -- ``x**y - 1`` for use when `y` is near zero or `x` is near 1.
|
764 |
+
round -- Round to nearest integer.
|
765 |
+
xlogy -- Compute ``x*log(y)`` so that the result is 0 if ``x = 0``.
|
766 |
+
xlog1py -- Compute ``x*log1p(y)`` so that the result is 0 if ``x = 0``.
|
767 |
+
logsumexp -- Compute the log of the sum of exponentials of input elements.
|
768 |
+
exprel -- Relative error exponential, (exp(x)-1)/x, for use when `x` is near zero.
|
769 |
+
sinc -- Return the sinc function.
|
770 |
+
|
771 |
+
""" # noqa: E501
|
772 |
+
|
773 |
+
import warnings
|
774 |
+
|
775 |
+
from ._sf_error import SpecialFunctionWarning, SpecialFunctionError
|
776 |
+
|
777 |
+
from . import _ufuncs
|
778 |
+
from ._ufuncs import *
|
779 |
+
|
780 |
+
# Replace some function definitions from _ufuncs to add Array API support
|
781 |
+
from ._support_alternative_backends import (
|
782 |
+
log_ndtr, ndtr, ndtri, erf, erfc, i0, i0e, i1, i1e,
|
783 |
+
gammaln, gammainc, gammaincc, logit, expit)
|
784 |
+
|
785 |
+
from . import _basic
|
786 |
+
from ._basic import *
|
787 |
+
|
788 |
+
from ._logsumexp import logsumexp, softmax, log_softmax
|
789 |
+
|
790 |
+
from . import _orthogonal
|
791 |
+
from ._orthogonal import *
|
792 |
+
|
793 |
+
from ._spfun_stats import multigammaln
|
794 |
+
from ._ellip_harm import (
|
795 |
+
ellip_harm,
|
796 |
+
ellip_harm_2,
|
797 |
+
ellip_normal
|
798 |
+
)
|
799 |
+
from ._lambertw import lambertw
|
800 |
+
from ._spherical_bessel import (
|
801 |
+
spherical_jn,
|
802 |
+
spherical_yn,
|
803 |
+
spherical_in,
|
804 |
+
spherical_kn
|
805 |
+
)
|
806 |
+
|
807 |
+
# Deprecated namespaces, to be removed in v2.0.0
|
808 |
+
from . import add_newdocs, basic, orthogonal, specfun, sf_error, spfun_stats
|
809 |
+
|
810 |
+
# We replace some function definitions from _ufuncs with those from
|
811 |
+
# _support_alternative_backends above, but those are all listed in _ufuncs.__all__,
|
812 |
+
# so there is no need to consider _support_alternative_backends.__all__ here.
|
813 |
+
__all__ = _ufuncs.__all__ + _basic.__all__ + _orthogonal.__all__
|
814 |
+
__all__ += [
|
815 |
+
'SpecialFunctionWarning',
|
816 |
+
'SpecialFunctionError',
|
817 |
+
'logsumexp',
|
818 |
+
'softmax',
|
819 |
+
'log_softmax',
|
820 |
+
'multigammaln',
|
821 |
+
'ellip_harm',
|
822 |
+
'ellip_harm_2',
|
823 |
+
'ellip_normal',
|
824 |
+
'lambertw',
|
825 |
+
'spherical_jn',
|
826 |
+
'spherical_yn',
|
827 |
+
'spherical_in',
|
828 |
+
'spherical_kn',
|
829 |
+
]
|
830 |
+
|
831 |
+
from scipy._lib._testutils import PytestTester
|
832 |
+
test = PytestTester(__name__)
|
833 |
+
del PytestTester
|
834 |
+
|
835 |
+
_depr_msg = ('\nThis function was deprecated in SciPy 1.12.0, and will be '
|
836 |
+
'removed in SciPy 1.14.0. Use scipy.special.{} instead.')
|
837 |
+
|
838 |
+
|
839 |
+
def btdtr(*args, **kwargs): # type: ignore [no-redef]
|
840 |
+
warnings.warn(_depr_msg.format('betainc'), category=DeprecationWarning,
|
841 |
+
stacklevel=2)
|
842 |
+
return _ufuncs.btdtr(*args, **kwargs)
|
843 |
+
|
844 |
+
|
845 |
+
btdtr.__doc__ = _ufuncs.btdtr.__doc__ # type: ignore [misc]
|
846 |
+
|
847 |
+
|
848 |
+
def btdtri(*args, **kwargs): # type: ignore [no-redef]
|
849 |
+
warnings.warn(_depr_msg.format('betaincinv'), category=DeprecationWarning,
|
850 |
+
stacklevel=2)
|
851 |
+
return _ufuncs.btdtri(*args, **kwargs)
|
852 |
+
|
853 |
+
|
854 |
+
btdtri.__doc__ = _ufuncs.btdtri.__doc__ # type: ignore [misc]
|
855 |
+
|
856 |
+
|
857 |
+
def _get_include():
|
858 |
+
"""This function is for development purposes only.
|
859 |
+
|
860 |
+
This function could disappear or its behavior could change at any time.
|
861 |
+
"""
|
862 |
+
import os
|
863 |
+
return os.path.dirname(__file__)
|
venv/lib/python3.10/site-packages/scipy/special/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (31.7 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/__pycache__/_add_newdocs.cpython-310.pyc
ADDED
Binary file (396 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/__pycache__/_basic.cpython-310.pyc
ADDED
Binary file (95.7 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/__pycache__/_ellip_harm.cpython-310.pyc
ADDED
Binary file (5.81 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/__pycache__/_lambertw.cpython-310.pyc
ADDED
Binary file (4.15 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/__pycache__/_sf_error.cpython-310.pyc
ADDED
Binary file (762 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/__pycache__/_spherical_bessel.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/__pycache__/_testutils.cpython-310.pyc
ADDED
Binary file (8.57 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/__pycache__/add_newdocs.cpython-310.pyc
ADDED
Binary file (635 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/__pycache__/basic.cpython-310.pyc
ADDED
Binary file (1.26 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/__pycache__/sf_error.cpython-310.pyc
ADDED
Binary file (648 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/__pycache__/specfun.cpython-310.pyc
ADDED
Binary file (760 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/_add_newdocs.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/scipy/special/_basic.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/scipy/special/_cdflib.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (188 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/_comb.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (63.5 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/_ellip_harm.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from ._ufuncs import _ellip_harm
|
4 |
+
from ._ellip_harm_2 import _ellipsoid, _ellipsoid_norm
|
5 |
+
|
6 |
+
|
7 |
+
def ellip_harm(h2, k2, n, p, s, signm=1, signn=1):
|
8 |
+
r"""
|
9 |
+
Ellipsoidal harmonic functions E^p_n(l)
|
10 |
+
|
11 |
+
These are also known as Lame functions of the first kind, and are
|
12 |
+
solutions to the Lame equation:
|
13 |
+
|
14 |
+
.. math:: (s^2 - h^2)(s^2 - k^2)E''(s)
|
15 |
+
+ s(2s^2 - h^2 - k^2)E'(s) + (a - q s^2)E(s) = 0
|
16 |
+
|
17 |
+
where :math:`q = (n+1)n` and :math:`a` is the eigenvalue (not
|
18 |
+
returned) corresponding to the solutions.
|
19 |
+
|
20 |
+
Parameters
|
21 |
+
----------
|
22 |
+
h2 : float
|
23 |
+
``h**2``
|
24 |
+
k2 : float
|
25 |
+
``k**2``; should be larger than ``h**2``
|
26 |
+
n : int
|
27 |
+
Degree
|
28 |
+
s : float
|
29 |
+
Coordinate
|
30 |
+
p : int
|
31 |
+
Order, can range between [1,2n+1]
|
32 |
+
signm : {1, -1}, optional
|
33 |
+
Sign of prefactor of functions. Can be +/-1. See Notes.
|
34 |
+
signn : {1, -1}, optional
|
35 |
+
Sign of prefactor of functions. Can be +/-1. See Notes.
|
36 |
+
|
37 |
+
Returns
|
38 |
+
-------
|
39 |
+
E : float
|
40 |
+
the harmonic :math:`E^p_n(s)`
|
41 |
+
|
42 |
+
See Also
|
43 |
+
--------
|
44 |
+
ellip_harm_2, ellip_normal
|
45 |
+
|
46 |
+
Notes
|
47 |
+
-----
|
48 |
+
The geometric interpretation of the ellipsoidal functions is
|
49 |
+
explained in [2]_, [3]_, [4]_. The `signm` and `signn` arguments control the
|
50 |
+
sign of prefactors for functions according to their type::
|
51 |
+
|
52 |
+
K : +1
|
53 |
+
L : signm
|
54 |
+
M : signn
|
55 |
+
N : signm*signn
|
56 |
+
|
57 |
+
.. versionadded:: 0.15.0
|
58 |
+
|
59 |
+
References
|
60 |
+
----------
|
61 |
+
.. [1] Digital Library of Mathematical Functions 29.12
|
62 |
+
https://dlmf.nist.gov/29.12
|
63 |
+
.. [2] Bardhan and Knepley, "Computational science and
|
64 |
+
re-discovery: open-source implementations of
|
65 |
+
ellipsoidal harmonics for problems in potential theory",
|
66 |
+
Comput. Sci. Disc. 5, 014006 (2012)
|
67 |
+
:doi:`10.1088/1749-4699/5/1/014006`.
|
68 |
+
.. [3] David J.and Dechambre P, "Computation of Ellipsoidal
|
69 |
+
Gravity Field Harmonics for small solar system bodies"
|
70 |
+
pp. 30-36, 2000
|
71 |
+
.. [4] George Dassios, "Ellipsoidal Harmonics: Theory and Applications"
|
72 |
+
pp. 418, 2012
|
73 |
+
|
74 |
+
Examples
|
75 |
+
--------
|
76 |
+
>>> from scipy.special import ellip_harm
|
77 |
+
>>> w = ellip_harm(5,8,1,1,2.5)
|
78 |
+
>>> w
|
79 |
+
2.5
|
80 |
+
|
81 |
+
Check that the functions indeed are solutions to the Lame equation:
|
82 |
+
|
83 |
+
>>> import numpy as np
|
84 |
+
>>> from scipy.interpolate import UnivariateSpline
|
85 |
+
>>> def eigenvalue(f, df, ddf):
|
86 |
+
... r = (((s**2 - h**2) * (s**2 - k**2) * ddf
|
87 |
+
... + s * (2*s**2 - h**2 - k**2) * df
|
88 |
+
... - n * (n + 1)*s**2*f) / f)
|
89 |
+
... return -r.mean(), r.std()
|
90 |
+
>>> s = np.linspace(0.1, 10, 200)
|
91 |
+
>>> k, h, n, p = 8.0, 2.2, 3, 2
|
92 |
+
>>> E = ellip_harm(h**2, k**2, n, p, s)
|
93 |
+
>>> E_spl = UnivariateSpline(s, E)
|
94 |
+
>>> a, a_err = eigenvalue(E_spl(s), E_spl(s,1), E_spl(s,2))
|
95 |
+
>>> a, a_err
|
96 |
+
(583.44366156701483, 6.4580890640310646e-11)
|
97 |
+
|
98 |
+
""" # noqa: E501
|
99 |
+
return _ellip_harm(h2, k2, n, p, s, signm, signn)
|
100 |
+
|
101 |
+
|
102 |
+
_ellip_harm_2_vec = np.vectorize(_ellipsoid, otypes='d')
|
103 |
+
|
104 |
+
|
105 |
+
def ellip_harm_2(h2, k2, n, p, s):
|
106 |
+
r"""
|
107 |
+
Ellipsoidal harmonic functions F^p_n(l)
|
108 |
+
|
109 |
+
These are also known as Lame functions of the second kind, and are
|
110 |
+
solutions to the Lame equation:
|
111 |
+
|
112 |
+
.. math:: (s^2 - h^2)(s^2 - k^2)F''(s)
|
113 |
+
+ s(2s^2 - h^2 - k^2)F'(s) + (a - q s^2)F(s) = 0
|
114 |
+
|
115 |
+
where :math:`q = (n+1)n` and :math:`a` is the eigenvalue (not
|
116 |
+
returned) corresponding to the solutions.
|
117 |
+
|
118 |
+
Parameters
|
119 |
+
----------
|
120 |
+
h2 : float
|
121 |
+
``h**2``
|
122 |
+
k2 : float
|
123 |
+
``k**2``; should be larger than ``h**2``
|
124 |
+
n : int
|
125 |
+
Degree.
|
126 |
+
p : int
|
127 |
+
Order, can range between [1,2n+1].
|
128 |
+
s : float
|
129 |
+
Coordinate
|
130 |
+
|
131 |
+
Returns
|
132 |
+
-------
|
133 |
+
F : float
|
134 |
+
The harmonic :math:`F^p_n(s)`
|
135 |
+
|
136 |
+
See Also
|
137 |
+
--------
|
138 |
+
ellip_harm, ellip_normal
|
139 |
+
|
140 |
+
Notes
|
141 |
+
-----
|
142 |
+
Lame functions of the second kind are related to the functions of the first kind:
|
143 |
+
|
144 |
+
.. math::
|
145 |
+
|
146 |
+
F^p_n(s)=(2n + 1)E^p_n(s)\int_{0}^{1/s}
|
147 |
+
\frac{du}{(E^p_n(1/u))^2\sqrt{(1-u^2k^2)(1-u^2h^2)}}
|
148 |
+
|
149 |
+
.. versionadded:: 0.15.0
|
150 |
+
|
151 |
+
Examples
|
152 |
+
--------
|
153 |
+
>>> from scipy.special import ellip_harm_2
|
154 |
+
>>> w = ellip_harm_2(5,8,2,1,10)
|
155 |
+
>>> w
|
156 |
+
0.00108056853382
|
157 |
+
|
158 |
+
"""
|
159 |
+
with np.errstate(all='ignore'):
|
160 |
+
return _ellip_harm_2_vec(h2, k2, n, p, s)
|
161 |
+
|
162 |
+
|
163 |
+
def _ellip_normal_vec(h2, k2, n, p):
|
164 |
+
return _ellipsoid_norm(h2, k2, n, p)
|
165 |
+
|
166 |
+
|
167 |
+
_ellip_normal_vec = np.vectorize(_ellip_normal_vec, otypes='d')
|
168 |
+
|
169 |
+
|
170 |
+
def ellip_normal(h2, k2, n, p):
|
171 |
+
r"""
|
172 |
+
Ellipsoidal harmonic normalization constants gamma^p_n
|
173 |
+
|
174 |
+
The normalization constant is defined as
|
175 |
+
|
176 |
+
.. math::
|
177 |
+
|
178 |
+
\gamma^p_n=8\int_{0}^{h}dx\int_{h}^{k}dy
|
179 |
+
\frac{(y^2-x^2)(E^p_n(y)E^p_n(x))^2}{\sqrt((k^2-y^2)(y^2-h^2)(h^2-x^2)(k^2-x^2)}
|
180 |
+
|
181 |
+
Parameters
|
182 |
+
----------
|
183 |
+
h2 : float
|
184 |
+
``h**2``
|
185 |
+
k2 : float
|
186 |
+
``k**2``; should be larger than ``h**2``
|
187 |
+
n : int
|
188 |
+
Degree.
|
189 |
+
p : int
|
190 |
+
Order, can range between [1,2n+1].
|
191 |
+
|
192 |
+
Returns
|
193 |
+
-------
|
194 |
+
gamma : float
|
195 |
+
The normalization constant :math:`\gamma^p_n`
|
196 |
+
|
197 |
+
See Also
|
198 |
+
--------
|
199 |
+
ellip_harm, ellip_harm_2
|
200 |
+
|
201 |
+
Notes
|
202 |
+
-----
|
203 |
+
.. versionadded:: 0.15.0
|
204 |
+
|
205 |
+
Examples
|
206 |
+
--------
|
207 |
+
>>> from scipy.special import ellip_normal
|
208 |
+
>>> w = ellip_normal(5,8,3,7)
|
209 |
+
>>> w
|
210 |
+
1723.38796997
|
211 |
+
|
212 |
+
"""
|
213 |
+
with np.errstate(all='ignore'):
|
214 |
+
return _ellip_normal_vec(h2, k2, n, p)
|
venv/lib/python3.10/site-packages/scipy/special/_ellip_harm_2.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (138 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/_lambertw.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ._ufuncs import _lambertw
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
|
6 |
+
def lambertw(z, k=0, tol=1e-8):
|
7 |
+
r"""
|
8 |
+
lambertw(z, k=0, tol=1e-8)
|
9 |
+
|
10 |
+
Lambert W function.
|
11 |
+
|
12 |
+
The Lambert W function `W(z)` is defined as the inverse function
|
13 |
+
of ``w * exp(w)``. In other words, the value of ``W(z)`` is
|
14 |
+
such that ``z = W(z) * exp(W(z))`` for any complex number
|
15 |
+
``z``.
|
16 |
+
|
17 |
+
The Lambert W function is a multivalued function with infinitely
|
18 |
+
many branches. Each branch gives a separate solution of the
|
19 |
+
equation ``z = w exp(w)``. Here, the branches are indexed by the
|
20 |
+
integer `k`.
|
21 |
+
|
22 |
+
Parameters
|
23 |
+
----------
|
24 |
+
z : array_like
|
25 |
+
Input argument.
|
26 |
+
k : int, optional
|
27 |
+
Branch index.
|
28 |
+
tol : float, optional
|
29 |
+
Evaluation tolerance.
|
30 |
+
|
31 |
+
Returns
|
32 |
+
-------
|
33 |
+
w : array
|
34 |
+
`w` will have the same shape as `z`.
|
35 |
+
|
36 |
+
See Also
|
37 |
+
--------
|
38 |
+
wrightomega : the Wright Omega function
|
39 |
+
|
40 |
+
Notes
|
41 |
+
-----
|
42 |
+
All branches are supported by `lambertw`:
|
43 |
+
|
44 |
+
* ``lambertw(z)`` gives the principal solution (branch 0)
|
45 |
+
* ``lambertw(z, k)`` gives the solution on branch `k`
|
46 |
+
|
47 |
+
The Lambert W function has two partially real branches: the
|
48 |
+
principal branch (`k = 0`) is real for real ``z > -1/e``, and the
|
49 |
+
``k = -1`` branch is real for ``-1/e < z < 0``. All branches except
|
50 |
+
``k = 0`` have a logarithmic singularity at ``z = 0``.
|
51 |
+
|
52 |
+
**Possible issues**
|
53 |
+
|
54 |
+
The evaluation can become inaccurate very close to the branch point
|
55 |
+
at ``-1/e``. In some corner cases, `lambertw` might currently
|
56 |
+
fail to converge, or can end up on the wrong branch.
|
57 |
+
|
58 |
+
**Algorithm**
|
59 |
+
|
60 |
+
Halley's iteration is used to invert ``w * exp(w)``, using a first-order
|
61 |
+
asymptotic approximation (O(log(w)) or `O(w)`) as the initial estimate.
|
62 |
+
|
63 |
+
The definition, implementation and choice of branches is based on [2]_.
|
64 |
+
|
65 |
+
References
|
66 |
+
----------
|
67 |
+
.. [1] https://en.wikipedia.org/wiki/Lambert_W_function
|
68 |
+
.. [2] Corless et al, "On the Lambert W function", Adv. Comp. Math. 5
|
69 |
+
(1996) 329-359.
|
70 |
+
https://cs.uwaterloo.ca/research/tr/1993/03/W.pdf
|
71 |
+
|
72 |
+
Examples
|
73 |
+
--------
|
74 |
+
The Lambert W function is the inverse of ``w exp(w)``:
|
75 |
+
|
76 |
+
>>> import numpy as np
|
77 |
+
>>> from scipy.special import lambertw
|
78 |
+
>>> w = lambertw(1)
|
79 |
+
>>> w
|
80 |
+
(0.56714329040978384+0j)
|
81 |
+
>>> w * np.exp(w)
|
82 |
+
(1.0+0j)
|
83 |
+
|
84 |
+
Any branch gives a valid inverse:
|
85 |
+
|
86 |
+
>>> w = lambertw(1, k=3)
|
87 |
+
>>> w
|
88 |
+
(-2.8535817554090377+17.113535539412148j)
|
89 |
+
>>> w*np.exp(w)
|
90 |
+
(1.0000000000000002+1.609823385706477e-15j)
|
91 |
+
|
92 |
+
**Applications to equation-solving**
|
93 |
+
|
94 |
+
The Lambert W function may be used to solve various kinds of
|
95 |
+
equations. We give two examples here.
|
96 |
+
|
97 |
+
First, the function can be used to solve implicit equations of the
|
98 |
+
form
|
99 |
+
|
100 |
+
:math:`x = a + b e^{c x}`
|
101 |
+
|
102 |
+
for :math:`x`. We assume :math:`c` is not zero. After a little
|
103 |
+
algebra, the equation may be written
|
104 |
+
|
105 |
+
:math:`z e^z = -b c e^{a c}`
|
106 |
+
|
107 |
+
where :math:`z = c (a - x)`. :math:`z` may then be expressed using
|
108 |
+
the Lambert W function
|
109 |
+
|
110 |
+
:math:`z = W(-b c e^{a c})`
|
111 |
+
|
112 |
+
giving
|
113 |
+
|
114 |
+
:math:`x = a - W(-b c e^{a c})/c`
|
115 |
+
|
116 |
+
For example,
|
117 |
+
|
118 |
+
>>> a = 3
|
119 |
+
>>> b = 2
|
120 |
+
>>> c = -0.5
|
121 |
+
|
122 |
+
The solution to :math:`x = a + b e^{c x}` is:
|
123 |
+
|
124 |
+
>>> x = a - lambertw(-b*c*np.exp(a*c))/c
|
125 |
+
>>> x
|
126 |
+
(3.3707498368978794+0j)
|
127 |
+
|
128 |
+
Verify that it solves the equation:
|
129 |
+
|
130 |
+
>>> a + b*np.exp(c*x)
|
131 |
+
(3.37074983689788+0j)
|
132 |
+
|
133 |
+
The Lambert W function may also be used find the value of the infinite
|
134 |
+
power tower :math:`z^{z^{z^{\ldots}}}`:
|
135 |
+
|
136 |
+
>>> def tower(z, n):
|
137 |
+
... if n == 0:
|
138 |
+
... return z
|
139 |
+
... return z ** tower(z, n-1)
|
140 |
+
...
|
141 |
+
>>> tower(0.5, 100)
|
142 |
+
0.641185744504986
|
143 |
+
>>> -lambertw(-np.log(0.5)) / np.log(0.5)
|
144 |
+
(0.64118574450498589+0j)
|
145 |
+
"""
|
146 |
+
# TODO: special expert should inspect this
|
147 |
+
# interception; better place to do it?
|
148 |
+
k = np.asarray(k, dtype=np.dtype("long"))
|
149 |
+
return _lambertw(z, k, tol)
|
venv/lib/python3.10/site-packages/scipy/special/_logsumexp.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from scipy._lib._util import _asarray_validated
|
3 |
+
|
4 |
+
__all__ = ["logsumexp", "softmax", "log_softmax"]
|
5 |
+
|
6 |
+
|
7 |
+
def logsumexp(a, axis=None, b=None, keepdims=False, return_sign=False):
|
8 |
+
"""Compute the log of the sum of exponentials of input elements.
|
9 |
+
|
10 |
+
Parameters
|
11 |
+
----------
|
12 |
+
a : array_like
|
13 |
+
Input array.
|
14 |
+
axis : None or int or tuple of ints, optional
|
15 |
+
Axis or axes over which the sum is taken. By default `axis` is None,
|
16 |
+
and all elements are summed.
|
17 |
+
|
18 |
+
.. versionadded:: 0.11.0
|
19 |
+
b : array-like, optional
|
20 |
+
Scaling factor for exp(`a`) must be of the same shape as `a` or
|
21 |
+
broadcastable to `a`. These values may be negative in order to
|
22 |
+
implement subtraction.
|
23 |
+
|
24 |
+
.. versionadded:: 0.12.0
|
25 |
+
keepdims : bool, optional
|
26 |
+
If this is set to True, the axes which are reduced are left in the
|
27 |
+
result as dimensions with size one. With this option, the result
|
28 |
+
will broadcast correctly against the original array.
|
29 |
+
|
30 |
+
.. versionadded:: 0.15.0
|
31 |
+
return_sign : bool, optional
|
32 |
+
If this is set to True, the result will be a pair containing sign
|
33 |
+
information; if False, results that are negative will be returned
|
34 |
+
as NaN. Default is False (no sign information).
|
35 |
+
|
36 |
+
.. versionadded:: 0.16.0
|
37 |
+
|
38 |
+
Returns
|
39 |
+
-------
|
40 |
+
res : ndarray
|
41 |
+
The result, ``np.log(np.sum(np.exp(a)))`` calculated in a numerically
|
42 |
+
more stable way. If `b` is given then ``np.log(np.sum(b*np.exp(a)))``
|
43 |
+
is returned. If ``return_sign`` is True, ``res`` contains the log of
|
44 |
+
the absolute value of the argument.
|
45 |
+
sgn : ndarray
|
46 |
+
If ``return_sign`` is True, this will be an array of floating-point
|
47 |
+
numbers matching res containing +1, 0, -1 (for real-valued inputs)
|
48 |
+
or a complex phase (for complex inputs). This gives the sign of the
|
49 |
+
argument of the logarithm in ``res``.
|
50 |
+
If ``return_sign`` is False, only one result is returned.
|
51 |
+
|
52 |
+
See Also
|
53 |
+
--------
|
54 |
+
numpy.logaddexp, numpy.logaddexp2
|
55 |
+
|
56 |
+
Notes
|
57 |
+
-----
|
58 |
+
NumPy has a logaddexp function which is very similar to `logsumexp`, but
|
59 |
+
only handles two arguments. `logaddexp.reduce` is similar to this
|
60 |
+
function, but may be less stable.
|
61 |
+
|
62 |
+
Examples
|
63 |
+
--------
|
64 |
+
>>> import numpy as np
|
65 |
+
>>> from scipy.special import logsumexp
|
66 |
+
>>> a = np.arange(10)
|
67 |
+
>>> logsumexp(a)
|
68 |
+
9.4586297444267107
|
69 |
+
>>> np.log(np.sum(np.exp(a)))
|
70 |
+
9.4586297444267107
|
71 |
+
|
72 |
+
With weights
|
73 |
+
|
74 |
+
>>> a = np.arange(10)
|
75 |
+
>>> b = np.arange(10, 0, -1)
|
76 |
+
>>> logsumexp(a, b=b)
|
77 |
+
9.9170178533034665
|
78 |
+
>>> np.log(np.sum(b*np.exp(a)))
|
79 |
+
9.9170178533034647
|
80 |
+
|
81 |
+
Returning a sign flag
|
82 |
+
|
83 |
+
>>> logsumexp([1,2],b=[1,-1],return_sign=True)
|
84 |
+
(1.5413248546129181, -1.0)
|
85 |
+
|
86 |
+
Notice that `logsumexp` does not directly support masked arrays. To use it
|
87 |
+
on a masked array, convert the mask into zero weights:
|
88 |
+
|
89 |
+
>>> a = np.ma.array([np.log(2), 2, np.log(3)],
|
90 |
+
... mask=[False, True, False])
|
91 |
+
>>> b = (~a.mask).astype(int)
|
92 |
+
>>> logsumexp(a.data, b=b), np.log(5)
|
93 |
+
1.6094379124341005, 1.6094379124341005
|
94 |
+
|
95 |
+
"""
|
96 |
+
a = _asarray_validated(a, check_finite=False)
|
97 |
+
if b is not None:
|
98 |
+
a, b = np.broadcast_arrays(a, b)
|
99 |
+
if np.any(b == 0):
|
100 |
+
a = a + 0. # promote to at least float
|
101 |
+
a[b == 0] = -np.inf
|
102 |
+
|
103 |
+
# Scale by real part for complex inputs, because this affects
|
104 |
+
# the magnitude of the exponential.
|
105 |
+
a_max = np.amax(a.real, axis=axis, keepdims=True)
|
106 |
+
|
107 |
+
if a_max.ndim > 0:
|
108 |
+
a_max[~np.isfinite(a_max)] = 0
|
109 |
+
elif not np.isfinite(a_max):
|
110 |
+
a_max = 0
|
111 |
+
|
112 |
+
if b is not None:
|
113 |
+
b = np.asarray(b)
|
114 |
+
tmp = b * np.exp(a - a_max)
|
115 |
+
else:
|
116 |
+
tmp = np.exp(a - a_max)
|
117 |
+
|
118 |
+
# suppress warnings about log of zero
|
119 |
+
with np.errstate(divide='ignore'):
|
120 |
+
s = np.sum(tmp, axis=axis, keepdims=keepdims)
|
121 |
+
if return_sign:
|
122 |
+
# For complex, use the numpy>=2.0 convention for sign.
|
123 |
+
if np.issubdtype(s.dtype, np.complexfloating):
|
124 |
+
sgn = s / np.where(s == 0, 1, abs(s))
|
125 |
+
else:
|
126 |
+
sgn = np.sign(s)
|
127 |
+
s = abs(s)
|
128 |
+
out = np.log(s)
|
129 |
+
|
130 |
+
if not keepdims:
|
131 |
+
a_max = np.squeeze(a_max, axis=axis)
|
132 |
+
out += a_max
|
133 |
+
|
134 |
+
if return_sign:
|
135 |
+
return out, sgn
|
136 |
+
else:
|
137 |
+
return out
|
138 |
+
|
139 |
+
|
140 |
+
def softmax(x, axis=None):
|
141 |
+
r"""Compute the softmax function.
|
142 |
+
|
143 |
+
The softmax function transforms each element of a collection by
|
144 |
+
computing the exponential of each element divided by the sum of the
|
145 |
+
exponentials of all the elements. That is, if `x` is a one-dimensional
|
146 |
+
numpy array::
|
147 |
+
|
148 |
+
softmax(x) = np.exp(x)/sum(np.exp(x))
|
149 |
+
|
150 |
+
Parameters
|
151 |
+
----------
|
152 |
+
x : array_like
|
153 |
+
Input array.
|
154 |
+
axis : int or tuple of ints, optional
|
155 |
+
Axis to compute values along. Default is None and softmax will be
|
156 |
+
computed over the entire array `x`.
|
157 |
+
|
158 |
+
Returns
|
159 |
+
-------
|
160 |
+
s : ndarray
|
161 |
+
An array the same shape as `x`. The result will sum to 1 along the
|
162 |
+
specified axis.
|
163 |
+
|
164 |
+
Notes
|
165 |
+
-----
|
166 |
+
The formula for the softmax function :math:`\sigma(x)` for a vector
|
167 |
+
:math:`x = \{x_0, x_1, ..., x_{n-1}\}` is
|
168 |
+
|
169 |
+
.. math:: \sigma(x)_j = \frac{e^{x_j}}{\sum_k e^{x_k}}
|
170 |
+
|
171 |
+
The `softmax` function is the gradient of `logsumexp`.
|
172 |
+
|
173 |
+
The implementation uses shifting to avoid overflow. See [1]_ for more
|
174 |
+
details.
|
175 |
+
|
176 |
+
.. versionadded:: 1.2.0
|
177 |
+
|
178 |
+
References
|
179 |
+
----------
|
180 |
+
.. [1] P. Blanchard, D.J. Higham, N.J. Higham, "Accurately computing the
|
181 |
+
log-sum-exp and softmax functions", IMA Journal of Numerical Analysis,
|
182 |
+
Vol.41(4), :doi:`10.1093/imanum/draa038`.
|
183 |
+
|
184 |
+
Examples
|
185 |
+
--------
|
186 |
+
>>> import numpy as np
|
187 |
+
>>> from scipy.special import softmax
|
188 |
+
>>> np.set_printoptions(precision=5)
|
189 |
+
|
190 |
+
>>> x = np.array([[1, 0.5, 0.2, 3],
|
191 |
+
... [1, -1, 7, 3],
|
192 |
+
... [2, 12, 13, 3]])
|
193 |
+
...
|
194 |
+
|
195 |
+
Compute the softmax transformation over the entire array.
|
196 |
+
|
197 |
+
>>> m = softmax(x)
|
198 |
+
>>> m
|
199 |
+
array([[ 4.48309e-06, 2.71913e-06, 2.01438e-06, 3.31258e-05],
|
200 |
+
[ 4.48309e-06, 6.06720e-07, 1.80861e-03, 3.31258e-05],
|
201 |
+
[ 1.21863e-05, 2.68421e-01, 7.29644e-01, 3.31258e-05]])
|
202 |
+
|
203 |
+
>>> m.sum()
|
204 |
+
1.0
|
205 |
+
|
206 |
+
Compute the softmax transformation along the first axis (i.e., the
|
207 |
+
columns).
|
208 |
+
|
209 |
+
>>> m = softmax(x, axis=0)
|
210 |
+
|
211 |
+
>>> m
|
212 |
+
array([[ 2.11942e-01, 1.01300e-05, 2.75394e-06, 3.33333e-01],
|
213 |
+
[ 2.11942e-01, 2.26030e-06, 2.47262e-03, 3.33333e-01],
|
214 |
+
[ 5.76117e-01, 9.99988e-01, 9.97525e-01, 3.33333e-01]])
|
215 |
+
|
216 |
+
>>> m.sum(axis=0)
|
217 |
+
array([ 1., 1., 1., 1.])
|
218 |
+
|
219 |
+
Compute the softmax transformation along the second axis (i.e., the rows).
|
220 |
+
|
221 |
+
>>> m = softmax(x, axis=1)
|
222 |
+
>>> m
|
223 |
+
array([[ 1.05877e-01, 6.42177e-02, 4.75736e-02, 7.82332e-01],
|
224 |
+
[ 2.42746e-03, 3.28521e-04, 9.79307e-01, 1.79366e-02],
|
225 |
+
[ 1.22094e-05, 2.68929e-01, 7.31025e-01, 3.31885e-05]])
|
226 |
+
|
227 |
+
>>> m.sum(axis=1)
|
228 |
+
array([ 1., 1., 1.])
|
229 |
+
|
230 |
+
"""
|
231 |
+
x = _asarray_validated(x, check_finite=False)
|
232 |
+
x_max = np.amax(x, axis=axis, keepdims=True)
|
233 |
+
exp_x_shifted = np.exp(x - x_max)
|
234 |
+
return exp_x_shifted / np.sum(exp_x_shifted, axis=axis, keepdims=True)
|
235 |
+
|
236 |
+
|
237 |
+
def log_softmax(x, axis=None):
|
238 |
+
r"""Compute the logarithm of the softmax function.
|
239 |
+
|
240 |
+
In principle::
|
241 |
+
|
242 |
+
log_softmax(x) = log(softmax(x))
|
243 |
+
|
244 |
+
but using a more accurate implementation.
|
245 |
+
|
246 |
+
Parameters
|
247 |
+
----------
|
248 |
+
x : array_like
|
249 |
+
Input array.
|
250 |
+
axis : int or tuple of ints, optional
|
251 |
+
Axis to compute values along. Default is None and softmax will be
|
252 |
+
computed over the entire array `x`.
|
253 |
+
|
254 |
+
Returns
|
255 |
+
-------
|
256 |
+
s : ndarray or scalar
|
257 |
+
An array with the same shape as `x`. Exponential of the result will
|
258 |
+
sum to 1 along the specified axis. If `x` is a scalar, a scalar is
|
259 |
+
returned.
|
260 |
+
|
261 |
+
Notes
|
262 |
+
-----
|
263 |
+
`log_softmax` is more accurate than ``np.log(softmax(x))`` with inputs that
|
264 |
+
make `softmax` saturate (see examples below).
|
265 |
+
|
266 |
+
.. versionadded:: 1.5.0
|
267 |
+
|
268 |
+
Examples
|
269 |
+
--------
|
270 |
+
>>> import numpy as np
|
271 |
+
>>> from scipy.special import log_softmax
|
272 |
+
>>> from scipy.special import softmax
|
273 |
+
>>> np.set_printoptions(precision=5)
|
274 |
+
|
275 |
+
>>> x = np.array([1000.0, 1.0])
|
276 |
+
|
277 |
+
>>> y = log_softmax(x)
|
278 |
+
>>> y
|
279 |
+
array([ 0., -999.])
|
280 |
+
|
281 |
+
>>> with np.errstate(divide='ignore'):
|
282 |
+
... y = np.log(softmax(x))
|
283 |
+
...
|
284 |
+
>>> y
|
285 |
+
array([ 0., -inf])
|
286 |
+
|
287 |
+
"""
|
288 |
+
|
289 |
+
x = _asarray_validated(x, check_finite=False)
|
290 |
+
|
291 |
+
x_max = np.amax(x, axis=axis, keepdims=True)
|
292 |
+
|
293 |
+
if x_max.ndim > 0:
|
294 |
+
x_max[~np.isfinite(x_max)] = 0
|
295 |
+
elif not np.isfinite(x_max):
|
296 |
+
x_max = 0
|
297 |
+
|
298 |
+
tmp = x - x_max
|
299 |
+
exp_tmp = np.exp(tmp)
|
300 |
+
|
301 |
+
# suppress warnings about log of zero
|
302 |
+
with np.errstate(divide='ignore'):
|
303 |
+
s = np.sum(exp_tmp, axis=axis, keepdims=True)
|
304 |
+
out = np.log(s)
|
305 |
+
|
306 |
+
out = tmp - out
|
307 |
+
return out
|