File size: 6,173 Bytes
953e096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import warnings
import numpy as np
import pytest

from scipy.fft._fftlog import fht, ifht, fhtoffset
from scipy.special import poch

from scipy.conftest import array_api_compatible
from scipy._lib._array_api import xp_assert_close

pytestmark = array_api_compatible


def test_fht_agrees_with_fftlog(xp):
    # check that fht numerically agrees with the output from Fortran FFTLog,
    # the results were generated with the provided `fftlogtest` program,
    # after fixing how the k array is generated (divide range by n-1, not n)

    # test function, analytical Hankel transform is of the same form
    def f(r, mu):
        return r**(mu+1)*np.exp(-r**2/2)

    r = np.logspace(-4, 4, 16)

    dln = np.log(r[1]/r[0])
    mu = 0.3
    offset = 0.0
    bias = 0.0

    a = xp.asarray(f(r, mu))

    # test 1: compute as given
    ours = fht(a, dln, mu, offset=offset, bias=bias)
    theirs = [-0.1159922613593045E-02, +0.1625822618458832E-02,
              -0.1949518286432330E-02, +0.3789220182554077E-02,
              +0.5093959119952945E-03, +0.2785387803618774E-01,
              +0.9944952700848897E-01, +0.4599202164586588E+00,
              +0.3157462160881342E+00, -0.8201236844404755E-03,
              -0.7834031308271878E-03, +0.3931444945110708E-03,
              -0.2697710625194777E-03, +0.3568398050238820E-03,
              -0.5554454827797206E-03, +0.8286331026468585E-03]
    theirs = xp.asarray(theirs, dtype=xp.float64)
    xp_assert_close(ours, theirs)

    # test 2: change to optimal offset
    offset = fhtoffset(dln, mu, bias=bias)
    ours = fht(a, dln, mu, offset=offset, bias=bias)
    theirs = [+0.4353768523152057E-04, -0.9197045663594285E-05,
              +0.3150140927838524E-03, +0.9149121960963704E-03,
              +0.5808089753959363E-02, +0.2548065256377240E-01,
              +0.1339477692089897E+00, +0.4821530509479356E+00,
              +0.2659899781579785E+00, -0.1116475278448113E-01,
              +0.1791441617592385E-02, -0.4181810476548056E-03,
              +0.1314963536765343E-03, -0.5422057743066297E-04,
              +0.3208681804170443E-04, -0.2696849476008234E-04]
    theirs = xp.asarray(theirs, dtype=xp.float64)
    xp_assert_close(ours, theirs)

    # test 3: positive bias
    bias = 0.8
    offset = fhtoffset(dln, mu, bias=bias)
    ours = fht(a, dln, mu, offset=offset, bias=bias)
    theirs = [-7.3436673558316850E+00, +0.1710271207817100E+00,
              +0.1065374386206564E+00, -0.5121739602708132E-01,
              +0.2636649319269470E-01, +0.1697209218849693E-01,
              +0.1250215614723183E+00, +0.4739583261486729E+00,
              +0.2841149874912028E+00, -0.8312764741645729E-02,
              +0.1024233505508988E-02, -0.1644902767389120E-03,
              +0.3305775476926270E-04, -0.7786993194882709E-05,
              +0.1962258449520547E-05, -0.8977895734909250E-06]
    theirs = xp.asarray(theirs, dtype=xp.float64)
    xp_assert_close(ours, theirs)

    # test 4: negative bias
    bias = -0.8
    offset = fhtoffset(dln, mu, bias=bias)
    ours = fht(a, dln, mu, offset=offset, bias=bias)
    theirs = [+0.8985777068568745E-05, +0.4074898209936099E-04,
              +0.2123969254700955E-03, +0.1009558244834628E-02,
              +0.5131386375222176E-02, +0.2461678673516286E-01,
              +0.1235812845384476E+00, +0.4719570096404403E+00,
              +0.2893487490631317E+00, -0.1686570611318716E-01,
              +0.2231398155172505E-01, -0.1480742256379873E-01,
              +0.1692387813500801E+00, +0.3097490354365797E+00,
              +2.7593607182401860E+00, 10.5251075070045800E+00]
    theirs = xp.asarray(theirs, dtype=xp.float64)
    xp_assert_close(ours, theirs)


@pytest.mark.parametrize('optimal', [True, False])
@pytest.mark.parametrize('offset', [0.0, 1.0, -1.0])
@pytest.mark.parametrize('bias', [0, 0.1, -0.1])
@pytest.mark.parametrize('n', [64, 63])
def test_fht_identity(n, bias, offset, optimal, xp):
    rng = np.random.RandomState(3491349965)

    a = xp.asarray(rng.standard_normal(n))
    dln = rng.uniform(-1, 1)
    mu = rng.uniform(-2, 2)

    if optimal:
        offset = fhtoffset(dln, mu, initial=offset, bias=bias)

    A = fht(a, dln, mu, offset=offset, bias=bias)
    a_ = ifht(A, dln, mu, offset=offset, bias=bias)

    xp_assert_close(a_, a)


def test_fht_special_cases(xp):
    rng = np.random.RandomState(3491349965)

    a = xp.asarray(rng.standard_normal(64))
    dln = rng.uniform(-1, 1)

    # let x = (mu+1+q)/2, y = (mu+1-q)/2, M = {0, -1, -2, ...}

    # case 1: x in M, y in M => well-defined transform
    mu, bias = -4.0, 1.0
    with warnings.catch_warnings(record=True) as record:
        fht(a, dln, mu, bias=bias)
        assert not record, 'fht warned about a well-defined transform'

    # case 2: x not in M, y in M => well-defined transform
    mu, bias = -2.5, 0.5
    with warnings.catch_warnings(record=True) as record:
        fht(a, dln, mu, bias=bias)
        assert not record, 'fht warned about a well-defined transform'

    # case 3: x in M, y not in M => singular transform
    mu, bias = -3.5, 0.5
    with pytest.warns(Warning) as record:
        fht(a, dln, mu, bias=bias)
        assert record, 'fht did not warn about a singular transform'

    # case 4: x not in M, y in M => singular inverse transform
    mu, bias = -2.5, 0.5
    with pytest.warns(Warning) as record:
        ifht(a, dln, mu, bias=bias)
        assert record, 'ifht did not warn about a singular transform'


@pytest.mark.parametrize('n', [64, 63])
def test_fht_exact(n, xp):
    rng = np.random.RandomState(3491349965)

    # for a(r) a power law r^\gamma, the fast Hankel transform produces the
    # exact continuous Hankel transform if biased with q = \gamma

    mu = rng.uniform(0, 3)

    # convergence of HT: -1-mu < gamma < 1/2
    gamma = rng.uniform(-1-mu, 1/2)

    r = np.logspace(-2, 2, n)
    a = xp.asarray(r**gamma)

    dln = np.log(r[1]/r[0])

    offset = fhtoffset(dln, mu, initial=0.0, bias=gamma)

    A = fht(a, dln, mu, offset=offset, bias=gamma)

    k = np.exp(offset)/r[::-1]

    # analytical result
    At = xp.asarray((2/k)**gamma * poch((mu+1-gamma)/2, gamma))

    xp_assert_close(A, At)