applied-ai-018 commited on
Commit
953e096
·
verified ·
1 Parent(s): 30f67c8

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step40/zero/15.attention.dense.weight/fp32.pt +3 -0
  2. ckpts/universal/global_step40/zero/15.post_attention_layernorm.weight/fp32.pt +3 -0
  3. ckpts/universal/global_step40/zero/23.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
  4. ckpts/universal/global_step40/zero/26.attention.dense.weight/exp_avg_sq.pt +3 -0
  5. ckpts/universal/global_step40/zero/26.attention.dense.weight/fp32.pt +3 -0
  6. ckpts/universal/global_step40/zero/26.attention.query_key_value.weight/exp_avg.pt +3 -0
  7. ckpts/universal/global_step40/zero/26.attention.query_key_value.weight/fp32.pt +3 -0
  8. venv/lib/python3.10/site-packages/scipy/fft/__init__.py +111 -0
  9. venv/lib/python3.10/site-packages/scipy/fft/__pycache__/__init__.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/scipy/fft/__pycache__/_backend.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/scipy/fft/__pycache__/_basic.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/scipy/fft/__pycache__/_basic_backend.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/scipy/fft/__pycache__/_debug_backends.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/scipy/fft/__pycache__/_fftlog.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/scipy/fft/__pycache__/_fftlog_backend.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/scipy/fft/__pycache__/_helper.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/scipy/fft/__pycache__/_realtransforms.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/scipy/fft/__pycache__/_realtransforms_backend.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/scipy/fft/_backend.py +196 -0
  20. venv/lib/python3.10/site-packages/scipy/fft/_basic.py +1630 -0
  21. venv/lib/python3.10/site-packages/scipy/fft/_basic_backend.py +176 -0
  22. venv/lib/python3.10/site-packages/scipy/fft/_debug_backends.py +22 -0
  23. venv/lib/python3.10/site-packages/scipy/fft/_fftlog.py +223 -0
  24. venv/lib/python3.10/site-packages/scipy/fft/_fftlog_backend.py +197 -0
  25. venv/lib/python3.10/site-packages/scipy/fft/_helper.py +313 -0
  26. venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/LICENSE.md +25 -0
  27. venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/__init__.py +9 -0
  28. venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/__pycache__/__init__.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/__pycache__/basic.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/__pycache__/helper.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/__pycache__/realtransforms.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/basic.py +251 -0
  33. venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/helper.py +221 -0
  34. venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/realtransforms.py +109 -0
  35. venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/tests/__init__.py +0 -0
  36. venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/tests/__pycache__/test_basic.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/tests/__pycache__/test_real_transforms.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/tests/test_basic.py +1005 -0
  40. venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/tests/test_real_transforms.py +494 -0
  41. venv/lib/python3.10/site-packages/scipy/fft/_realtransforms.py +693 -0
  42. venv/lib/python3.10/site-packages/scipy/fft/_realtransforms_backend.py +63 -0
  43. venv/lib/python3.10/site-packages/scipy/fft/tests/__init__.py +0 -0
  44. venv/lib/python3.10/site-packages/scipy/fft/tests/__pycache__/mock_backend.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/scipy/fft/tests/__pycache__/test_backend.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/scipy/fft/tests/__pycache__/test_basic.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/scipy/fft/tests/__pycache__/test_fftlog.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/scipy/fft/tests/__pycache__/test_multithreading.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/scipy/fft/tests/__pycache__/test_real_transforms.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/scipy/fft/tests/mock_backend.py +92 -0
ckpts/universal/global_step40/zero/15.attention.dense.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38dff829c2020c3e39d7ad2bde4962c23ecac7722359bffc74bbb7c0440f0e03
3
+ size 16778317
ckpts/universal/global_step40/zero/15.post_attention_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa18500e1a868374d4589a520c6866e200434fb5ba2ce6d22dfe29059ec0a734
3
+ size 9293
ckpts/universal/global_step40/zero/23.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b45220ac44735a023fe49d4f5c55544da02a11b0a036d77f28001c1494beb604
3
+ size 33555627
ckpts/universal/global_step40/zero/26.attention.dense.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07974e68e74e5b4a0765c2cd3e34a0afa25d2ca6d1300111796fb0180f5fb441
3
+ size 16778411
ckpts/universal/global_step40/zero/26.attention.dense.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e86bc6874312288703ca761702337f1044fdccfd6897ece2957914192e9d066b
3
+ size 16778317
ckpts/universal/global_step40/zero/26.attention.query_key_value.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0914774ec02ad1de3d4ed79fd71a5ed2f2a8de00080c8a34ac9ee915a525c8fe
3
+ size 50332828
ckpts/universal/global_step40/zero/26.attention.query_key_value.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2678b103056818002b5276ddec83da875b705035299503ffe28a708027fd8c30
3
+ size 50332749
venv/lib/python3.10/site-packages/scipy/fft/__init__.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ==============================================
3
+ Discrete Fourier transforms (:mod:`scipy.fft`)
4
+ ==============================================
5
+
6
+ .. currentmodule:: scipy.fft
7
+
8
+ Fast Fourier Transforms (FFTs)
9
+ ==============================
10
+
11
+ .. autosummary::
12
+ :toctree: generated/
13
+
14
+ fft - Fast (discrete) Fourier Transform (FFT)
15
+ ifft - Inverse FFT
16
+ fft2 - 2-D FFT
17
+ ifft2 - 2-D inverse FFT
18
+ fftn - N-D FFT
19
+ ifftn - N-D inverse FFT
20
+ rfft - FFT of strictly real-valued sequence
21
+ irfft - Inverse of rfft
22
+ rfft2 - 2-D FFT of real sequence
23
+ irfft2 - Inverse of rfft2
24
+ rfftn - N-D FFT of real sequence
25
+ irfftn - Inverse of rfftn
26
+ hfft - FFT of a Hermitian sequence (real spectrum)
27
+ ihfft - Inverse of hfft
28
+ hfft2 - 2-D FFT of a Hermitian sequence
29
+ ihfft2 - Inverse of hfft2
30
+ hfftn - N-D FFT of a Hermitian sequence
31
+ ihfftn - Inverse of hfftn
32
+
33
+ Discrete Sin and Cosine Transforms (DST and DCT)
34
+ ================================================
35
+
36
+ .. autosummary::
37
+ :toctree: generated/
38
+
39
+ dct - Discrete cosine transform
40
+ idct - Inverse discrete cosine transform
41
+ dctn - N-D Discrete cosine transform
42
+ idctn - N-D Inverse discrete cosine transform
43
+ dst - Discrete sine transform
44
+ idst - Inverse discrete sine transform
45
+ dstn - N-D Discrete sine transform
46
+ idstn - N-D Inverse discrete sine transform
47
+
48
+ Fast Hankel Transforms
49
+ ======================
50
+
51
+ .. autosummary::
52
+ :toctree: generated/
53
+
54
+ fht - Fast Hankel transform
55
+ ifht - Inverse of fht
56
+
57
+ Helper functions
58
+ ================
59
+
60
+ .. autosummary::
61
+ :toctree: generated/
62
+
63
+ fftshift - Shift the zero-frequency component to the center of the spectrum
64
+ ifftshift - The inverse of `fftshift`
65
+ fftfreq - Return the Discrete Fourier Transform sample frequencies
66
+ rfftfreq - DFT sample frequencies (for usage with rfft, irfft)
67
+ fhtoffset - Compute an optimal offset for the Fast Hankel Transform
68
+ next_fast_len - Find the optimal length to zero-pad an FFT for speed
69
+ set_workers - Context manager to set default number of workers
70
+ get_workers - Get the current default number of workers
71
+
72
+ Backend control
73
+ ===============
74
+
75
+ .. autosummary::
76
+ :toctree: generated/
77
+
78
+ set_backend - Context manager to set the backend within a fixed scope
79
+ skip_backend - Context manager to skip a backend within a fixed scope
80
+ set_global_backend - Sets the global fft backend
81
+ register_backend - Register a backend for permanent use
82
+
83
+ """
84
+
85
+ from ._basic import (
86
+ fft, ifft, fft2, ifft2, fftn, ifftn,
87
+ rfft, irfft, rfft2, irfft2, rfftn, irfftn,
88
+ hfft, ihfft, hfft2, ihfft2, hfftn, ihfftn)
89
+ from ._realtransforms import dct, idct, dst, idst, dctn, idctn, dstn, idstn
90
+ from ._fftlog import fht, ifht, fhtoffset
91
+ from ._helper import next_fast_len, fftfreq, rfftfreq, fftshift, ifftshift
92
+ from ._backend import (set_backend, skip_backend, set_global_backend,
93
+ register_backend)
94
+ from ._pocketfft.helper import set_workers, get_workers
95
+
96
+ __all__ = [
97
+ 'fft', 'ifft', 'fft2', 'ifft2', 'fftn', 'ifftn',
98
+ 'rfft', 'irfft', 'rfft2', 'irfft2', 'rfftn', 'irfftn',
99
+ 'hfft', 'ihfft', 'hfft2', 'ihfft2', 'hfftn', 'ihfftn',
100
+ 'fftfreq', 'rfftfreq', 'fftshift', 'ifftshift',
101
+ 'next_fast_len',
102
+ 'dct', 'idct', 'dst', 'idst', 'dctn', 'idctn', 'dstn', 'idstn',
103
+ 'fht', 'ifht',
104
+ 'fhtoffset',
105
+ 'set_backend', 'skip_backend', 'set_global_backend', 'register_backend',
106
+ 'get_workers', 'set_workers']
107
+
108
+
109
+ from scipy._lib._testutils import PytestTester
110
+ test = PytestTester(__name__)
111
+ del PytestTester
venv/lib/python3.10/site-packages/scipy/fft/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (3.77 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/__pycache__/_backend.cpython-310.pyc ADDED
Binary file (6.82 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/__pycache__/_basic.cpython-310.pyc ADDED
Binary file (62.5 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/__pycache__/_basic_backend.cpython-310.pyc ADDED
Binary file (4.29 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/__pycache__/_debug_backends.cpython-310.pyc ADDED
Binary file (1.06 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/__pycache__/_fftlog.cpython-310.pyc ADDED
Binary file (8.18 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/__pycache__/_fftlog_backend.cpython-310.pyc ADDED
Binary file (4.32 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/__pycache__/_helper.cpython-310.pyc ADDED
Binary file (9.72 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/__pycache__/_realtransforms.cpython-310.pyc ADDED
Binary file (25.3 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/__pycache__/_realtransforms_backend.cpython-310.pyc ADDED
Binary file (1.78 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/_backend.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import scipy._lib.uarray as ua
2
+ from . import _basic_backend
3
+ from . import _realtransforms_backend
4
+ from . import _fftlog_backend
5
+
6
+
7
+ class _ScipyBackend:
8
+ """The default backend for fft calculations
9
+
10
+ Notes
11
+ -----
12
+ We use the domain ``numpy.scipy`` rather than ``scipy`` because ``uarray``
13
+ treats the domain as a hierarchy. This means the user can install a single
14
+ backend for ``numpy`` and have it implement ``numpy.scipy.fft`` as well.
15
+ """
16
+ __ua_domain__ = "numpy.scipy.fft"
17
+
18
+ @staticmethod
19
+ def __ua_function__(method, args, kwargs):
20
+
21
+ fn = getattr(_basic_backend, method.__name__, None)
22
+ if fn is None:
23
+ fn = getattr(_realtransforms_backend, method.__name__, None)
24
+ if fn is None:
25
+ fn = getattr(_fftlog_backend, method.__name__, None)
26
+ if fn is None:
27
+ return NotImplemented
28
+ return fn(*args, **kwargs)
29
+
30
+
31
+ _named_backends = {
32
+ 'scipy': _ScipyBackend,
33
+ }
34
+
35
+
36
+ def _backend_from_arg(backend):
37
+ """Maps strings to known backends and validates the backend"""
38
+
39
+ if isinstance(backend, str):
40
+ try:
41
+ backend = _named_backends[backend]
42
+ except KeyError as e:
43
+ raise ValueError(f'Unknown backend {backend}') from e
44
+
45
+ if backend.__ua_domain__ != 'numpy.scipy.fft':
46
+ raise ValueError('Backend does not implement "numpy.scipy.fft"')
47
+
48
+ return backend
49
+
50
+
51
+ def set_global_backend(backend, coerce=False, only=False, try_last=False):
52
+ """Sets the global fft backend
53
+
54
+ This utility method replaces the default backend for permanent use. It
55
+ will be tried in the list of backends automatically, unless the
56
+ ``only`` flag is set on a backend. This will be the first tried
57
+ backend outside the :obj:`set_backend` context manager.
58
+
59
+ Parameters
60
+ ----------
61
+ backend : {object, 'scipy'}
62
+ The backend to use.
63
+ Can either be a ``str`` containing the name of a known backend
64
+ {'scipy'} or an object that implements the uarray protocol.
65
+ coerce : bool
66
+ Whether to coerce input types when trying this backend.
67
+ only : bool
68
+ If ``True``, no more backends will be tried if this fails.
69
+ Implied by ``coerce=True``.
70
+ try_last : bool
71
+ If ``True``, the global backend is tried after registered backends.
72
+
73
+ Raises
74
+ ------
75
+ ValueError: If the backend does not implement ``numpy.scipy.fft``.
76
+
77
+ Notes
78
+ -----
79
+ This will overwrite the previously set global backend, which, by default, is
80
+ the SciPy implementation.
81
+
82
+ Examples
83
+ --------
84
+ We can set the global fft backend:
85
+
86
+ >>> from scipy.fft import fft, set_global_backend
87
+ >>> set_global_backend("scipy") # Sets global backend (default is "scipy").
88
+ >>> fft([1]) # Calls the global backend
89
+ array([1.+0.j])
90
+ """
91
+ backend = _backend_from_arg(backend)
92
+ ua.set_global_backend(backend, coerce=coerce, only=only, try_last=try_last)
93
+
94
+
95
+ def register_backend(backend):
96
+ """
97
+ Register a backend for permanent use.
98
+
99
+ Registered backends have the lowest priority and will be tried after the
100
+ global backend.
101
+
102
+ Parameters
103
+ ----------
104
+ backend : {object, 'scipy'}
105
+ The backend to use.
106
+ Can either be a ``str`` containing the name of a known backend
107
+ {'scipy'} or an object that implements the uarray protocol.
108
+
109
+ Raises
110
+ ------
111
+ ValueError: If the backend does not implement ``numpy.scipy.fft``.
112
+
113
+ Examples
114
+ --------
115
+ We can register a new fft backend:
116
+
117
+ >>> from scipy.fft import fft, register_backend, set_global_backend
118
+ >>> class NoopBackend: # Define an invalid Backend
119
+ ... __ua_domain__ = "numpy.scipy.fft"
120
+ ... def __ua_function__(self, func, args, kwargs):
121
+ ... return NotImplemented
122
+ >>> set_global_backend(NoopBackend()) # Set the invalid backend as global
123
+ >>> register_backend("scipy") # Register a new backend
124
+ # The registered backend is called because
125
+ # the global backend returns `NotImplemented`
126
+ >>> fft([1])
127
+ array([1.+0.j])
128
+ >>> set_global_backend("scipy") # Restore global backend to default
129
+
130
+ """
131
+ backend = _backend_from_arg(backend)
132
+ ua.register_backend(backend)
133
+
134
+
135
+ def set_backend(backend, coerce=False, only=False):
136
+ """Context manager to set the backend within a fixed scope.
137
+
138
+ Upon entering the ``with`` statement, the given backend will be added to
139
+ the list of available backends with the highest priority. Upon exit, the
140
+ backend is reset to the state before entering the scope.
141
+
142
+ Parameters
143
+ ----------
144
+ backend : {object, 'scipy'}
145
+ The backend to use.
146
+ Can either be a ``str`` containing the name of a known backend
147
+ {'scipy'} or an object that implements the uarray protocol.
148
+ coerce : bool, optional
149
+ Whether to allow expensive conversions for the ``x`` parameter. e.g.,
150
+ copying a NumPy array to the GPU for a CuPy backend. Implies ``only``.
151
+ only : bool, optional
152
+ If only is ``True`` and this backend returns ``NotImplemented``, then a
153
+ BackendNotImplemented error will be raised immediately. Ignoring any
154
+ lower priority backends.
155
+
156
+ Examples
157
+ --------
158
+ >>> import scipy.fft as fft
159
+ >>> with fft.set_backend('scipy', only=True):
160
+ ... fft.fft([1]) # Always calls the scipy implementation
161
+ array([1.+0.j])
162
+ """
163
+ backend = _backend_from_arg(backend)
164
+ return ua.set_backend(backend, coerce=coerce, only=only)
165
+
166
+
167
+ def skip_backend(backend):
168
+ """Context manager to skip a backend within a fixed scope.
169
+
170
+ Within the context of a ``with`` statement, the given backend will not be
171
+ called. This covers backends registered both locally and globally. Upon
172
+ exit, the backend will again be considered.
173
+
174
+ Parameters
175
+ ----------
176
+ backend : {object, 'scipy'}
177
+ The backend to skip.
178
+ Can either be a ``str`` containing the name of a known backend
179
+ {'scipy'} or an object that implements the uarray protocol.
180
+
181
+ Examples
182
+ --------
183
+ >>> import scipy.fft as fft
184
+ >>> fft.fft([1]) # Calls default SciPy backend
185
+ array([1.+0.j])
186
+ >>> with fft.skip_backend('scipy'): # We explicitly skip the SciPy backend
187
+ ... fft.fft([1]) # leaving no implementation available
188
+ Traceback (most recent call last):
189
+ ...
190
+ BackendNotImplementedError: No selected backends had an implementation ...
191
+ """
192
+ backend = _backend_from_arg(backend)
193
+ return ua.skip_backend(backend)
194
+
195
+
196
+ set_global_backend('scipy', try_last=True)
venv/lib/python3.10/site-packages/scipy/fft/_basic.py ADDED
@@ -0,0 +1,1630 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from scipy._lib.uarray import generate_multimethod, Dispatchable
2
+ import numpy as np
3
+
4
+
5
+ def _x_replacer(args, kwargs, dispatchables):
6
+ """
7
+ uarray argument replacer to replace the transform input array (``x``)
8
+ """
9
+ if len(args) > 0:
10
+ return (dispatchables[0],) + args[1:], kwargs
11
+ kw = kwargs.copy()
12
+ kw['x'] = dispatchables[0]
13
+ return args, kw
14
+
15
+
16
+ def _dispatch(func):
17
+ """
18
+ Function annotation that creates a uarray multimethod from the function
19
+ """
20
+ return generate_multimethod(func, _x_replacer, domain="numpy.scipy.fft")
21
+
22
+
23
+ @_dispatch
24
+ def fft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *,
25
+ plan=None):
26
+ """
27
+ Compute the 1-D discrete Fourier Transform.
28
+
29
+ This function computes the 1-D *n*-point discrete Fourier
30
+ Transform (DFT) with the efficient Fast Fourier Transform (FFT)
31
+ algorithm [1]_.
32
+
33
+ Parameters
34
+ ----------
35
+ x : array_like
36
+ Input array, can be complex.
37
+ n : int, optional
38
+ Length of the transformed axis of the output.
39
+ If `n` is smaller than the length of the input, the input is cropped.
40
+ If it is larger, the input is padded with zeros. If `n` is not given,
41
+ the length of the input along the axis specified by `axis` is used.
42
+ axis : int, optional
43
+ Axis over which to compute the FFT. If not given, the last axis is
44
+ used.
45
+ norm : {"backward", "ortho", "forward"}, optional
46
+ Normalization mode. Default is "backward", meaning no normalization on
47
+ the forward transforms and scaling by ``1/n`` on the `ifft`.
48
+ "forward" instead applies the ``1/n`` factor on the forward transform.
49
+ For ``norm="ortho"``, both directions are scaled by ``1/sqrt(n)``.
50
+
51
+ .. versionadded:: 1.6.0
52
+ ``norm={"forward", "backward"}`` options were added
53
+
54
+ overwrite_x : bool, optional
55
+ If True, the contents of `x` can be destroyed; the default is False.
56
+ See the notes below for more details.
57
+ workers : int, optional
58
+ Maximum number of workers to use for parallel computation. If negative,
59
+ the value wraps around from ``os.cpu_count()``. See below for more
60
+ details.
61
+ plan : object, optional
62
+ This argument is reserved for passing in a precomputed plan provided
63
+ by downstream FFT vendors. It is currently not used in SciPy.
64
+
65
+ .. versionadded:: 1.5.0
66
+
67
+ Returns
68
+ -------
69
+ out : complex ndarray
70
+ The truncated or zero-padded input, transformed along the axis
71
+ indicated by `axis`, or the last one if `axis` is not specified.
72
+
73
+ Raises
74
+ ------
75
+ IndexError
76
+ if `axes` is larger than the last axis of `x`.
77
+
78
+ See Also
79
+ --------
80
+ ifft : The inverse of `fft`.
81
+ fft2 : The 2-D FFT.
82
+ fftn : The N-D FFT.
83
+ rfftn : The N-D FFT of real input.
84
+ fftfreq : Frequency bins for given FFT parameters.
85
+ next_fast_len : Size to pad input to for most efficient transforms
86
+
87
+ Notes
88
+ -----
89
+ FFT (Fast Fourier Transform) refers to a way the discrete Fourier Transform
90
+ (DFT) can be calculated efficiently, by using symmetries in the calculated
91
+ terms. The symmetry is highest when `n` is a power of 2, and the transform
92
+ is therefore most efficient for these sizes. For poorly factorizable sizes,
93
+ `scipy.fft` uses Bluestein's algorithm [2]_ and so is never worse than
94
+ O(`n` log `n`). Further performance improvements may be seen by zero-padding
95
+ the input using `next_fast_len`.
96
+
97
+ If ``x`` is a 1d array, then the `fft` is equivalent to ::
98
+
99
+ y[k] = np.sum(x * np.exp(-2j * np.pi * k * np.arange(n)/n))
100
+
101
+ The frequency term ``f=k/n`` is found at ``y[k]``. At ``y[n/2]`` we reach
102
+ the Nyquist frequency and wrap around to the negative-frequency terms. So,
103
+ for an 8-point transform, the frequencies of the result are
104
+ [0, 1, 2, 3, -4, -3, -2, -1]. To rearrange the fft output so that the
105
+ zero-frequency component is centered, like [-4, -3, -2, -1, 0, 1, 2, 3],
106
+ use `fftshift`.
107
+
108
+ Transforms can be done in single, double, or extended precision (long
109
+ double) floating point. Half precision inputs will be converted to single
110
+ precision and non-floating-point inputs will be converted to double
111
+ precision.
112
+
113
+ If the data type of ``x`` is real, a "real FFT" algorithm is automatically
114
+ used, which roughly halves the computation time. To increase efficiency
115
+ a little further, use `rfft`, which does the same calculation, but only
116
+ outputs half of the symmetrical spectrum. If the data are both real and
117
+ symmetrical, the `dct` can again double the efficiency, by generating
118
+ half of the spectrum from half of the signal.
119
+
120
+ When ``overwrite_x=True`` is specified, the memory referenced by ``x`` may
121
+ be used by the implementation in any way. This may include reusing the
122
+ memory for the result, but this is in no way guaranteed. You should not
123
+ rely on the contents of ``x`` after the transform as this may change in
124
+ future without warning.
125
+
126
+ The ``workers`` argument specifies the maximum number of parallel jobs to
127
+ split the FFT computation into. This will execute independent 1-D
128
+ FFTs within ``x``. So, ``x`` must be at least 2-D and the
129
+ non-transformed axes must be large enough to split into chunks. If ``x`` is
130
+ too small, fewer jobs may be used than requested.
131
+
132
+ References
133
+ ----------
134
+ .. [1] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the
135
+ machine calculation of complex Fourier series," *Math. Comput.*
136
+ 19: 297-301.
137
+ .. [2] Bluestein, L., 1970, "A linear filtering approach to the
138
+ computation of discrete Fourier transform". *IEEE Transactions on
139
+ Audio and Electroacoustics.* 18 (4): 451-455.
140
+
141
+ Examples
142
+ --------
143
+ >>> import scipy.fft
144
+ >>> import numpy as np
145
+ >>> scipy.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
146
+ array([-2.33486982e-16+1.14423775e-17j, 8.00000000e+00-1.25557246e-15j,
147
+ 2.33486982e-16+2.33486982e-16j, 0.00000000e+00+1.22464680e-16j,
148
+ -1.14423775e-17+2.33486982e-16j, 0.00000000e+00+5.20784380e-16j,
149
+ 1.14423775e-17+1.14423775e-17j, 0.00000000e+00+1.22464680e-16j])
150
+
151
+ In this example, real input has an FFT which is Hermitian, i.e., symmetric
152
+ in the real part and anti-symmetric in the imaginary part:
153
+
154
+ >>> from scipy.fft import fft, fftfreq, fftshift
155
+ >>> import matplotlib.pyplot as plt
156
+ >>> t = np.arange(256)
157
+ >>> sp = fftshift(fft(np.sin(t)))
158
+ >>> freq = fftshift(fftfreq(t.shape[-1]))
159
+ >>> plt.plot(freq, sp.real, freq, sp.imag)
160
+ [<matplotlib.lines.Line2D object at 0x...>,
161
+ <matplotlib.lines.Line2D object at 0x...>]
162
+ >>> plt.show()
163
+
164
+ """
165
+ return (Dispatchable(x, np.ndarray),)
166
+
167
+
168
+ @_dispatch
169
+ def ifft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *,
170
+ plan=None):
171
+ """
172
+ Compute the 1-D inverse discrete Fourier Transform.
173
+
174
+ This function computes the inverse of the 1-D *n*-point
175
+ discrete Fourier transform computed by `fft`. In other words,
176
+ ``ifft(fft(x)) == x`` to within numerical accuracy.
177
+
178
+ The input should be ordered in the same way as is returned by `fft`,
179
+ i.e.,
180
+
181
+ * ``x[0]`` should contain the zero frequency term,
182
+ * ``x[1:n//2]`` should contain the positive-frequency terms,
183
+ * ``x[n//2 + 1:]`` should contain the negative-frequency terms, in
184
+ increasing order starting from the most negative frequency.
185
+
186
+ For an even number of input points, ``x[n//2]`` represents the sum of
187
+ the values at the positive and negative Nyquist frequencies, as the two
188
+ are aliased together. See `fft` for details.
189
+
190
+ Parameters
191
+ ----------
192
+ x : array_like
193
+ Input array, can be complex.
194
+ n : int, optional
195
+ Length of the transformed axis of the output.
196
+ If `n` is smaller than the length of the input, the input is cropped.
197
+ If it is larger, the input is padded with zeros. If `n` is not given,
198
+ the length of the input along the axis specified by `axis` is used.
199
+ See notes about padding issues.
200
+ axis : int, optional
201
+ Axis over which to compute the inverse DFT. If not given, the last
202
+ axis is used.
203
+ norm : {"backward", "ortho", "forward"}, optional
204
+ Normalization mode (see `fft`). Default is "backward".
205
+ overwrite_x : bool, optional
206
+ If True, the contents of `x` can be destroyed; the default is False.
207
+ See :func:`fft` for more details.
208
+ workers : int, optional
209
+ Maximum number of workers to use for parallel computation. If negative,
210
+ the value wraps around from ``os.cpu_count()``.
211
+ See :func:`~scipy.fft.fft` for more details.
212
+ plan : object, optional
213
+ This argument is reserved for passing in a precomputed plan provided
214
+ by downstream FFT vendors. It is currently not used in SciPy.
215
+
216
+ .. versionadded:: 1.5.0
217
+
218
+ Returns
219
+ -------
220
+ out : complex ndarray
221
+ The truncated or zero-padded input, transformed along the axis
222
+ indicated by `axis`, or the last one if `axis` is not specified.
223
+
224
+ Raises
225
+ ------
226
+ IndexError
227
+ If `axes` is larger than the last axis of `x`.
228
+
229
+ See Also
230
+ --------
231
+ fft : The 1-D (forward) FFT, of which `ifft` is the inverse.
232
+ ifft2 : The 2-D inverse FFT.
233
+ ifftn : The N-D inverse FFT.
234
+
235
+ Notes
236
+ -----
237
+ If the input parameter `n` is larger than the size of the input, the input
238
+ is padded by appending zeros at the end. Even though this is the common
239
+ approach, it might lead to surprising results. If a different padding is
240
+ desired, it must be performed before calling `ifft`.
241
+
242
+ If ``x`` is a 1-D array, then the `ifft` is equivalent to ::
243
+
244
+ y[k] = np.sum(x * np.exp(2j * np.pi * k * np.arange(n)/n)) / len(x)
245
+
246
+ As with `fft`, `ifft` has support for all floating point types and is
247
+ optimized for real input.
248
+
249
+ Examples
250
+ --------
251
+ >>> import scipy.fft
252
+ >>> import numpy as np
253
+ >>> scipy.fft.ifft([0, 4, 0, 0])
254
+ array([ 1.+0.j, 0.+1.j, -1.+0.j, 0.-1.j]) # may vary
255
+
256
+ Create and plot a band-limited signal with random phases:
257
+
258
+ >>> import matplotlib.pyplot as plt
259
+ >>> rng = np.random.default_rng()
260
+ >>> t = np.arange(400)
261
+ >>> n = np.zeros((400,), dtype=complex)
262
+ >>> n[40:60] = np.exp(1j*rng.uniform(0, 2*np.pi, (20,)))
263
+ >>> s = scipy.fft.ifft(n)
264
+ >>> plt.plot(t, s.real, 'b-', t, s.imag, 'r--')
265
+ [<matplotlib.lines.Line2D object at ...>, <matplotlib.lines.Line2D object at ...>]
266
+ >>> plt.legend(('real', 'imaginary'))
267
+ <matplotlib.legend.Legend object at ...>
268
+ >>> plt.show()
269
+
270
+ """
271
+ return (Dispatchable(x, np.ndarray),)
272
+
273
+
274
+ @_dispatch
275
+ def rfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *,
276
+ plan=None):
277
+ """
278
+ Compute the 1-D discrete Fourier Transform for real input.
279
+
280
+ This function computes the 1-D *n*-point discrete Fourier
281
+ Transform (DFT) of a real-valued array by means of an efficient algorithm
282
+ called the Fast Fourier Transform (FFT).
283
+
284
+ Parameters
285
+ ----------
286
+ x : array_like
287
+ Input array
288
+ n : int, optional
289
+ Number of points along transformation axis in the input to use.
290
+ If `n` is smaller than the length of the input, the input is cropped.
291
+ If it is larger, the input is padded with zeros. If `n` is not given,
292
+ the length of the input along the axis specified by `axis` is used.
293
+ axis : int, optional
294
+ Axis over which to compute the FFT. If not given, the last axis is
295
+ used.
296
+ norm : {"backward", "ortho", "forward"}, optional
297
+ Normalization mode (see `fft`). Default is "backward".
298
+ overwrite_x : bool, optional
299
+ If True, the contents of `x` can be destroyed; the default is False.
300
+ See :func:`fft` for more details.
301
+ workers : int, optional
302
+ Maximum number of workers to use for parallel computation. If negative,
303
+ the value wraps around from ``os.cpu_count()``.
304
+ See :func:`~scipy.fft.fft` for more details.
305
+ plan : object, optional
306
+ This argument is reserved for passing in a precomputed plan provided
307
+ by downstream FFT vendors. It is currently not used in SciPy.
308
+
309
+ .. versionadded:: 1.5.0
310
+
311
+ Returns
312
+ -------
313
+ out : complex ndarray
314
+ The truncated or zero-padded input, transformed along the axis
315
+ indicated by `axis`, or the last one if `axis` is not specified.
316
+ If `n` is even, the length of the transformed axis is ``(n/2)+1``.
317
+ If `n` is odd, the length is ``(n+1)/2``.
318
+
319
+ Raises
320
+ ------
321
+ IndexError
322
+ If `axis` is larger than the last axis of `a`.
323
+
324
+ See Also
325
+ --------
326
+ irfft : The inverse of `rfft`.
327
+ fft : The 1-D FFT of general (complex) input.
328
+ fftn : The N-D FFT.
329
+ rfft2 : The 2-D FFT of real input.
330
+ rfftn : The N-D FFT of real input.
331
+
332
+ Notes
333
+ -----
334
+ When the DFT is computed for purely real input, the output is
335
+ Hermitian-symmetric, i.e., the negative frequency terms are just the complex
336
+ conjugates of the corresponding positive-frequency terms, and the
337
+ negative-frequency terms are therefore redundant. This function does not
338
+ compute the negative frequency terms, and the length of the transformed
339
+ axis of the output is therefore ``n//2 + 1``.
340
+
341
+ When ``X = rfft(x)`` and fs is the sampling frequency, ``X[0]`` contains
342
+ the zero-frequency term 0*fs, which is real due to Hermitian symmetry.
343
+
344
+ If `n` is even, ``A[-1]`` contains the term representing both positive
345
+ and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely
346
+ real. If `n` is odd, there is no term at fs/2; ``A[-1]`` contains
347
+ the largest positive frequency (fs/2*(n-1)/n), and is complex in the
348
+ general case.
349
+
350
+ If the input `a` contains an imaginary part, it is silently discarded.
351
+
352
+ Examples
353
+ --------
354
+ >>> import scipy.fft
355
+ >>> scipy.fft.fft([0, 1, 0, 0])
356
+ array([ 1.+0.j, 0.-1.j, -1.+0.j, 0.+1.j]) # may vary
357
+ >>> scipy.fft.rfft([0, 1, 0, 0])
358
+ array([ 1.+0.j, 0.-1.j, -1.+0.j]) # may vary
359
+
360
+ Notice how the final element of the `fft` output is the complex conjugate
361
+ of the second element, for real input. For `rfft`, this symmetry is
362
+ exploited to compute only the non-negative frequency terms.
363
+
364
+ """
365
+ return (Dispatchable(x, np.ndarray),)
366
+
367
+
368
+ @_dispatch
369
+ def irfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *,
370
+ plan=None):
371
+ """
372
+ Computes the inverse of `rfft`.
373
+
374
+ This function computes the inverse of the 1-D *n*-point
375
+ discrete Fourier Transform of real input computed by `rfft`.
376
+ In other words, ``irfft(rfft(x), len(x)) == x`` to within numerical
377
+ accuracy. (See Notes below for why ``len(a)`` is necessary here.)
378
+
379
+ The input is expected to be in the form returned by `rfft`, i.e., the
380
+ real zero-frequency term followed by the complex positive frequency terms
381
+ in order of increasing frequency. Since the discrete Fourier Transform of
382
+ real input is Hermitian-symmetric, the negative frequency terms are taken
383
+ to be the complex conjugates of the corresponding positive frequency terms.
384
+
385
+ Parameters
386
+ ----------
387
+ x : array_like
388
+ The input array.
389
+ n : int, optional
390
+ Length of the transformed axis of the output.
391
+ For `n` output points, ``n//2+1`` input points are necessary. If the
392
+ input is longer than this, it is cropped. If it is shorter than this,
393
+ it is padded with zeros. If `n` is not given, it is taken to be
394
+ ``2*(m-1)``, where ``m`` is the length of the input along the axis
395
+ specified by `axis`.
396
+ axis : int, optional
397
+ Axis over which to compute the inverse FFT. If not given, the last
398
+ axis is used.
399
+ norm : {"backward", "ortho", "forward"}, optional
400
+ Normalization mode (see `fft`). Default is "backward".
401
+ overwrite_x : bool, optional
402
+ If True, the contents of `x` can be destroyed; the default is False.
403
+ See :func:`fft` for more details.
404
+ workers : int, optional
405
+ Maximum number of workers to use for parallel computation. If negative,
406
+ the value wraps around from ``os.cpu_count()``.
407
+ See :func:`~scipy.fft.fft` for more details.
408
+ plan : object, optional
409
+ This argument is reserved for passing in a precomputed plan provided
410
+ by downstream FFT vendors. It is currently not used in SciPy.
411
+
412
+ .. versionadded:: 1.5.0
413
+
414
+ Returns
415
+ -------
416
+ out : ndarray
417
+ The truncated or zero-padded input, transformed along the axis
418
+ indicated by `axis`, or the last one if `axis` is not specified.
419
+ The length of the transformed axis is `n`, or, if `n` is not given,
420
+ ``2*(m-1)`` where ``m`` is the length of the transformed axis of the
421
+ input. To get an odd number of output points, `n` must be specified.
422
+
423
+ Raises
424
+ ------
425
+ IndexError
426
+ If `axis` is larger than the last axis of `x`.
427
+
428
+ See Also
429
+ --------
430
+ rfft : The 1-D FFT of real input, of which `irfft` is inverse.
431
+ fft : The 1-D FFT.
432
+ irfft2 : The inverse of the 2-D FFT of real input.
433
+ irfftn : The inverse of the N-D FFT of real input.
434
+
435
+ Notes
436
+ -----
437
+ Returns the real valued `n`-point inverse discrete Fourier transform
438
+ of `x`, where `x` contains the non-negative frequency terms of a
439
+ Hermitian-symmetric sequence. `n` is the length of the result, not the
440
+ input.
441
+
442
+ If you specify an `n` such that `a` must be zero-padded or truncated, the
443
+ extra/removed values will be added/removed at high frequencies. One can
444
+ thus resample a series to `m` points via Fourier interpolation by:
445
+ ``a_resamp = irfft(rfft(a), m)``.
446
+
447
+ The default value of `n` assumes an even output length. By the Hermitian
448
+ symmetry, the last imaginary component must be 0 and so is ignored. To
449
+ avoid losing information, the correct length of the real input *must* be
450
+ given.
451
+
452
+ Examples
453
+ --------
454
+ >>> import scipy.fft
455
+ >>> scipy.fft.ifft([1, -1j, -1, 1j])
456
+ array([0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]) # may vary
457
+ >>> scipy.fft.irfft([1, -1j, -1])
458
+ array([0., 1., 0., 0.])
459
+
460
+ Notice how the last term in the input to the ordinary `ifft` is the
461
+ complex conjugate of the second term, and the output has zero imaginary
462
+ part everywhere. When calling `irfft`, the negative frequencies are not
463
+ specified, and the output array is purely real.
464
+
465
+ """
466
+ return (Dispatchable(x, np.ndarray),)
467
+
468
+
469
+ @_dispatch
470
+ def hfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *,
471
+ plan=None):
472
+ """
473
+ Compute the FFT of a signal that has Hermitian symmetry, i.e., a real
474
+ spectrum.
475
+
476
+ Parameters
477
+ ----------
478
+ x : array_like
479
+ The input array.
480
+ n : int, optional
481
+ Length of the transformed axis of the output. For `n` output
482
+ points, ``n//2 + 1`` input points are necessary. If the input is
483
+ longer than this, it is cropped. If it is shorter than this, it is
484
+ padded with zeros. If `n` is not given, it is taken to be ``2*(m-1)``,
485
+ where ``m`` is the length of the input along the axis specified by
486
+ `axis`.
487
+ axis : int, optional
488
+ Axis over which to compute the FFT. If not given, the last
489
+ axis is used.
490
+ norm : {"backward", "ortho", "forward"}, optional
491
+ Normalization mode (see `fft`). Default is "backward".
492
+ overwrite_x : bool, optional
493
+ If True, the contents of `x` can be destroyed; the default is False.
494
+ See `fft` for more details.
495
+ workers : int, optional
496
+ Maximum number of workers to use for parallel computation. If negative,
497
+ the value wraps around from ``os.cpu_count()``.
498
+ See :func:`~scipy.fft.fft` for more details.
499
+ plan : object, optional
500
+ This argument is reserved for passing in a precomputed plan provided
501
+ by downstream FFT vendors. It is currently not used in SciPy.
502
+
503
+ .. versionadded:: 1.5.0
504
+
505
+ Returns
506
+ -------
507
+ out : ndarray
508
+ The truncated or zero-padded input, transformed along the axis
509
+ indicated by `axis`, or the last one if `axis` is not specified.
510
+ The length of the transformed axis is `n`, or, if `n` is not given,
511
+ ``2*m - 2``, where ``m`` is the length of the transformed axis of
512
+ the input. To get an odd number of output points, `n` must be
513
+ specified, for instance, as ``2*m - 1`` in the typical case,
514
+
515
+ Raises
516
+ ------
517
+ IndexError
518
+ If `axis` is larger than the last axis of `a`.
519
+
520
+ See Also
521
+ --------
522
+ rfft : Compute the 1-D FFT for real input.
523
+ ihfft : The inverse of `hfft`.
524
+ hfftn : Compute the N-D FFT of a Hermitian signal.
525
+
526
+ Notes
527
+ -----
528
+ `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
529
+ opposite case: here the signal has Hermitian symmetry in the time
530
+ domain and is real in the frequency domain. So, here, it's `hfft`, for
531
+ which you must supply the length of the result if it is to be odd.
532
+ * even: ``ihfft(hfft(a, 2*len(a) - 2) == a``, within roundoff error,
533
+ * odd: ``ihfft(hfft(a, 2*len(a) - 1) == a``, within roundoff error.
534
+
535
+ Examples
536
+ --------
537
+ >>> from scipy.fft import fft, hfft
538
+ >>> import numpy as np
539
+ >>> a = 2 * np.pi * np.arange(10) / 10
540
+ >>> signal = np.cos(a) + 3j * np.sin(3 * a)
541
+ >>> fft(signal).round(10)
542
+ array([ -0.+0.j, 5.+0.j, -0.+0.j, 15.-0.j, 0.+0.j, 0.+0.j,
543
+ -0.+0.j, -15.-0.j, 0.+0.j, 5.+0.j])
544
+ >>> hfft(signal[:6]).round(10) # Input first half of signal
545
+ array([ 0., 5., 0., 15., -0., 0., 0., -15., -0., 5.])
546
+ >>> hfft(signal, 10) # Input entire signal and truncate
547
+ array([ 0., 5., 0., 15., -0., 0., 0., -15., -0., 5.])
548
+ """
549
+ return (Dispatchable(x, np.ndarray),)
550
+
551
+
552
+ @_dispatch
553
+ def ihfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *,
554
+ plan=None):
555
+ """
556
+ Compute the inverse FFT of a signal that has Hermitian symmetry.
557
+
558
+ Parameters
559
+ ----------
560
+ x : array_like
561
+ Input array.
562
+ n : int, optional
563
+ Length of the inverse FFT, the number of points along
564
+ transformation axis in the input to use. If `n` is smaller than
565
+ the length of the input, the input is cropped. If it is larger,
566
+ the input is padded with zeros. If `n` is not given, the length of
567
+ the input along the axis specified by `axis` is used.
568
+ axis : int, optional
569
+ Axis over which to compute the inverse FFT. If not given, the last
570
+ axis is used.
571
+ norm : {"backward", "ortho", "forward"}, optional
572
+ Normalization mode (see `fft`). Default is "backward".
573
+ overwrite_x : bool, optional
574
+ If True, the contents of `x` can be destroyed; the default is False.
575
+ See `fft` for more details.
576
+ workers : int, optional
577
+ Maximum number of workers to use for parallel computation. If negative,
578
+ the value wraps around from ``os.cpu_count()``.
579
+ See :func:`~scipy.fft.fft` for more details.
580
+ plan : object, optional
581
+ This argument is reserved for passing in a precomputed plan provided
582
+ by downstream FFT vendors. It is currently not used in SciPy.
583
+
584
+ .. versionadded:: 1.5.0
585
+
586
+ Returns
587
+ -------
588
+ out : complex ndarray
589
+ The truncated or zero-padded input, transformed along the axis
590
+ indicated by `axis`, or the last one if `axis` is not specified.
591
+ The length of the transformed axis is ``n//2 + 1``.
592
+
593
+ See Also
594
+ --------
595
+ hfft, irfft
596
+
597
+ Notes
598
+ -----
599
+ `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
600
+ opposite case: here, the signal has Hermitian symmetry in the time
601
+ domain and is real in the frequency domain. So, here, it's `hfft`, for
602
+ which you must supply the length of the result if it is to be odd:
603
+ * even: ``ihfft(hfft(a, 2*len(a) - 2) == a``, within roundoff error,
604
+ * odd: ``ihfft(hfft(a, 2*len(a) - 1) == a``, within roundoff error.
605
+
606
+ Examples
607
+ --------
608
+ >>> from scipy.fft import ifft, ihfft
609
+ >>> import numpy as np
610
+ >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4])
611
+ >>> ifft(spectrum)
612
+ array([1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.+0.j]) # may vary
613
+ >>> ihfft(spectrum)
614
+ array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) # may vary
615
+ """
616
+ return (Dispatchable(x, np.ndarray),)
617
+
618
+
619
+ @_dispatch
620
+ def fftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *,
621
+ plan=None):
622
+ """
623
+ Compute the N-D discrete Fourier Transform.
624
+
625
+ This function computes the N-D discrete Fourier Transform over
626
+ any number of axes in an M-D array by means of the Fast Fourier
627
+ Transform (FFT).
628
+
629
+ Parameters
630
+ ----------
631
+ x : array_like
632
+ Input array, can be complex.
633
+ s : sequence of ints, optional
634
+ Shape (length of each transformed axis) of the output
635
+ (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
636
+ This corresponds to ``n`` for ``fft(x, n)``.
637
+ Along any axis, if the given shape is smaller than that of the input,
638
+ the input is cropped. If it is larger, the input is padded with zeros.
639
+ if `s` is not given, the shape of the input along the axes specified
640
+ by `axes` is used.
641
+ axes : sequence of ints, optional
642
+ Axes over which to compute the FFT. If not given, the last ``len(s)``
643
+ axes are used, or all axes if `s` is also not specified.
644
+ norm : {"backward", "ortho", "forward"}, optional
645
+ Normalization mode (see `fft`). Default is "backward".
646
+ overwrite_x : bool, optional
647
+ If True, the contents of `x` can be destroyed; the default is False.
648
+ See :func:`fft` for more details.
649
+ workers : int, optional
650
+ Maximum number of workers to use for parallel computation. If negative,
651
+ the value wraps around from ``os.cpu_count()``.
652
+ See :func:`~scipy.fft.fft` for more details.
653
+ plan : object, optional
654
+ This argument is reserved for passing in a precomputed plan provided
655
+ by downstream FFT vendors. It is currently not used in SciPy.
656
+
657
+ .. versionadded:: 1.5.0
658
+
659
+ Returns
660
+ -------
661
+ out : complex ndarray
662
+ The truncated or zero-padded input, transformed along the axes
663
+ indicated by `axes`, or by a combination of `s` and `x`,
664
+ as explained in the parameters section above.
665
+
666
+ Raises
667
+ ------
668
+ ValueError
669
+ If `s` and `axes` have different length.
670
+ IndexError
671
+ If an element of `axes` is larger than the number of axes of `x`.
672
+
673
+ See Also
674
+ --------
675
+ ifftn : The inverse of `fftn`, the inverse N-D FFT.
676
+ fft : The 1-D FFT, with definitions and conventions used.
677
+ rfftn : The N-D FFT of real input.
678
+ fft2 : The 2-D FFT.
679
+ fftshift : Shifts zero-frequency terms to centre of array.
680
+
681
+ Notes
682
+ -----
683
+ The output, analogously to `fft`, contains the term for zero frequency in
684
+ the low-order corner of all axes, the positive frequency terms in the
685
+ first half of all axes, the term for the Nyquist frequency in the middle
686
+ of all axes and the negative frequency terms in the second half of all
687
+ axes, in order of decreasingly negative frequency.
688
+
689
+ Examples
690
+ --------
691
+ >>> import scipy.fft
692
+ >>> import numpy as np
693
+ >>> x = np.mgrid[:3, :3, :3][0]
694
+ >>> scipy.fft.fftn(x, axes=(1, 2))
695
+ array([[[ 0.+0.j, 0.+0.j, 0.+0.j], # may vary
696
+ [ 0.+0.j, 0.+0.j, 0.+0.j],
697
+ [ 0.+0.j, 0.+0.j, 0.+0.j]],
698
+ [[ 9.+0.j, 0.+0.j, 0.+0.j],
699
+ [ 0.+0.j, 0.+0.j, 0.+0.j],
700
+ [ 0.+0.j, 0.+0.j, 0.+0.j]],
701
+ [[18.+0.j, 0.+0.j, 0.+0.j],
702
+ [ 0.+0.j, 0.+0.j, 0.+0.j],
703
+ [ 0.+0.j, 0.+0.j, 0.+0.j]]])
704
+ >>> scipy.fft.fftn(x, (2, 2), axes=(0, 1))
705
+ array([[[ 2.+0.j, 2.+0.j, 2.+0.j], # may vary
706
+ [ 0.+0.j, 0.+0.j, 0.+0.j]],
707
+ [[-2.+0.j, -2.+0.j, -2.+0.j],
708
+ [ 0.+0.j, 0.+0.j, 0.+0.j]]])
709
+
710
+ >>> import matplotlib.pyplot as plt
711
+ >>> rng = np.random.default_rng()
712
+ >>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12,
713
+ ... 2 * np.pi * np.arange(200) / 34)
714
+ >>> S = np.sin(X) + np.cos(Y) + rng.uniform(0, 1, X.shape)
715
+ >>> FS = scipy.fft.fftn(S)
716
+ >>> plt.imshow(np.log(np.abs(scipy.fft.fftshift(FS))**2))
717
+ <matplotlib.image.AxesImage object at 0x...>
718
+ >>> plt.show()
719
+
720
+ """
721
+ return (Dispatchable(x, np.ndarray),)
722
+
723
+
724
+ @_dispatch
725
+ def ifftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *,
726
+ plan=None):
727
+ """
728
+ Compute the N-D inverse discrete Fourier Transform.
729
+
730
+ This function computes the inverse of the N-D discrete
731
+ Fourier Transform over any number of axes in an M-D array by
732
+ means of the Fast Fourier Transform (FFT). In other words,
733
+ ``ifftn(fftn(x)) == x`` to within numerical accuracy.
734
+
735
+ The input, analogously to `ifft`, should be ordered in the same way as is
736
+ returned by `fftn`, i.e., it should have the term for zero frequency
737
+ in all axes in the low-order corner, the positive frequency terms in the
738
+ first half of all axes, the term for the Nyquist frequency in the middle
739
+ of all axes and the negative frequency terms in the second half of all
740
+ axes, in order of decreasingly negative frequency.
741
+
742
+ Parameters
743
+ ----------
744
+ x : array_like
745
+ Input array, can be complex.
746
+ s : sequence of ints, optional
747
+ Shape (length of each transformed axis) of the output
748
+ (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
749
+ This corresponds to ``n`` for ``ifft(x, n)``.
750
+ Along any axis, if the given shape is smaller than that of the input,
751
+ the input is cropped. If it is larger, the input is padded with zeros.
752
+ if `s` is not given, the shape of the input along the axes specified
753
+ by `axes` is used. See notes for issue on `ifft` zero padding.
754
+ axes : sequence of ints, optional
755
+ Axes over which to compute the IFFT. If not given, the last ``len(s)``
756
+ axes are used, or all axes if `s` is also not specified.
757
+ norm : {"backward", "ortho", "forward"}, optional
758
+ Normalization mode (see `fft`). Default is "backward".
759
+ overwrite_x : bool, optional
760
+ If True, the contents of `x` can be destroyed; the default is False.
761
+ See :func:`fft` for more details.
762
+ workers : int, optional
763
+ Maximum number of workers to use for parallel computation. If negative,
764
+ the value wraps around from ``os.cpu_count()``.
765
+ See :func:`~scipy.fft.fft` for more details.
766
+ plan : object, optional
767
+ This argument is reserved for passing in a precomputed plan provided
768
+ by downstream FFT vendors. It is currently not used in SciPy.
769
+
770
+ .. versionadded:: 1.5.0
771
+
772
+ Returns
773
+ -------
774
+ out : complex ndarray
775
+ The truncated or zero-padded input, transformed along the axes
776
+ indicated by `axes`, or by a combination of `s` or `x`,
777
+ as explained in the parameters section above.
778
+
779
+ Raises
780
+ ------
781
+ ValueError
782
+ If `s` and `axes` have different length.
783
+ IndexError
784
+ If an element of `axes` is larger than the number of axes of `x`.
785
+
786
+ See Also
787
+ --------
788
+ fftn : The forward N-D FFT, of which `ifftn` is the inverse.
789
+ ifft : The 1-D inverse FFT.
790
+ ifft2 : The 2-D inverse FFT.
791
+ ifftshift : Undoes `fftshift`, shifts zero-frequency terms to beginning
792
+ of array.
793
+
794
+ Notes
795
+ -----
796
+ Zero-padding, analogously with `ifft`, is performed by appending zeros to
797
+ the input along the specified dimension. Although this is the common
798
+ approach, it might lead to surprising results. If another form of zero
799
+ padding is desired, it must be performed before `ifftn` is called.
800
+
801
+ Examples
802
+ --------
803
+ >>> import scipy.fft
804
+ >>> import numpy as np
805
+ >>> x = np.eye(4)
806
+ >>> scipy.fft.ifftn(scipy.fft.fftn(x, axes=(0,)), axes=(1,))
807
+ array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], # may vary
808
+ [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j],
809
+ [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
810
+ [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j]])
811
+
812
+
813
+ Create and plot an image with band-limited frequency content:
814
+
815
+ >>> import matplotlib.pyplot as plt
816
+ >>> rng = np.random.default_rng()
817
+ >>> n = np.zeros((200,200), dtype=complex)
818
+ >>> n[60:80, 20:40] = np.exp(1j*rng.uniform(0, 2*np.pi, (20, 20)))
819
+ >>> im = scipy.fft.ifftn(n).real
820
+ >>> plt.imshow(im)
821
+ <matplotlib.image.AxesImage object at 0x...>
822
+ >>> plt.show()
823
+
824
+ """
825
+ return (Dispatchable(x, np.ndarray),)
826
+
827
+
828
+ @_dispatch
829
+ def fft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, workers=None, *,
830
+ plan=None):
831
+ """
832
+ Compute the 2-D discrete Fourier Transform
833
+
834
+ This function computes the N-D discrete Fourier Transform
835
+ over any axes in an M-D array by means of the
836
+ Fast Fourier Transform (FFT). By default, the transform is computed over
837
+ the last two axes of the input array, i.e., a 2-dimensional FFT.
838
+
839
+ Parameters
840
+ ----------
841
+ x : array_like
842
+ Input array, can be complex
843
+ s : sequence of ints, optional
844
+ Shape (length of each transformed axis) of the output
845
+ (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
846
+ This corresponds to ``n`` for ``fft(x, n)``.
847
+ Along each axis, if the given shape is smaller than that of the input,
848
+ the input is cropped. If it is larger, the input is padded with zeros.
849
+ if `s` is not given, the shape of the input along the axes specified
850
+ by `axes` is used.
851
+ axes : sequence of ints, optional
852
+ Axes over which to compute the FFT. If not given, the last two axes are
853
+ used.
854
+ norm : {"backward", "ortho", "forward"}, optional
855
+ Normalization mode (see `fft`). Default is "backward".
856
+ overwrite_x : bool, optional
857
+ If True, the contents of `x` can be destroyed; the default is False.
858
+ See :func:`fft` for more details.
859
+ workers : int, optional
860
+ Maximum number of workers to use for parallel computation. If negative,
861
+ the value wraps around from ``os.cpu_count()``.
862
+ See :func:`~scipy.fft.fft` for more details.
863
+ plan : object, optional
864
+ This argument is reserved for passing in a precomputed plan provided
865
+ by downstream FFT vendors. It is currently not used in SciPy.
866
+
867
+ .. versionadded:: 1.5.0
868
+
869
+ Returns
870
+ -------
871
+ out : complex ndarray
872
+ The truncated or zero-padded input, transformed along the axes
873
+ indicated by `axes`, or the last two axes if `axes` is not given.
874
+
875
+ Raises
876
+ ------
877
+ ValueError
878
+ If `s` and `axes` have different length, or `axes` not given and
879
+ ``len(s) != 2``.
880
+ IndexError
881
+ If an element of `axes` is larger than the number of axes of `x`.
882
+
883
+ See Also
884
+ --------
885
+ ifft2 : The inverse 2-D FFT.
886
+ fft : The 1-D FFT.
887
+ fftn : The N-D FFT.
888
+ fftshift : Shifts zero-frequency terms to the center of the array.
889
+ For 2-D input, swaps first and third quadrants, and second
890
+ and fourth quadrants.
891
+
892
+ Notes
893
+ -----
894
+ `fft2` is just `fftn` with a different default for `axes`.
895
+
896
+ The output, analogously to `fft`, contains the term for zero frequency in
897
+ the low-order corner of the transformed axes, the positive frequency terms
898
+ in the first half of these axes, the term for the Nyquist frequency in the
899
+ middle of the axes and the negative frequency terms in the second half of
900
+ the axes, in order of decreasingly negative frequency.
901
+
902
+ See `fftn` for details and a plotting example, and `fft` for
903
+ definitions and conventions used.
904
+
905
+
906
+ Examples
907
+ --------
908
+ >>> import scipy.fft
909
+ >>> import numpy as np
910
+ >>> x = np.mgrid[:5, :5][0]
911
+ >>> scipy.fft.fft2(x)
912
+ array([[ 50. +0.j , 0. +0.j , 0. +0.j , # may vary
913
+ 0. +0.j , 0. +0.j ],
914
+ [-12.5+17.20477401j, 0. +0.j , 0. +0.j ,
915
+ 0. +0.j , 0. +0.j ],
916
+ [-12.5 +4.0614962j , 0. +0.j , 0. +0.j ,
917
+ 0. +0.j , 0. +0.j ],
918
+ [-12.5 -4.0614962j , 0. +0.j , 0. +0.j ,
919
+ 0. +0.j , 0. +0.j ],
920
+ [-12.5-17.20477401j, 0. +0.j , 0. +0.j ,
921
+ 0. +0.j , 0. +0.j ]])
922
+
923
+ """
924
+ return (Dispatchable(x, np.ndarray),)
925
+
926
+
927
+ @_dispatch
928
+ def ifft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, workers=None, *,
929
+ plan=None):
930
+ """
931
+ Compute the 2-D inverse discrete Fourier Transform.
932
+
933
+ This function computes the inverse of the 2-D discrete Fourier
934
+ Transform over any number of axes in an M-D array by means of
935
+ the Fast Fourier Transform (FFT). In other words, ``ifft2(fft2(x)) == x``
936
+ to within numerical accuracy. By default, the inverse transform is
937
+ computed over the last two axes of the input array.
938
+
939
+ The input, analogously to `ifft`, should be ordered in the same way as is
940
+ returned by `fft2`, i.e., it should have the term for zero frequency
941
+ in the low-order corner of the two axes, the positive frequency terms in
942
+ the first half of these axes, the term for the Nyquist frequency in the
943
+ middle of the axes and the negative frequency terms in the second half of
944
+ both axes, in order of decreasingly negative frequency.
945
+
946
+ Parameters
947
+ ----------
948
+ x : array_like
949
+ Input array, can be complex.
950
+ s : sequence of ints, optional
951
+ Shape (length of each axis) of the output (``s[0]`` refers to axis 0,
952
+ ``s[1]`` to axis 1, etc.). This corresponds to `n` for ``ifft(x, n)``.
953
+ Along each axis, if the given shape is smaller than that of the input,
954
+ the input is cropped. If it is larger, the input is padded with zeros.
955
+ if `s` is not given, the shape of the input along the axes specified
956
+ by `axes` is used. See notes for issue on `ifft` zero padding.
957
+ axes : sequence of ints, optional
958
+ Axes over which to compute the FFT. If not given, the last two
959
+ axes are used.
960
+ norm : {"backward", "ortho", "forward"}, optional
961
+ Normalization mode (see `fft`). Default is "backward".
962
+ overwrite_x : bool, optional
963
+ If True, the contents of `x` can be destroyed; the default is False.
964
+ See :func:`fft` for more details.
965
+ workers : int, optional
966
+ Maximum number of workers to use for parallel computation. If negative,
967
+ the value wraps around from ``os.cpu_count()``.
968
+ See :func:`~scipy.fft.fft` for more details.
969
+ plan : object, optional
970
+ This argument is reserved for passing in a precomputed plan provided
971
+ by downstream FFT vendors. It is currently not used in SciPy.
972
+
973
+ .. versionadded:: 1.5.0
974
+
975
+ Returns
976
+ -------
977
+ out : complex ndarray
978
+ The truncated or zero-padded input, transformed along the axes
979
+ indicated by `axes`, or the last two axes if `axes` is not given.
980
+
981
+ Raises
982
+ ------
983
+ ValueError
984
+ If `s` and `axes` have different length, or `axes` not given and
985
+ ``len(s) != 2``.
986
+ IndexError
987
+ If an element of `axes` is larger than the number of axes of `x`.
988
+
989
+ See Also
990
+ --------
991
+ fft2 : The forward 2-D FFT, of which `ifft2` is the inverse.
992
+ ifftn : The inverse of the N-D FFT.
993
+ fft : The 1-D FFT.
994
+ ifft : The 1-D inverse FFT.
995
+
996
+ Notes
997
+ -----
998
+ `ifft2` is just `ifftn` with a different default for `axes`.
999
+
1000
+ See `ifftn` for details and a plotting example, and `fft` for
1001
+ definition and conventions used.
1002
+
1003
+ Zero-padding, analogously with `ifft`, is performed by appending zeros to
1004
+ the input along the specified dimension. Although this is the common
1005
+ approach, it might lead to surprising results. If another form of zero
1006
+ padding is desired, it must be performed before `ifft2` is called.
1007
+
1008
+ Examples
1009
+ --------
1010
+ >>> import scipy.fft
1011
+ >>> import numpy as np
1012
+ >>> x = 4 * np.eye(4)
1013
+ >>> scipy.fft.ifft2(x)
1014
+ array([[1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], # may vary
1015
+ [0.+0.j, 0.+0.j, 0.+0.j, 1.+0.j],
1016
+ [0.+0.j, 0.+0.j, 1.+0.j, 0.+0.j],
1017
+ [0.+0.j, 1.+0.j, 0.+0.j, 0.+0.j]])
1018
+
1019
+ """
1020
+ return (Dispatchable(x, np.ndarray),)
1021
+
1022
+
1023
+ @_dispatch
1024
+ def rfftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *,
1025
+ plan=None):
1026
+ """
1027
+ Compute the N-D discrete Fourier Transform for real input.
1028
+
1029
+ This function computes the N-D discrete Fourier Transform over
1030
+ any number of axes in an M-D real array by means of the Fast
1031
+ Fourier Transform (FFT). By default, all axes are transformed, with the
1032
+ real transform performed over the last axis, while the remaining
1033
+ transforms are complex.
1034
+
1035
+ Parameters
1036
+ ----------
1037
+ x : array_like
1038
+ Input array, taken to be real.
1039
+ s : sequence of ints, optional
1040
+ Shape (length along each transformed axis) to use from the input.
1041
+ (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
1042
+ The final element of `s` corresponds to `n` for ``rfft(x, n)``, while
1043
+ for the remaining axes, it corresponds to `n` for ``fft(x, n)``.
1044
+ Along any axis, if the given shape is smaller than that of the input,
1045
+ the input is cropped. If it is larger, the input is padded with zeros.
1046
+ if `s` is not given, the shape of the input along the axes specified
1047
+ by `axes` is used.
1048
+ axes : sequence of ints, optional
1049
+ Axes over which to compute the FFT. If not given, the last ``len(s)``
1050
+ axes are used, or all axes if `s` is also not specified.
1051
+ norm : {"backward", "ortho", "forward"}, optional
1052
+ Normalization mode (see `fft`). Default is "backward".
1053
+ overwrite_x : bool, optional
1054
+ If True, the contents of `x` can be destroyed; the default is False.
1055
+ See :func:`fft` for more details.
1056
+ workers : int, optional
1057
+ Maximum number of workers to use for parallel computation. If negative,
1058
+ the value wraps around from ``os.cpu_count()``.
1059
+ See :func:`~scipy.fft.fft` for more details.
1060
+ plan : object, optional
1061
+ This argument is reserved for passing in a precomputed plan provided
1062
+ by downstream FFT vendors. It is currently not used in SciPy.
1063
+
1064
+ .. versionadded:: 1.5.0
1065
+
1066
+ Returns
1067
+ -------
1068
+ out : complex ndarray
1069
+ The truncated or zero-padded input, transformed along the axes
1070
+ indicated by `axes`, or by a combination of `s` and `x`,
1071
+ as explained in the parameters section above.
1072
+ The length of the last axis transformed will be ``s[-1]//2+1``,
1073
+ while the remaining transformed axes will have lengths according to
1074
+ `s`, or unchanged from the input.
1075
+
1076
+ Raises
1077
+ ------
1078
+ ValueError
1079
+ If `s` and `axes` have different length.
1080
+ IndexError
1081
+ If an element of `axes` is larger than the number of axes of `x`.
1082
+
1083
+ See Also
1084
+ --------
1085
+ irfftn : The inverse of `rfftn`, i.e., the inverse of the N-D FFT
1086
+ of real input.
1087
+ fft : The 1-D FFT, with definitions and conventions used.
1088
+ rfft : The 1-D FFT of real input.
1089
+ fftn : The N-D FFT.
1090
+ rfft2 : The 2-D FFT of real input.
1091
+
1092
+ Notes
1093
+ -----
1094
+ The transform for real input is performed over the last transformation
1095
+ axis, as by `rfft`, then the transform over the remaining axes is
1096
+ performed as by `fftn`. The order of the output is as for `rfft` for the
1097
+ final transformation axis, and as for `fftn` for the remaining
1098
+ transformation axes.
1099
+
1100
+ See `fft` for details, definitions and conventions used.
1101
+
1102
+ Examples
1103
+ --------
1104
+ >>> import scipy.fft
1105
+ >>> import numpy as np
1106
+ >>> x = np.ones((2, 2, 2))
1107
+ >>> scipy.fft.rfftn(x)
1108
+ array([[[8.+0.j, 0.+0.j], # may vary
1109
+ [0.+0.j, 0.+0.j]],
1110
+ [[0.+0.j, 0.+0.j],
1111
+ [0.+0.j, 0.+0.j]]])
1112
+
1113
+ >>> scipy.fft.rfftn(x, axes=(2, 0))
1114
+ array([[[4.+0.j, 0.+0.j], # may vary
1115
+ [4.+0.j, 0.+0.j]],
1116
+ [[0.+0.j, 0.+0.j],
1117
+ [0.+0.j, 0.+0.j]]])
1118
+
1119
+ """
1120
+ return (Dispatchable(x, np.ndarray),)
1121
+
1122
+
1123
+ @_dispatch
1124
+ def rfft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, workers=None, *,
1125
+ plan=None):
1126
+ """
1127
+ Compute the 2-D FFT of a real array.
1128
+
1129
+ Parameters
1130
+ ----------
1131
+ x : array
1132
+ Input array, taken to be real.
1133
+ s : sequence of ints, optional
1134
+ Shape of the FFT.
1135
+ axes : sequence of ints, optional
1136
+ Axes over which to compute the FFT.
1137
+ norm : {"backward", "ortho", "forward"}, optional
1138
+ Normalization mode (see `fft`). Default is "backward".
1139
+ overwrite_x : bool, optional
1140
+ If True, the contents of `x` can be destroyed; the default is False.
1141
+ See :func:`fft` for more details.
1142
+ workers : int, optional
1143
+ Maximum number of workers to use for parallel computation. If negative,
1144
+ the value wraps around from ``os.cpu_count()``.
1145
+ See :func:`~scipy.fft.fft` for more details.
1146
+ plan : object, optional
1147
+ This argument is reserved for passing in a precomputed plan provided
1148
+ by downstream FFT vendors. It is currently not used in SciPy.
1149
+
1150
+ .. versionadded:: 1.5.0
1151
+
1152
+ Returns
1153
+ -------
1154
+ out : ndarray
1155
+ The result of the real 2-D FFT.
1156
+
1157
+ See Also
1158
+ --------
1159
+ irfft2 : The inverse of the 2-D FFT of real input.
1160
+ rfft : The 1-D FFT of real input.
1161
+ rfftn : Compute the N-D discrete Fourier Transform for real
1162
+ input.
1163
+
1164
+ Notes
1165
+ -----
1166
+ This is really just `rfftn` with different default behavior.
1167
+ For more details see `rfftn`.
1168
+
1169
+ """
1170
+ return (Dispatchable(x, np.ndarray),)
1171
+
1172
+
1173
+ @_dispatch
1174
+ def irfftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *,
1175
+ plan=None):
1176
+ """
1177
+ Computes the inverse of `rfftn`
1178
+
1179
+ This function computes the inverse of the N-D discrete
1180
+ Fourier Transform for real input over any number of axes in an
1181
+ M-D array by means of the Fast Fourier Transform (FFT). In
1182
+ other words, ``irfftn(rfftn(x), x.shape) == x`` to within numerical
1183
+ accuracy. (The ``a.shape`` is necessary like ``len(a)`` is for `irfft`,
1184
+ and for the same reason.)
1185
+
1186
+ The input should be ordered in the same way as is returned by `rfftn`,
1187
+ i.e., as for `irfft` for the final transformation axis, and as for `ifftn`
1188
+ along all the other axes.
1189
+
1190
+ Parameters
1191
+ ----------
1192
+ x : array_like
1193
+ Input array.
1194
+ s : sequence of ints, optional
1195
+ Shape (length of each transformed axis) of the output
1196
+ (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the
1197
+ number of input points used along this axis, except for the last axis,
1198
+ where ``s[-1]//2+1`` points of the input are used.
1199
+ Along any axis, if the shape indicated by `s` is smaller than that of
1200
+ the input, the input is cropped. If it is larger, the input is padded
1201
+ with zeros. If `s` is not given, the shape of the input along the axes
1202
+ specified by axes is used. Except for the last axis which is taken to be
1203
+ ``2*(m-1)``, where ``m`` is the length of the input along that axis.
1204
+ axes : sequence of ints, optional
1205
+ Axes over which to compute the inverse FFT. If not given, the last
1206
+ `len(s)` axes are used, or all axes if `s` is also not specified.
1207
+ norm : {"backward", "ortho", "forward"}, optional
1208
+ Normalization mode (see `fft`). Default is "backward".
1209
+ overwrite_x : bool, optional
1210
+ If True, the contents of `x` can be destroyed; the default is False.
1211
+ See :func:`fft` for more details.
1212
+ workers : int, optional
1213
+ Maximum number of workers to use for parallel computation. If negative,
1214
+ the value wraps around from ``os.cpu_count()``.
1215
+ See :func:`~scipy.fft.fft` for more details.
1216
+ plan : object, optional
1217
+ This argument is reserved for passing in a precomputed plan provided
1218
+ by downstream FFT vendors. It is currently not used in SciPy.
1219
+
1220
+ .. versionadded:: 1.5.0
1221
+
1222
+ Returns
1223
+ -------
1224
+ out : ndarray
1225
+ The truncated or zero-padded input, transformed along the axes
1226
+ indicated by `axes`, or by a combination of `s` or `x`,
1227
+ as explained in the parameters section above.
1228
+ The length of each transformed axis is as given by the corresponding
1229
+ element of `s`, or the length of the input in every axis except for the
1230
+ last one if `s` is not given. In the final transformed axis the length
1231
+ of the output when `s` is not given is ``2*(m-1)``, where ``m`` is the
1232
+ length of the final transformed axis of the input. To get an odd
1233
+ number of output points in the final axis, `s` must be specified.
1234
+
1235
+ Raises
1236
+ ------
1237
+ ValueError
1238
+ If `s` and `axes` have different length.
1239
+ IndexError
1240
+ If an element of `axes` is larger than the number of axes of `x`.
1241
+
1242
+ See Also
1243
+ --------
1244
+ rfftn : The forward N-D FFT of real input,
1245
+ of which `ifftn` is the inverse.
1246
+ fft : The 1-D FFT, with definitions and conventions used.
1247
+ irfft : The inverse of the 1-D FFT of real input.
1248
+ irfft2 : The inverse of the 2-D FFT of real input.
1249
+
1250
+ Notes
1251
+ -----
1252
+ See `fft` for definitions and conventions used.
1253
+
1254
+ See `rfft` for definitions and conventions used for real input.
1255
+
1256
+ The default value of `s` assumes an even output length in the final
1257
+ transformation axis. When performing the final complex to real
1258
+ transformation, the Hermitian symmetry requires that the last imaginary
1259
+ component along that axis must be 0 and so it is ignored. To avoid losing
1260
+ information, the correct length of the real input *must* be given.
1261
+
1262
+ Examples
1263
+ --------
1264
+ >>> import scipy.fft
1265
+ >>> import numpy as np
1266
+ >>> x = np.zeros((3, 2, 2))
1267
+ >>> x[0, 0, 0] = 3 * 2 * 2
1268
+ >>> scipy.fft.irfftn(x)
1269
+ array([[[1., 1.],
1270
+ [1., 1.]],
1271
+ [[1., 1.],
1272
+ [1., 1.]],
1273
+ [[1., 1.],
1274
+ [1., 1.]]])
1275
+
1276
+ """
1277
+ return (Dispatchable(x, np.ndarray),)
1278
+
1279
+
1280
+ @_dispatch
1281
+ def irfft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, workers=None, *,
1282
+ plan=None):
1283
+ """
1284
+ Computes the inverse of `rfft2`
1285
+
1286
+ Parameters
1287
+ ----------
1288
+ x : array_like
1289
+ The input array
1290
+ s : sequence of ints, optional
1291
+ Shape of the real output to the inverse FFT.
1292
+ axes : sequence of ints, optional
1293
+ The axes over which to compute the inverse fft.
1294
+ Default is the last two axes.
1295
+ norm : {"backward", "ortho", "forward"}, optional
1296
+ Normalization mode (see `fft`). Default is "backward".
1297
+ overwrite_x : bool, optional
1298
+ If True, the contents of `x` can be destroyed; the default is False.
1299
+ See :func:`fft` for more details.
1300
+ workers : int, optional
1301
+ Maximum number of workers to use for parallel computation. If negative,
1302
+ the value wraps around from ``os.cpu_count()``.
1303
+ See :func:`~scipy.fft.fft` for more details.
1304
+ plan : object, optional
1305
+ This argument is reserved for passing in a precomputed plan provided
1306
+ by downstream FFT vendors. It is currently not used in SciPy.
1307
+
1308
+ .. versionadded:: 1.5.0
1309
+
1310
+ Returns
1311
+ -------
1312
+ out : ndarray
1313
+ The result of the inverse real 2-D FFT.
1314
+
1315
+ See Also
1316
+ --------
1317
+ rfft2 : The 2-D FFT of real input.
1318
+ irfft : The inverse of the 1-D FFT of real input.
1319
+ irfftn : The inverse of the N-D FFT of real input.
1320
+
1321
+ Notes
1322
+ -----
1323
+ This is really `irfftn` with different defaults.
1324
+ For more details see `irfftn`.
1325
+
1326
+ """
1327
+ return (Dispatchable(x, np.ndarray),)
1328
+
1329
+
1330
+ @_dispatch
1331
+ def hfftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *,
1332
+ plan=None):
1333
+ """
1334
+ Compute the N-D FFT of Hermitian symmetric complex input, i.e., a
1335
+ signal with a real spectrum.
1336
+
1337
+ This function computes the N-D discrete Fourier Transform for a
1338
+ Hermitian symmetric complex input over any number of axes in an
1339
+ M-D array by means of the Fast Fourier Transform (FFT). In other
1340
+ words, ``ihfftn(hfftn(x, s)) == x`` to within numerical accuracy. (``s``
1341
+ here is ``x.shape`` with ``s[-1] = x.shape[-1] * 2 - 1``, this is necessary
1342
+ for the same reason ``x.shape`` would be necessary for `irfft`.)
1343
+
1344
+ Parameters
1345
+ ----------
1346
+ x : array_like
1347
+ Input array.
1348
+ s : sequence of ints, optional
1349
+ Shape (length of each transformed axis) of the output
1350
+ (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the
1351
+ number of input points used along this axis, except for the last axis,
1352
+ where ``s[-1]//2+1`` points of the input are used.
1353
+ Along any axis, if the shape indicated by `s` is smaller than that of
1354
+ the input, the input is cropped. If it is larger, the input is padded
1355
+ with zeros. If `s` is not given, the shape of the input along the axes
1356
+ specified by axes is used. Except for the last axis which is taken to be
1357
+ ``2*(m-1)`` where ``m`` is the length of the input along that axis.
1358
+ axes : sequence of ints, optional
1359
+ Axes over which to compute the inverse FFT. If not given, the last
1360
+ `len(s)` axes are used, or all axes if `s` is also not specified.
1361
+ norm : {"backward", "ortho", "forward"}, optional
1362
+ Normalization mode (see `fft`). Default is "backward".
1363
+ overwrite_x : bool, optional
1364
+ If True, the contents of `x` can be destroyed; the default is False.
1365
+ See :func:`fft` for more details.
1366
+ workers : int, optional
1367
+ Maximum number of workers to use for parallel computation. If negative,
1368
+ the value wraps around from ``os.cpu_count()``.
1369
+ See :func:`~scipy.fft.fft` for more details.
1370
+ plan : object, optional
1371
+ This argument is reserved for passing in a precomputed plan provided
1372
+ by downstream FFT vendors. It is currently not used in SciPy.
1373
+
1374
+ .. versionadded:: 1.5.0
1375
+
1376
+ Returns
1377
+ -------
1378
+ out : ndarray
1379
+ The truncated or zero-padded input, transformed along the axes
1380
+ indicated by `axes`, or by a combination of `s` or `x`,
1381
+ as explained in the parameters section above.
1382
+ The length of each transformed axis is as given by the corresponding
1383
+ element of `s`, or the length of the input in every axis except for the
1384
+ last one if `s` is not given. In the final transformed axis the length
1385
+ of the output when `s` is not given is ``2*(m-1)`` where ``m`` is the
1386
+ length of the final transformed axis of the input. To get an odd
1387
+ number of output points in the final axis, `s` must be specified.
1388
+
1389
+ Raises
1390
+ ------
1391
+ ValueError
1392
+ If `s` and `axes` have different length.
1393
+ IndexError
1394
+ If an element of `axes` is larger than the number of axes of `x`.
1395
+
1396
+ See Also
1397
+ --------
1398
+ ihfftn : The inverse N-D FFT with real spectrum. Inverse of `hfftn`.
1399
+ fft : The 1-D FFT, with definitions and conventions used.
1400
+ rfft : Forward FFT of real input.
1401
+
1402
+ Notes
1403
+ -----
1404
+ For a 1-D signal ``x`` to have a real spectrum, it must satisfy
1405
+ the Hermitian property::
1406
+
1407
+ x[i] == np.conj(x[-i]) for all i
1408
+
1409
+ This generalizes into higher dimensions by reflecting over each axis in
1410
+ turn::
1411
+
1412
+ x[i, j, k, ...] == np.conj(x[-i, -j, -k, ...]) for all i, j, k, ...
1413
+
1414
+ This should not be confused with a Hermitian matrix, for which the
1415
+ transpose is its own conjugate::
1416
+
1417
+ x[i, j] == np.conj(x[j, i]) for all i, j
1418
+
1419
+
1420
+ The default value of `s` assumes an even output length in the final
1421
+ transformation axis. When performing the final complex to real
1422
+ transformation, the Hermitian symmetry requires that the last imaginary
1423
+ component along that axis must be 0 and so it is ignored. To avoid losing
1424
+ information, the correct length of the real input *must* be given.
1425
+
1426
+ Examples
1427
+ --------
1428
+ >>> import scipy.fft
1429
+ >>> import numpy as np
1430
+ >>> x = np.ones((3, 2, 2))
1431
+ >>> scipy.fft.hfftn(x)
1432
+ array([[[12., 0.],
1433
+ [ 0., 0.]],
1434
+ [[ 0., 0.],
1435
+ [ 0., 0.]],
1436
+ [[ 0., 0.],
1437
+ [ 0., 0.]]])
1438
+
1439
+ """
1440
+ return (Dispatchable(x, np.ndarray),)
1441
+
1442
+
1443
+ @_dispatch
1444
+ def hfft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, workers=None, *,
1445
+ plan=None):
1446
+ """
1447
+ Compute the 2-D FFT of a Hermitian complex array.
1448
+
1449
+ Parameters
1450
+ ----------
1451
+ x : array
1452
+ Input array, taken to be Hermitian complex.
1453
+ s : sequence of ints, optional
1454
+ Shape of the real output.
1455
+ axes : sequence of ints, optional
1456
+ Axes over which to compute the FFT.
1457
+ norm : {"backward", "ortho", "forward"}, optional
1458
+ Normalization mode (see `fft`). Default is "backward".
1459
+ overwrite_x : bool, optional
1460
+ If True, the contents of `x` can be destroyed; the default is False.
1461
+ See `fft` for more details.
1462
+ workers : int, optional
1463
+ Maximum number of workers to use for parallel computation. If negative,
1464
+ the value wraps around from ``os.cpu_count()``.
1465
+ See :func:`~scipy.fft.fft` for more details.
1466
+ plan : object, optional
1467
+ This argument is reserved for passing in a precomputed plan provided
1468
+ by downstream FFT vendors. It is currently not used in SciPy.
1469
+
1470
+ .. versionadded:: 1.5.0
1471
+
1472
+ Returns
1473
+ -------
1474
+ out : ndarray
1475
+ The real result of the 2-D Hermitian complex real FFT.
1476
+
1477
+ See Also
1478
+ --------
1479
+ hfftn : Compute the N-D discrete Fourier Transform for Hermitian
1480
+ complex input.
1481
+
1482
+ Notes
1483
+ -----
1484
+ This is really just `hfftn` with different default behavior.
1485
+ For more details see `hfftn`.
1486
+
1487
+ """
1488
+ return (Dispatchable(x, np.ndarray),)
1489
+
1490
+
1491
+ @_dispatch
1492
+ def ihfftn(x, s=None, axes=None, norm=None, overwrite_x=False, workers=None, *,
1493
+ plan=None):
1494
+ """
1495
+ Compute the N-D inverse discrete Fourier Transform for a real
1496
+ spectrum.
1497
+
1498
+ This function computes the N-D inverse discrete Fourier Transform
1499
+ over any number of axes in an M-D real array by means of the Fast
1500
+ Fourier Transform (FFT). By default, all axes are transformed, with the
1501
+ real transform performed over the last axis, while the remaining transforms
1502
+ are complex.
1503
+
1504
+ Parameters
1505
+ ----------
1506
+ x : array_like
1507
+ Input array, taken to be real.
1508
+ s : sequence of ints, optional
1509
+ Shape (length along each transformed axis) to use from the input.
1510
+ (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
1511
+ Along any axis, if the given shape is smaller than that of the input,
1512
+ the input is cropped. If it is larger, the input is padded with zeros.
1513
+ if `s` is not given, the shape of the input along the axes specified
1514
+ by `axes` is used.
1515
+ axes : sequence of ints, optional
1516
+ Axes over which to compute the FFT. If not given, the last ``len(s)``
1517
+ axes are used, or all axes if `s` is also not specified.
1518
+ norm : {"backward", "ortho", "forward"}, optional
1519
+ Normalization mode (see `fft`). Default is "backward".
1520
+ overwrite_x : bool, optional
1521
+ If True, the contents of `x` can be destroyed; the default is False.
1522
+ See :func:`fft` for more details.
1523
+ workers : int, optional
1524
+ Maximum number of workers to use for parallel computation. If negative,
1525
+ the value wraps around from ``os.cpu_count()``.
1526
+ See :func:`~scipy.fft.fft` for more details.
1527
+ plan : object, optional
1528
+ This argument is reserved for passing in a precomputed plan provided
1529
+ by downstream FFT vendors. It is currently not used in SciPy.
1530
+
1531
+ .. versionadded:: 1.5.0
1532
+
1533
+ Returns
1534
+ -------
1535
+ out : complex ndarray
1536
+ The truncated or zero-padded input, transformed along the axes
1537
+ indicated by `axes`, or by a combination of `s` and `x`,
1538
+ as explained in the parameters section above.
1539
+ The length of the last axis transformed will be ``s[-1]//2+1``,
1540
+ while the remaining transformed axes will have lengths according to
1541
+ `s`, or unchanged from the input.
1542
+
1543
+ Raises
1544
+ ------
1545
+ ValueError
1546
+ If `s` and `axes` have different length.
1547
+ IndexError
1548
+ If an element of `axes` is larger than the number of axes of `x`.
1549
+
1550
+ See Also
1551
+ --------
1552
+ hfftn : The forward N-D FFT of Hermitian input.
1553
+ hfft : The 1-D FFT of Hermitian input.
1554
+ fft : The 1-D FFT, with definitions and conventions used.
1555
+ fftn : The N-D FFT.
1556
+ hfft2 : The 2-D FFT of Hermitian input.
1557
+
1558
+ Notes
1559
+ -----
1560
+ The transform for real input is performed over the last transformation
1561
+ axis, as by `ihfft`, then the transform over the remaining axes is
1562
+ performed as by `ifftn`. The order of the output is the positive part of
1563
+ the Hermitian output signal, in the same format as `rfft`.
1564
+
1565
+ Examples
1566
+ --------
1567
+ >>> import scipy.fft
1568
+ >>> import numpy as np
1569
+ >>> x = np.ones((2, 2, 2))
1570
+ >>> scipy.fft.ihfftn(x)
1571
+ array([[[1.+0.j, 0.+0.j], # may vary
1572
+ [0.+0.j, 0.+0.j]],
1573
+ [[0.+0.j, 0.+0.j],
1574
+ [0.+0.j, 0.+0.j]]])
1575
+ >>> scipy.fft.ihfftn(x, axes=(2, 0))
1576
+ array([[[1.+0.j, 0.+0.j], # may vary
1577
+ [1.+0.j, 0.+0.j]],
1578
+ [[0.+0.j, 0.+0.j],
1579
+ [0.+0.j, 0.+0.j]]])
1580
+
1581
+ """
1582
+ return (Dispatchable(x, np.ndarray),)
1583
+
1584
+
1585
+ @_dispatch
1586
+ def ihfft2(x, s=None, axes=(-2, -1), norm=None, overwrite_x=False, workers=None, *,
1587
+ plan=None):
1588
+ """
1589
+ Compute the 2-D inverse FFT of a real spectrum.
1590
+
1591
+ Parameters
1592
+ ----------
1593
+ x : array_like
1594
+ The input array
1595
+ s : sequence of ints, optional
1596
+ Shape of the real input to the inverse FFT.
1597
+ axes : sequence of ints, optional
1598
+ The axes over which to compute the inverse fft.
1599
+ Default is the last two axes.
1600
+ norm : {"backward", "ortho", "forward"}, optional
1601
+ Normalization mode (see `fft`). Default is "backward".
1602
+ overwrite_x : bool, optional
1603
+ If True, the contents of `x` can be destroyed; the default is False.
1604
+ See :func:`fft` for more details.
1605
+ workers : int, optional
1606
+ Maximum number of workers to use for parallel computation. If negative,
1607
+ the value wraps around from ``os.cpu_count()``.
1608
+ See :func:`~scipy.fft.fft` for more details.
1609
+ plan : object, optional
1610
+ This argument is reserved for passing in a precomputed plan provided
1611
+ by downstream FFT vendors. It is currently not used in SciPy.
1612
+
1613
+ .. versionadded:: 1.5.0
1614
+
1615
+ Returns
1616
+ -------
1617
+ out : ndarray
1618
+ The result of the inverse real 2-D FFT.
1619
+
1620
+ See Also
1621
+ --------
1622
+ ihfftn : Compute the inverse of the N-D FFT of Hermitian input.
1623
+
1624
+ Notes
1625
+ -----
1626
+ This is really `ihfftn` with different defaults.
1627
+ For more details see `ihfftn`.
1628
+
1629
+ """
1630
+ return (Dispatchable(x, np.ndarray),)
venv/lib/python3.10/site-packages/scipy/fft/_basic_backend.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from scipy._lib._array_api import (
2
+ array_namespace, is_numpy, xp_unsupported_param_msg, is_complex
3
+ )
4
+ from . import _pocketfft
5
+ import numpy as np
6
+
7
+
8
+ def _validate_fft_args(workers, plan, norm):
9
+ if workers is not None:
10
+ raise ValueError(xp_unsupported_param_msg("workers"))
11
+ if plan is not None:
12
+ raise ValueError(xp_unsupported_param_msg("plan"))
13
+ if norm is None:
14
+ norm = 'backward'
15
+ return norm
16
+
17
+
18
+ # pocketfft is used whenever SCIPY_ARRAY_API is not set,
19
+ # or x is a NumPy array or array-like.
20
+ # When SCIPY_ARRAY_API is set, we try to use xp.fft for CuPy arrays,
21
+ # PyTorch arrays and other array API standard supporting objects.
22
+ # If xp.fft does not exist, we attempt to convert to np and back to use pocketfft.
23
+
24
+ def _execute_1D(func_str, pocketfft_func, x, n, axis, norm, overwrite_x, workers, plan):
25
+ xp = array_namespace(x)
26
+
27
+ if is_numpy(xp):
28
+ return pocketfft_func(x, n=n, axis=axis, norm=norm,
29
+ overwrite_x=overwrite_x, workers=workers, plan=plan)
30
+
31
+ norm = _validate_fft_args(workers, plan, norm)
32
+ if hasattr(xp, 'fft'):
33
+ xp_func = getattr(xp.fft, func_str)
34
+ return xp_func(x, n=n, axis=axis, norm=norm)
35
+
36
+ x = np.asarray(x)
37
+ y = pocketfft_func(x, n=n, axis=axis, norm=norm)
38
+ return xp.asarray(y)
39
+
40
+
41
+ def _execute_nD(func_str, pocketfft_func, x, s, axes, norm, overwrite_x, workers, plan):
42
+ xp = array_namespace(x)
43
+
44
+ if is_numpy(xp):
45
+ return pocketfft_func(x, s=s, axes=axes, norm=norm,
46
+ overwrite_x=overwrite_x, workers=workers, plan=plan)
47
+
48
+ norm = _validate_fft_args(workers, plan, norm)
49
+ if hasattr(xp, 'fft'):
50
+ xp_func = getattr(xp.fft, func_str)
51
+ return xp_func(x, s=s, axes=axes, norm=norm)
52
+
53
+ x = np.asarray(x)
54
+ y = pocketfft_func(x, s=s, axes=axes, norm=norm)
55
+ return xp.asarray(y)
56
+
57
+
58
+ def fft(x, n=None, axis=-1, norm=None,
59
+ overwrite_x=False, workers=None, *, plan=None):
60
+ return _execute_1D('fft', _pocketfft.fft, x, n=n, axis=axis, norm=norm,
61
+ overwrite_x=overwrite_x, workers=workers, plan=plan)
62
+
63
+
64
+ def ifft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *,
65
+ plan=None):
66
+ return _execute_1D('ifft', _pocketfft.ifft, x, n=n, axis=axis, norm=norm,
67
+ overwrite_x=overwrite_x, workers=workers, plan=plan)
68
+
69
+
70
+ def rfft(x, n=None, axis=-1, norm=None,
71
+ overwrite_x=False, workers=None, *, plan=None):
72
+ return _execute_1D('rfft', _pocketfft.rfft, x, n=n, axis=axis, norm=norm,
73
+ overwrite_x=overwrite_x, workers=workers, plan=plan)
74
+
75
+
76
+ def irfft(x, n=None, axis=-1, norm=None,
77
+ overwrite_x=False, workers=None, *, plan=None):
78
+ return _execute_1D('irfft', _pocketfft.irfft, x, n=n, axis=axis, norm=norm,
79
+ overwrite_x=overwrite_x, workers=workers, plan=plan)
80
+
81
+
82
+ def hfft(x, n=None, axis=-1, norm=None,
83
+ overwrite_x=False, workers=None, *, plan=None):
84
+ return _execute_1D('hfft', _pocketfft.hfft, x, n=n, axis=axis, norm=norm,
85
+ overwrite_x=overwrite_x, workers=workers, plan=plan)
86
+
87
+
88
+ def ihfft(x, n=None, axis=-1, norm=None,
89
+ overwrite_x=False, workers=None, *, plan=None):
90
+ return _execute_1D('ihfft', _pocketfft.ihfft, x, n=n, axis=axis, norm=norm,
91
+ overwrite_x=overwrite_x, workers=workers, plan=plan)
92
+
93
+
94
+ def fftn(x, s=None, axes=None, norm=None,
95
+ overwrite_x=False, workers=None, *, plan=None):
96
+ return _execute_nD('fftn', _pocketfft.fftn, x, s=s, axes=axes, norm=norm,
97
+ overwrite_x=overwrite_x, workers=workers, plan=plan)
98
+
99
+
100
+
101
+ def ifftn(x, s=None, axes=None, norm=None,
102
+ overwrite_x=False, workers=None, *, plan=None):
103
+ return _execute_nD('ifftn', _pocketfft.ifftn, x, s=s, axes=axes, norm=norm,
104
+ overwrite_x=overwrite_x, workers=workers, plan=plan)
105
+
106
+
107
+ def fft2(x, s=None, axes=(-2, -1), norm=None,
108
+ overwrite_x=False, workers=None, *, plan=None):
109
+ return fftn(x, s, axes, norm, overwrite_x, workers, plan=plan)
110
+
111
+
112
+ def ifft2(x, s=None, axes=(-2, -1), norm=None,
113
+ overwrite_x=False, workers=None, *, plan=None):
114
+ return ifftn(x, s, axes, norm, overwrite_x, workers, plan=plan)
115
+
116
+
117
+ def rfftn(x, s=None, axes=None, norm=None,
118
+ overwrite_x=False, workers=None, *, plan=None):
119
+ return _execute_nD('rfftn', _pocketfft.rfftn, x, s=s, axes=axes, norm=norm,
120
+ overwrite_x=overwrite_x, workers=workers, plan=plan)
121
+
122
+
123
+ def rfft2(x, s=None, axes=(-2, -1), norm=None,
124
+ overwrite_x=False, workers=None, *, plan=None):
125
+ return rfftn(x, s, axes, norm, overwrite_x, workers, plan=plan)
126
+
127
+
128
+ def irfftn(x, s=None, axes=None, norm=None,
129
+ overwrite_x=False, workers=None, *, plan=None):
130
+ return _execute_nD('irfftn', _pocketfft.irfftn, x, s=s, axes=axes, norm=norm,
131
+ overwrite_x=overwrite_x, workers=workers, plan=plan)
132
+
133
+
134
+ def irfft2(x, s=None, axes=(-2, -1), norm=None,
135
+ overwrite_x=False, workers=None, *, plan=None):
136
+ return irfftn(x, s, axes, norm, overwrite_x, workers, plan=plan)
137
+
138
+
139
+ def _swap_direction(norm):
140
+ if norm in (None, 'backward'):
141
+ norm = 'forward'
142
+ elif norm == 'forward':
143
+ norm = 'backward'
144
+ elif norm != 'ortho':
145
+ raise ValueError('Invalid norm value %s; should be "backward", '
146
+ '"ortho", or "forward".' % norm)
147
+ return norm
148
+
149
+
150
+ def hfftn(x, s=None, axes=None, norm=None,
151
+ overwrite_x=False, workers=None, *, plan=None):
152
+ xp = array_namespace(x)
153
+ if is_numpy(xp):
154
+ return _pocketfft.hfftn(x, s, axes, norm, overwrite_x, workers, plan=plan)
155
+ if is_complex(x, xp):
156
+ x = xp.conj(x)
157
+ return irfftn(x, s, axes, _swap_direction(norm),
158
+ overwrite_x, workers, plan=plan)
159
+
160
+
161
+ def hfft2(x, s=None, axes=(-2, -1), norm=None,
162
+ overwrite_x=False, workers=None, *, plan=None):
163
+ return hfftn(x, s, axes, norm, overwrite_x, workers, plan=plan)
164
+
165
+
166
+ def ihfftn(x, s=None, axes=None, norm=None,
167
+ overwrite_x=False, workers=None, *, plan=None):
168
+ xp = array_namespace(x)
169
+ if is_numpy(xp):
170
+ return _pocketfft.ihfftn(x, s, axes, norm, overwrite_x, workers, plan=plan)
171
+ return xp.conj(rfftn(x, s, axes, _swap_direction(norm),
172
+ overwrite_x, workers, plan=plan))
173
+
174
+ def ihfft2(x, s=None, axes=(-2, -1), norm=None,
175
+ overwrite_x=False, workers=None, *, plan=None):
176
+ return ihfftn(x, s, axes, norm, overwrite_x, workers, plan=plan)
venv/lib/python3.10/site-packages/scipy/fft/_debug_backends.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ class NumPyBackend:
4
+ """Backend that uses numpy.fft"""
5
+ __ua_domain__ = "numpy.scipy.fft"
6
+
7
+ @staticmethod
8
+ def __ua_function__(method, args, kwargs):
9
+ kwargs.pop("overwrite_x", None)
10
+
11
+ fn = getattr(np.fft, method.__name__, None)
12
+ return (NotImplemented if fn is None
13
+ else fn(*args, **kwargs))
14
+
15
+
16
+ class EchoBackend:
17
+ """Backend that just prints the __ua_function__ arguments"""
18
+ __ua_domain__ = "numpy.scipy.fft"
19
+
20
+ @staticmethod
21
+ def __ua_function__(method, args, kwargs):
22
+ print(method, args, kwargs, sep='\n')
venv/lib/python3.10/site-packages/scipy/fft/_fftlog.py ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Fast Hankel transforms using the FFTLog algorithm.
2
+
3
+ The implementation closely follows the Fortran code of Hamilton (2000).
4
+
5
+ added: 14/11/2020 Nicolas Tessore <[email protected]>
6
+ """
7
+
8
+ from ._basic import _dispatch
9
+ from scipy._lib.uarray import Dispatchable
10
+ from ._fftlog_backend import fhtoffset
11
+ import numpy as np
12
+
13
+ __all__ = ['fht', 'ifht', 'fhtoffset']
14
+
15
+
16
+ @_dispatch
17
+ def fht(a, dln, mu, offset=0.0, bias=0.0):
18
+ r'''Compute the fast Hankel transform.
19
+
20
+ Computes the discrete Hankel transform of a logarithmically spaced periodic
21
+ sequence using the FFTLog algorithm [1]_, [2]_.
22
+
23
+ Parameters
24
+ ----------
25
+ a : array_like (..., n)
26
+ Real periodic input array, uniformly logarithmically spaced. For
27
+ multidimensional input, the transform is performed over the last axis.
28
+ dln : float
29
+ Uniform logarithmic spacing of the input array.
30
+ mu : float
31
+ Order of the Hankel transform, any positive or negative real number.
32
+ offset : float, optional
33
+ Offset of the uniform logarithmic spacing of the output array.
34
+ bias : float, optional
35
+ Exponent of power law bias, any positive or negative real number.
36
+
37
+ Returns
38
+ -------
39
+ A : array_like (..., n)
40
+ The transformed output array, which is real, periodic, uniformly
41
+ logarithmically spaced, and of the same shape as the input array.
42
+
43
+ See Also
44
+ --------
45
+ ifht : The inverse of `fht`.
46
+ fhtoffset : Return an optimal offset for `fht`.
47
+
48
+ Notes
49
+ -----
50
+ This function computes a discrete version of the Hankel transform
51
+
52
+ .. math::
53
+
54
+ A(k) = \int_{0}^{\infty} \! a(r) \, J_\mu(kr) \, k \, dr \;,
55
+
56
+ where :math:`J_\mu` is the Bessel function of order :math:`\mu`. The index
57
+ :math:`\mu` may be any real number, positive or negative. Note that the
58
+ numerical Hankel transform uses an integrand of :math:`k \, dr`, while the
59
+ mathematical Hankel transform is commonly defined using :math:`r \, dr`.
60
+
61
+ The input array `a` is a periodic sequence of length :math:`n`, uniformly
62
+ logarithmically spaced with spacing `dln`,
63
+
64
+ .. math::
65
+
66
+ a_j = a(r_j) \;, \quad
67
+ r_j = r_c \exp[(j-j_c) \, \mathtt{dln}]
68
+
69
+ centred about the point :math:`r_c`. Note that the central index
70
+ :math:`j_c = (n-1)/2` is half-integral if :math:`n` is even, so that
71
+ :math:`r_c` falls between two input elements. Similarly, the output
72
+ array `A` is a periodic sequence of length :math:`n`, also uniformly
73
+ logarithmically spaced with spacing `dln`
74
+
75
+ .. math::
76
+
77
+ A_j = A(k_j) \;, \quad
78
+ k_j = k_c \exp[(j-j_c) \, \mathtt{dln}]
79
+
80
+ centred about the point :math:`k_c`.
81
+
82
+ The centre points :math:`r_c` and :math:`k_c` of the periodic intervals may
83
+ be chosen arbitrarily, but it would be usual to choose the product
84
+ :math:`k_c r_c = k_j r_{n-1-j} = k_{n-1-j} r_j` to be unity. This can be
85
+ changed using the `offset` parameter, which controls the logarithmic offset
86
+ :math:`\log(k_c) = \mathtt{offset} - \log(r_c)` of the output array.
87
+ Choosing an optimal value for `offset` may reduce ringing of the discrete
88
+ Hankel transform.
89
+
90
+ If the `bias` parameter is nonzero, this function computes a discrete
91
+ version of the biased Hankel transform
92
+
93
+ .. math::
94
+
95
+ A(k) = \int_{0}^{\infty} \! a_q(r) \, (kr)^q \, J_\mu(kr) \, k \, dr
96
+
97
+ where :math:`q` is the value of `bias`, and a power law bias
98
+ :math:`a_q(r) = a(r) \, (kr)^{-q}` is applied to the input sequence.
99
+ Biasing the transform can help approximate the continuous transform of
100
+ :math:`a(r)` if there is a value :math:`q` such that :math:`a_q(r)` is
101
+ close to a periodic sequence, in which case the resulting :math:`A(k)` will
102
+ be close to the continuous transform.
103
+
104
+ References
105
+ ----------
106
+ .. [1] Talman J. D., 1978, J. Comp. Phys., 29, 35
107
+ .. [2] Hamilton A. J. S., 2000, MNRAS, 312, 257 (astro-ph/9905191)
108
+
109
+ Examples
110
+ --------
111
+
112
+ This example is the adapted version of ``fftlogtest.f`` which is provided
113
+ in [2]_. It evaluates the integral
114
+
115
+ .. math::
116
+
117
+ \int^\infty_0 r^{\mu+1} \exp(-r^2/2) J_\mu(k, r) k dr
118
+ = k^{\mu+1} \exp(-k^2/2) .
119
+
120
+ >>> import numpy as np
121
+ >>> from scipy import fft
122
+ >>> import matplotlib.pyplot as plt
123
+
124
+ Parameters for the transform.
125
+
126
+ >>> mu = 0.0 # Order mu of Bessel function
127
+ >>> r = np.logspace(-7, 1, 128) # Input evaluation points
128
+ >>> dln = np.log(r[1]/r[0]) # Step size
129
+ >>> offset = fft.fhtoffset(dln, initial=-6*np.log(10), mu=mu)
130
+ >>> k = np.exp(offset)/r[::-1] # Output evaluation points
131
+
132
+ Define the analytical function.
133
+
134
+ >>> def f(x, mu):
135
+ ... """Analytical function: x^(mu+1) exp(-x^2/2)."""
136
+ ... return x**(mu + 1)*np.exp(-x**2/2)
137
+
138
+ Evaluate the function at ``r`` and compute the corresponding values at
139
+ ``k`` using FFTLog.
140
+
141
+ >>> a_r = f(r, mu)
142
+ >>> fht = fft.fht(a_r, dln, mu=mu, offset=offset)
143
+
144
+ For this example we can actually compute the analytical response (which in
145
+ this case is the same as the input function) for comparison and compute the
146
+ relative error.
147
+
148
+ >>> a_k = f(k, mu)
149
+ >>> rel_err = abs((fht-a_k)/a_k)
150
+
151
+ Plot the result.
152
+
153
+ >>> figargs = {'sharex': True, 'sharey': True, 'constrained_layout': True}
154
+ >>> fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4), **figargs)
155
+ >>> ax1.set_title(r'$r^{\mu+1}\ \exp(-r^2/2)$')
156
+ >>> ax1.loglog(r, a_r, 'k', lw=2)
157
+ >>> ax1.set_xlabel('r')
158
+ >>> ax2.set_title(r'$k^{\mu+1} \exp(-k^2/2)$')
159
+ >>> ax2.loglog(k, a_k, 'k', lw=2, label='Analytical')
160
+ >>> ax2.loglog(k, fht, 'C3--', lw=2, label='FFTLog')
161
+ >>> ax2.set_xlabel('k')
162
+ >>> ax2.legend(loc=3, framealpha=1)
163
+ >>> ax2.set_ylim([1e-10, 1e1])
164
+ >>> ax2b = ax2.twinx()
165
+ >>> ax2b.loglog(k, rel_err, 'C0', label='Rel. Error (-)')
166
+ >>> ax2b.set_ylabel('Rel. Error (-)', color='C0')
167
+ >>> ax2b.tick_params(axis='y', labelcolor='C0')
168
+ >>> ax2b.legend(loc=4, framealpha=1)
169
+ >>> ax2b.set_ylim([1e-9, 1e-3])
170
+ >>> plt.show()
171
+
172
+ '''
173
+ return (Dispatchable(a, np.ndarray),)
174
+
175
+
176
+ @_dispatch
177
+ def ifht(A, dln, mu, offset=0.0, bias=0.0):
178
+ r"""Compute the inverse fast Hankel transform.
179
+
180
+ Computes the discrete inverse Hankel transform of a logarithmically spaced
181
+ periodic sequence. This is the inverse operation to `fht`.
182
+
183
+ Parameters
184
+ ----------
185
+ A : array_like (..., n)
186
+ Real periodic input array, uniformly logarithmically spaced. For
187
+ multidimensional input, the transform is performed over the last axis.
188
+ dln : float
189
+ Uniform logarithmic spacing of the input array.
190
+ mu : float
191
+ Order of the Hankel transform, any positive or negative real number.
192
+ offset : float, optional
193
+ Offset of the uniform logarithmic spacing of the output array.
194
+ bias : float, optional
195
+ Exponent of power law bias, any positive or negative real number.
196
+
197
+ Returns
198
+ -------
199
+ a : array_like (..., n)
200
+ The transformed output array, which is real, periodic, uniformly
201
+ logarithmically spaced, and of the same shape as the input array.
202
+
203
+ See Also
204
+ --------
205
+ fht : Definition of the fast Hankel transform.
206
+ fhtoffset : Return an optimal offset for `ifht`.
207
+
208
+ Notes
209
+ -----
210
+ This function computes a discrete version of the Hankel transform
211
+
212
+ .. math::
213
+
214
+ a(r) = \int_{0}^{\infty} \! A(k) \, J_\mu(kr) \, r \, dk \;,
215
+
216
+ where :math:`J_\mu` is the Bessel function of order :math:`\mu`. The index
217
+ :math:`\mu` may be any real number, positive or negative. Note that the
218
+ numerical inverse Hankel transform uses an integrand of :math:`r \, dk`, while the
219
+ mathematical inverse Hankel transform is commonly defined using :math:`k \, dk`.
220
+
221
+ See `fht` for further details.
222
+ """
223
+ return (Dispatchable(A, np.ndarray),)
venv/lib/python3.10/site-packages/scipy/fft/_fftlog_backend.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from warnings import warn
3
+ from ._basic import rfft, irfft
4
+ from ..special import loggamma, poch
5
+
6
+ from scipy._lib._array_api import array_namespace, copy
7
+
8
+ __all__ = ['fht', 'ifht', 'fhtoffset']
9
+
10
+ # constants
11
+ LN_2 = np.log(2)
12
+
13
+
14
+ def fht(a, dln, mu, offset=0.0, bias=0.0):
15
+ xp = array_namespace(a)
16
+
17
+ # size of transform
18
+ n = a.shape[-1]
19
+
20
+ # bias input array
21
+ if bias != 0:
22
+ # a_q(r) = a(r) (r/r_c)^{-q}
23
+ j_c = (n-1)/2
24
+ j = xp.arange(n, dtype=xp.float64)
25
+ a = a * xp.exp(-bias*(j - j_c)*dln)
26
+
27
+ # compute FHT coefficients
28
+ u = xp.asarray(fhtcoeff(n, dln, mu, offset=offset, bias=bias))
29
+
30
+ # transform
31
+ A = _fhtq(a, u, xp=xp)
32
+
33
+ # bias output array
34
+ if bias != 0:
35
+ # A(k) = A_q(k) (k/k_c)^{-q} (k_c r_c)^{-q}
36
+ A *= xp.exp(-bias*((j - j_c)*dln + offset))
37
+
38
+ return A
39
+
40
+
41
+ def ifht(A, dln, mu, offset=0.0, bias=0.0):
42
+ xp = array_namespace(A)
43
+
44
+ # size of transform
45
+ n = A.shape[-1]
46
+
47
+ # bias input array
48
+ if bias != 0:
49
+ # A_q(k) = A(k) (k/k_c)^{q} (k_c r_c)^{q}
50
+ j_c = (n-1)/2
51
+ j = xp.arange(n, dtype=xp.float64)
52
+ A = A * xp.exp(bias*((j - j_c)*dln + offset))
53
+
54
+ # compute FHT coefficients
55
+ u = xp.asarray(fhtcoeff(n, dln, mu, offset=offset, bias=bias, inverse=True))
56
+
57
+ # transform
58
+ a = _fhtq(A, u, inverse=True, xp=xp)
59
+
60
+ # bias output array
61
+ if bias != 0:
62
+ # a(r) = a_q(r) (r/r_c)^{q}
63
+ a /= xp.exp(-bias*(j - j_c)*dln)
64
+
65
+ return a
66
+
67
+
68
+ def fhtcoeff(n, dln, mu, offset=0.0, bias=0.0, inverse=False):
69
+ """Compute the coefficient array for a fast Hankel transform."""
70
+ lnkr, q = offset, bias
71
+
72
+ # Hankel transform coefficients
73
+ # u_m = (kr)^{-i 2m pi/(n dlnr)} U_mu(q + i 2m pi/(n dlnr))
74
+ # with U_mu(x) = 2^x Gamma((mu+1+x)/2)/Gamma((mu+1-x)/2)
75
+ xp = (mu+1+q)/2
76
+ xm = (mu+1-q)/2
77
+ y = np.linspace(0, np.pi*(n//2)/(n*dln), n//2+1)
78
+ u = np.empty(n//2+1, dtype=complex)
79
+ v = np.empty(n//2+1, dtype=complex)
80
+ u.imag[:] = y
81
+ u.real[:] = xm
82
+ loggamma(u, out=v)
83
+ u.real[:] = xp
84
+ loggamma(u, out=u)
85
+ y *= 2*(LN_2 - lnkr)
86
+ u.real -= v.real
87
+ u.real += LN_2*q
88
+ u.imag += v.imag
89
+ u.imag += y
90
+ np.exp(u, out=u)
91
+
92
+ # fix last coefficient to be real
93
+ u.imag[-1] = 0
94
+
95
+ # deal with special cases
96
+ if not np.isfinite(u[0]):
97
+ # write u_0 = 2^q Gamma(xp)/Gamma(xm) = 2^q poch(xm, xp-xm)
98
+ # poch() handles special cases for negative integers correctly
99
+ u[0] = 2**q * poch(xm, xp-xm)
100
+ # the coefficient may be inf or 0, meaning the transform or the
101
+ # inverse transform, respectively, is singular
102
+
103
+ # check for singular transform or singular inverse transform
104
+ if np.isinf(u[0]) and not inverse:
105
+ warn('singular transform; consider changing the bias', stacklevel=3)
106
+ # fix coefficient to obtain (potentially correct) transform anyway
107
+ u = copy(u)
108
+ u[0] = 0
109
+ elif u[0] == 0 and inverse:
110
+ warn('singular inverse transform; consider changing the bias', stacklevel=3)
111
+ # fix coefficient to obtain (potentially correct) inverse anyway
112
+ u = copy(u)
113
+ u[0] = np.inf
114
+
115
+ return u
116
+
117
+
118
+ def fhtoffset(dln, mu, initial=0.0, bias=0.0):
119
+ """Return optimal offset for a fast Hankel transform.
120
+
121
+ Returns an offset close to `initial` that fulfils the low-ringing
122
+ condition of [1]_ for the fast Hankel transform `fht` with logarithmic
123
+ spacing `dln`, order `mu` and bias `bias`.
124
+
125
+ Parameters
126
+ ----------
127
+ dln : float
128
+ Uniform logarithmic spacing of the transform.
129
+ mu : float
130
+ Order of the Hankel transform, any positive or negative real number.
131
+ initial : float, optional
132
+ Initial value for the offset. Returns the closest value that fulfils
133
+ the low-ringing condition.
134
+ bias : float, optional
135
+ Exponent of power law bias, any positive or negative real number.
136
+
137
+ Returns
138
+ -------
139
+ offset : float
140
+ Optimal offset of the uniform logarithmic spacing of the transform that
141
+ fulfils a low-ringing condition.
142
+
143
+ Examples
144
+ --------
145
+ >>> from scipy.fft import fhtoffset
146
+ >>> dln = 0.1
147
+ >>> mu = 2.0
148
+ >>> initial = 0.5
149
+ >>> bias = 0.0
150
+ >>> offset = fhtoffset(dln, mu, initial, bias)
151
+ >>> offset
152
+ 0.5454581477676637
153
+
154
+ See Also
155
+ --------
156
+ fht : Definition of the fast Hankel transform.
157
+
158
+ References
159
+ ----------
160
+ .. [1] Hamilton A. J. S., 2000, MNRAS, 312, 257 (astro-ph/9905191)
161
+
162
+ """
163
+
164
+ lnkr, q = initial, bias
165
+
166
+ xp = (mu+1+q)/2
167
+ xm = (mu+1-q)/2
168
+ y = np.pi/(2*dln)
169
+ zp = loggamma(xp + 1j*y)
170
+ zm = loggamma(xm + 1j*y)
171
+ arg = (LN_2 - lnkr)/dln + (zp.imag + zm.imag)/np.pi
172
+ return lnkr + (arg - np.round(arg))*dln
173
+
174
+
175
+ def _fhtq(a, u, inverse=False, *, xp=None):
176
+ """Compute the biased fast Hankel transform.
177
+
178
+ This is the basic FFTLog routine.
179
+ """
180
+ if xp is None:
181
+ xp = np
182
+
183
+ # size of transform
184
+ n = a.shape[-1]
185
+
186
+ # biased fast Hankel transform via real FFT
187
+ A = rfft(a, axis=-1)
188
+ if not inverse:
189
+ # forward transform
190
+ A *= u
191
+ else:
192
+ # backward transform
193
+ A /= xp.conj(u)
194
+ A = irfft(A, n, axis=-1)
195
+ A = xp.flip(A, axis=-1)
196
+
197
+ return A
venv/lib/python3.10/site-packages/scipy/fft/_helper.py ADDED
@@ -0,0 +1,313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from functools import update_wrapper, lru_cache
2
+ import inspect
3
+
4
+ from ._pocketfft import helper as _helper
5
+
6
+ import numpy as np
7
+ from scipy._lib._array_api import array_namespace
8
+
9
+
10
+ def next_fast_len(target, real=False):
11
+ """Find the next fast size of input data to ``fft``, for zero-padding, etc.
12
+
13
+ SciPy's FFT algorithms gain their speed by a recursive divide and conquer
14
+ strategy. This relies on efficient functions for small prime factors of the
15
+ input length. Thus, the transforms are fastest when using composites of the
16
+ prime factors handled by the fft implementation. If there are efficient
17
+ functions for all radices <= `n`, then the result will be a number `x`
18
+ >= ``target`` with only prime factors < `n`. (Also known as `n`-smooth
19
+ numbers)
20
+
21
+ Parameters
22
+ ----------
23
+ target : int
24
+ Length to start searching from. Must be a positive integer.
25
+ real : bool, optional
26
+ True if the FFT involves real input or output (e.g., `rfft` or `hfft`
27
+ but not `fft`). Defaults to False.
28
+
29
+ Returns
30
+ -------
31
+ out : int
32
+ The smallest fast length greater than or equal to ``target``.
33
+
34
+ Notes
35
+ -----
36
+ The result of this function may change in future as performance
37
+ considerations change, for example, if new prime factors are added.
38
+
39
+ Calling `fft` or `ifft` with real input data performs an ``'R2C'``
40
+ transform internally.
41
+
42
+ Examples
43
+ --------
44
+ On a particular machine, an FFT of prime length takes 11.4 ms:
45
+
46
+ >>> from scipy import fft
47
+ >>> import numpy as np
48
+ >>> rng = np.random.default_rng()
49
+ >>> min_len = 93059 # prime length is worst case for speed
50
+ >>> a = rng.standard_normal(min_len)
51
+ >>> b = fft.fft(a)
52
+
53
+ Zero-padding to the next regular length reduces computation time to
54
+ 1.6 ms, a speedup of 7.3 times:
55
+
56
+ >>> fft.next_fast_len(min_len, real=True)
57
+ 93312
58
+ >>> b = fft.fft(a, 93312)
59
+
60
+ Rounding up to the next power of 2 is not optimal, taking 3.0 ms to
61
+ compute; 1.9 times longer than the size given by ``next_fast_len``:
62
+
63
+ >>> b = fft.fft(a, 131072)
64
+
65
+ """
66
+ pass
67
+
68
+
69
+ # Directly wrap the c-function good_size but take the docstring etc., from the
70
+ # next_fast_len function above
71
+ _sig = inspect.signature(next_fast_len)
72
+ next_fast_len = update_wrapper(lru_cache(_helper.good_size), next_fast_len)
73
+ next_fast_len.__wrapped__ = _helper.good_size
74
+ next_fast_len.__signature__ = _sig
75
+
76
+
77
+ def _init_nd_shape_and_axes(x, shape, axes):
78
+ """Handle shape and axes arguments for N-D transforms.
79
+
80
+ Returns the shape and axes in a standard form, taking into account negative
81
+ values and checking for various potential errors.
82
+
83
+ Parameters
84
+ ----------
85
+ x : array_like
86
+ The input array.
87
+ shape : int or array_like of ints or None
88
+ The shape of the result. If both `shape` and `axes` (see below) are
89
+ None, `shape` is ``x.shape``; if `shape` is None but `axes` is
90
+ not None, then `shape` is ``numpy.take(x.shape, axes, axis=0)``.
91
+ If `shape` is -1, the size of the corresponding dimension of `x` is
92
+ used.
93
+ axes : int or array_like of ints or None
94
+ Axes along which the calculation is computed.
95
+ The default is over all axes.
96
+ Negative indices are automatically converted to their positive
97
+ counterparts.
98
+
99
+ Returns
100
+ -------
101
+ shape : tuple
102
+ The shape of the result as a tuple of integers.
103
+ axes : list
104
+ Axes along which the calculation is computed, as a list of integers.
105
+
106
+ """
107
+ x = np.asarray(x)
108
+ return _helper._init_nd_shape_and_axes(x, shape, axes)
109
+
110
+
111
+ def fftfreq(n, d=1.0, *, xp=None, device=None):
112
+ """Return the Discrete Fourier Transform sample frequencies.
113
+
114
+ The returned float array `f` contains the frequency bin centers in cycles
115
+ per unit of the sample spacing (with zero at the start). For instance, if
116
+ the sample spacing is in seconds, then the frequency unit is cycles/second.
117
+
118
+ Given a window length `n` and a sample spacing `d`::
119
+
120
+ f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
121
+ f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd
122
+
123
+ Parameters
124
+ ----------
125
+ n : int
126
+ Window length.
127
+ d : scalar, optional
128
+ Sample spacing (inverse of the sampling rate). Defaults to 1.
129
+ xp : array_namespace, optional
130
+ The namespace for the return array. Default is None, where NumPy is used.
131
+ device : device, optional
132
+ The device for the return array.
133
+ Only valid when `xp.fft.fftfreq` implements the device parameter.
134
+
135
+ Returns
136
+ -------
137
+ f : ndarray
138
+ Array of length `n` containing the sample frequencies.
139
+
140
+ Examples
141
+ --------
142
+ >>> import numpy as np
143
+ >>> import scipy.fft
144
+ >>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
145
+ >>> fourier = scipy.fft.fft(signal)
146
+ >>> n = signal.size
147
+ >>> timestep = 0.1
148
+ >>> freq = scipy.fft.fftfreq(n, d=timestep)
149
+ >>> freq
150
+ array([ 0. , 1.25, 2.5 , ..., -3.75, -2.5 , -1.25])
151
+
152
+ """
153
+ xp = np if xp is None else xp
154
+ # numpy does not yet support the `device` keyword
155
+ # `xp.__name__ != 'numpy'` should be removed when numpy is compatible
156
+ if hasattr(xp, 'fft') and xp.__name__ != 'numpy':
157
+ return xp.fft.fftfreq(n, d=d, device=device)
158
+ if device is not None:
159
+ raise ValueError('device parameter is not supported for input array type')
160
+ return np.fft.fftfreq(n, d=d)
161
+
162
+
163
+ def rfftfreq(n, d=1.0, *, xp=None, device=None):
164
+ """Return the Discrete Fourier Transform sample frequencies
165
+ (for usage with rfft, irfft).
166
+
167
+ The returned float array `f` contains the frequency bin centers in cycles
168
+ per unit of the sample spacing (with zero at the start). For instance, if
169
+ the sample spacing is in seconds, then the frequency unit is cycles/second.
170
+
171
+ Given a window length `n` and a sample spacing `d`::
172
+
173
+ f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even
174
+ f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd
175
+
176
+ Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`)
177
+ the Nyquist frequency component is considered to be positive.
178
+
179
+ Parameters
180
+ ----------
181
+ n : int
182
+ Window length.
183
+ d : scalar, optional
184
+ Sample spacing (inverse of the sampling rate). Defaults to 1.
185
+ xp : array_namespace, optional
186
+ The namespace for the return array. Default is None, where NumPy is used.
187
+ device : device, optional
188
+ The device for the return array.
189
+ Only valid when `xp.fft.rfftfreq` implements the device parameter.
190
+
191
+ Returns
192
+ -------
193
+ f : ndarray
194
+ Array of length ``n//2 + 1`` containing the sample frequencies.
195
+
196
+ Examples
197
+ --------
198
+ >>> import numpy as np
199
+ >>> import scipy.fft
200
+ >>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
201
+ >>> fourier = scipy.fft.rfft(signal)
202
+ >>> n = signal.size
203
+ >>> sample_rate = 100
204
+ >>> freq = scipy.fft.fftfreq(n, d=1./sample_rate)
205
+ >>> freq
206
+ array([ 0., 10., 20., ..., -30., -20., -10.])
207
+ >>> freq = scipy.fft.rfftfreq(n, d=1./sample_rate)
208
+ >>> freq
209
+ array([ 0., 10., 20., 30., 40., 50.])
210
+
211
+ """
212
+ xp = np if xp is None else xp
213
+ # numpy does not yet support the `device` keyword
214
+ # `xp.__name__ != 'numpy'` should be removed when numpy is compatible
215
+ if hasattr(xp, 'fft') and xp.__name__ != 'numpy':
216
+ return xp.fft.rfftfreq(n, d=d, device=device)
217
+ if device is not None:
218
+ raise ValueError('device parameter is not supported for input array type')
219
+ return np.fft.rfftfreq(n, d=d)
220
+
221
+
222
+ def fftshift(x, axes=None):
223
+ """Shift the zero-frequency component to the center of the spectrum.
224
+
225
+ This function swaps half-spaces for all axes listed (defaults to all).
226
+ Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.
227
+
228
+ Parameters
229
+ ----------
230
+ x : array_like
231
+ Input array.
232
+ axes : int or shape tuple, optional
233
+ Axes over which to shift. Default is None, which shifts all axes.
234
+
235
+ Returns
236
+ -------
237
+ y : ndarray
238
+ The shifted array.
239
+
240
+ See Also
241
+ --------
242
+ ifftshift : The inverse of `fftshift`.
243
+
244
+ Examples
245
+ --------
246
+ >>> import numpy as np
247
+ >>> freqs = np.fft.fftfreq(10, 0.1)
248
+ >>> freqs
249
+ array([ 0., 1., 2., ..., -3., -2., -1.])
250
+ >>> np.fft.fftshift(freqs)
251
+ array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
252
+
253
+ Shift the zero-frequency component only along the second axis:
254
+
255
+ >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
256
+ >>> freqs
257
+ array([[ 0., 1., 2.],
258
+ [ 3., 4., -4.],
259
+ [-3., -2., -1.]])
260
+ >>> np.fft.fftshift(freqs, axes=(1,))
261
+ array([[ 2., 0., 1.],
262
+ [-4., 3., 4.],
263
+ [-1., -3., -2.]])
264
+
265
+ """
266
+ xp = array_namespace(x)
267
+ if hasattr(xp, 'fft'):
268
+ return xp.fft.fftshift(x, axes=axes)
269
+ x = np.asarray(x)
270
+ y = np.fft.fftshift(x, axes=axes)
271
+ return xp.asarray(y)
272
+
273
+
274
+ def ifftshift(x, axes=None):
275
+ """The inverse of `fftshift`. Although identical for even-length `x`, the
276
+ functions differ by one sample for odd-length `x`.
277
+
278
+ Parameters
279
+ ----------
280
+ x : array_like
281
+ Input array.
282
+ axes : int or shape tuple, optional
283
+ Axes over which to calculate. Defaults to None, which shifts all axes.
284
+
285
+ Returns
286
+ -------
287
+ y : ndarray
288
+ The shifted array.
289
+
290
+ See Also
291
+ --------
292
+ fftshift : Shift zero-frequency component to the center of the spectrum.
293
+
294
+ Examples
295
+ --------
296
+ >>> import numpy as np
297
+ >>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
298
+ >>> freqs
299
+ array([[ 0., 1., 2.],
300
+ [ 3., 4., -4.],
301
+ [-3., -2., -1.]])
302
+ >>> np.fft.ifftshift(np.fft.fftshift(freqs))
303
+ array([[ 0., 1., 2.],
304
+ [ 3., 4., -4.],
305
+ [-3., -2., -1.]])
306
+
307
+ """
308
+ xp = array_namespace(x)
309
+ if hasattr(xp, 'fft'):
310
+ return xp.fft.ifftshift(x, axes=axes)
311
+ x = np.asarray(x)
312
+ y = np.fft.ifftshift(x, axes=axes)
313
+ return xp.asarray(y)
venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/LICENSE.md ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright (C) 2010-2019 Max-Planck-Society
2
+ All rights reserved.
3
+
4
+ Redistribution and use in source and binary forms, with or without modification,
5
+ are permitted provided that the following conditions are met:
6
+
7
+ * Redistributions of source code must retain the above copyright notice, this
8
+ list of conditions and the following disclaimer.
9
+ * Redistributions in binary form must reproduce the above copyright notice, this
10
+ list of conditions and the following disclaimer in the documentation and/or
11
+ other materials provided with the distribution.
12
+ * Neither the name of the copyright holder nor the names of its contributors may
13
+ be used to endorse or promote products derived from this software without
14
+ specific prior written permission.
15
+
16
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
17
+ ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18
+ WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
20
+ ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21
+ (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22
+ LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23
+ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/__init__.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ """ FFT backend using pypocketfft """
2
+
3
+ from .basic import *
4
+ from .realtransforms import *
5
+ from .helper import *
6
+
7
+ from scipy._lib._testutils import PytestTester
8
+ test = PytestTester(__name__)
9
+ del PytestTester
venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (395 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/__pycache__/basic.cpython-310.pyc ADDED
Binary file (5.29 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/__pycache__/helper.cpython-310.pyc ADDED
Binary file (6.06 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/__pycache__/realtransforms.cpython-310.pyc ADDED
Binary file (2.46 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/basic.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Discrete Fourier Transforms - basic.py
3
+ """
4
+ import numpy as np
5
+ import functools
6
+ from . import pypocketfft as pfft
7
+ from .helper import (_asfarray, _init_nd_shape_and_axes, _datacopied,
8
+ _fix_shape, _fix_shape_1d, _normalization,
9
+ _workers)
10
+
11
+ def c2c(forward, x, n=None, axis=-1, norm=None, overwrite_x=False,
12
+ workers=None, *, plan=None):
13
+ """ Return discrete Fourier transform of real or complex sequence. """
14
+ if plan is not None:
15
+ raise NotImplementedError('Passing a precomputed plan is not yet '
16
+ 'supported by scipy.fft functions')
17
+ tmp = _asfarray(x)
18
+ overwrite_x = overwrite_x or _datacopied(tmp, x)
19
+ norm = _normalization(norm, forward)
20
+ workers = _workers(workers)
21
+
22
+ if n is not None:
23
+ tmp, copied = _fix_shape_1d(tmp, n, axis)
24
+ overwrite_x = overwrite_x or copied
25
+ elif tmp.shape[axis] < 1:
26
+ message = f"invalid number of data points ({tmp.shape[axis]}) specified"
27
+ raise ValueError(message)
28
+
29
+ out = (tmp if overwrite_x and tmp.dtype.kind == 'c' else None)
30
+
31
+ return pfft.c2c(tmp, (axis,), forward, norm, out, workers)
32
+
33
+
34
+ fft = functools.partial(c2c, True)
35
+ fft.__name__ = 'fft'
36
+ ifft = functools.partial(c2c, False)
37
+ ifft.__name__ = 'ifft'
38
+
39
+
40
+ def r2c(forward, x, n=None, axis=-1, norm=None, overwrite_x=False,
41
+ workers=None, *, plan=None):
42
+ """
43
+ Discrete Fourier transform of a real sequence.
44
+ """
45
+ if plan is not None:
46
+ raise NotImplementedError('Passing a precomputed plan is not yet '
47
+ 'supported by scipy.fft functions')
48
+ tmp = _asfarray(x)
49
+ norm = _normalization(norm, forward)
50
+ workers = _workers(workers)
51
+
52
+ if not np.isrealobj(tmp):
53
+ raise TypeError("x must be a real sequence")
54
+
55
+ if n is not None:
56
+ tmp, _ = _fix_shape_1d(tmp, n, axis)
57
+ elif tmp.shape[axis] < 1:
58
+ raise ValueError(f"invalid number of data points ({tmp.shape[axis]}) specified")
59
+
60
+ # Note: overwrite_x is not utilised
61
+ return pfft.r2c(tmp, (axis,), forward, norm, None, workers)
62
+
63
+
64
+ rfft = functools.partial(r2c, True)
65
+ rfft.__name__ = 'rfft'
66
+ ihfft = functools.partial(r2c, False)
67
+ ihfft.__name__ = 'ihfft'
68
+
69
+
70
+ def c2r(forward, x, n=None, axis=-1, norm=None, overwrite_x=False,
71
+ workers=None, *, plan=None):
72
+ """
73
+ Return inverse discrete Fourier transform of real sequence x.
74
+ """
75
+ if plan is not None:
76
+ raise NotImplementedError('Passing a precomputed plan is not yet '
77
+ 'supported by scipy.fft functions')
78
+ tmp = _asfarray(x)
79
+ norm = _normalization(norm, forward)
80
+ workers = _workers(workers)
81
+
82
+ # TODO: Optimize for hermitian and real?
83
+ if np.isrealobj(tmp):
84
+ tmp = tmp + 0.j
85
+
86
+ # Last axis utilizes hermitian symmetry
87
+ if n is None:
88
+ n = (tmp.shape[axis] - 1) * 2
89
+ if n < 1:
90
+ raise ValueError(f"Invalid number of data points ({n}) specified")
91
+ else:
92
+ tmp, _ = _fix_shape_1d(tmp, (n//2) + 1, axis)
93
+
94
+ # Note: overwrite_x is not utilized
95
+ return pfft.c2r(tmp, (axis,), n, forward, norm, None, workers)
96
+
97
+
98
+ hfft = functools.partial(c2r, True)
99
+ hfft.__name__ = 'hfft'
100
+ irfft = functools.partial(c2r, False)
101
+ irfft.__name__ = 'irfft'
102
+
103
+
104
+ def hfft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None,
105
+ *, plan=None):
106
+ """
107
+ 2-D discrete Fourier transform of a Hermitian sequence
108
+ """
109
+ if plan is not None:
110
+ raise NotImplementedError('Passing a precomputed plan is not yet '
111
+ 'supported by scipy.fft functions')
112
+ return hfftn(x, s, axes, norm, overwrite_x, workers)
113
+
114
+
115
+ def ihfft2(x, s=None, axes=(-2,-1), norm=None, overwrite_x=False, workers=None,
116
+ *, plan=None):
117
+ """
118
+ 2-D discrete inverse Fourier transform of a Hermitian sequence
119
+ """
120
+ if plan is not None:
121
+ raise NotImplementedError('Passing a precomputed plan is not yet '
122
+ 'supported by scipy.fft functions')
123
+ return ihfftn(x, s, axes, norm, overwrite_x, workers)
124
+
125
+
126
+ def c2cn(forward, x, s=None, axes=None, norm=None, overwrite_x=False,
127
+ workers=None, *, plan=None):
128
+ """
129
+ Return multidimensional discrete Fourier transform.
130
+ """
131
+ if plan is not None:
132
+ raise NotImplementedError('Passing a precomputed plan is not yet '
133
+ 'supported by scipy.fft functions')
134
+ tmp = _asfarray(x)
135
+
136
+ shape, axes = _init_nd_shape_and_axes(tmp, s, axes)
137
+ overwrite_x = overwrite_x or _datacopied(tmp, x)
138
+ workers = _workers(workers)
139
+
140
+ if len(axes) == 0:
141
+ return x
142
+
143
+ tmp, copied = _fix_shape(tmp, shape, axes)
144
+ overwrite_x = overwrite_x or copied
145
+
146
+ norm = _normalization(norm, forward)
147
+ out = (tmp if overwrite_x and tmp.dtype.kind == 'c' else None)
148
+
149
+ return pfft.c2c(tmp, axes, forward, norm, out, workers)
150
+
151
+
152
+ fftn = functools.partial(c2cn, True)
153
+ fftn.__name__ = 'fftn'
154
+ ifftn = functools.partial(c2cn, False)
155
+ ifftn.__name__ = 'ifftn'
156
+
157
+ def r2cn(forward, x, s=None, axes=None, norm=None, overwrite_x=False,
158
+ workers=None, *, plan=None):
159
+ """Return multidimensional discrete Fourier transform of real input"""
160
+ if plan is not None:
161
+ raise NotImplementedError('Passing a precomputed plan is not yet '
162
+ 'supported by scipy.fft functions')
163
+ tmp = _asfarray(x)
164
+
165
+ if not np.isrealobj(tmp):
166
+ raise TypeError("x must be a real sequence")
167
+
168
+ shape, axes = _init_nd_shape_and_axes(tmp, s, axes)
169
+ tmp, _ = _fix_shape(tmp, shape, axes)
170
+ norm = _normalization(norm, forward)
171
+ workers = _workers(workers)
172
+
173
+ if len(axes) == 0:
174
+ raise ValueError("at least 1 axis must be transformed")
175
+
176
+ # Note: overwrite_x is not utilized
177
+ return pfft.r2c(tmp, axes, forward, norm, None, workers)
178
+
179
+
180
+ rfftn = functools.partial(r2cn, True)
181
+ rfftn.__name__ = 'rfftn'
182
+ ihfftn = functools.partial(r2cn, False)
183
+ ihfftn.__name__ = 'ihfftn'
184
+
185
+
186
+ def c2rn(forward, x, s=None, axes=None, norm=None, overwrite_x=False,
187
+ workers=None, *, plan=None):
188
+ """Multidimensional inverse discrete fourier transform with real output"""
189
+ if plan is not None:
190
+ raise NotImplementedError('Passing a precomputed plan is not yet '
191
+ 'supported by scipy.fft functions')
192
+ tmp = _asfarray(x)
193
+
194
+ # TODO: Optimize for hermitian and real?
195
+ if np.isrealobj(tmp):
196
+ tmp = tmp + 0.j
197
+
198
+ noshape = s is None
199
+ shape, axes = _init_nd_shape_and_axes(tmp, s, axes)
200
+
201
+ if len(axes) == 0:
202
+ raise ValueError("at least 1 axis must be transformed")
203
+
204
+ shape = list(shape)
205
+ if noshape:
206
+ shape[-1] = (x.shape[axes[-1]] - 1) * 2
207
+
208
+ norm = _normalization(norm, forward)
209
+ workers = _workers(workers)
210
+
211
+ # Last axis utilizes hermitian symmetry
212
+ lastsize = shape[-1]
213
+ shape[-1] = (shape[-1] // 2) + 1
214
+
215
+ tmp, _ = tuple(_fix_shape(tmp, shape, axes))
216
+
217
+ # Note: overwrite_x is not utilized
218
+ return pfft.c2r(tmp, axes, lastsize, forward, norm, None, workers)
219
+
220
+
221
+ hfftn = functools.partial(c2rn, True)
222
+ hfftn.__name__ = 'hfftn'
223
+ irfftn = functools.partial(c2rn, False)
224
+ irfftn.__name__ = 'irfftn'
225
+
226
+
227
+ def r2r_fftpack(forward, x, n=None, axis=-1, norm=None, overwrite_x=False):
228
+ """FFT of a real sequence, returning fftpack half complex format"""
229
+ tmp = _asfarray(x)
230
+ overwrite_x = overwrite_x or _datacopied(tmp, x)
231
+ norm = _normalization(norm, forward)
232
+ workers = _workers(None)
233
+
234
+ if tmp.dtype.kind == 'c':
235
+ raise TypeError('x must be a real sequence')
236
+
237
+ if n is not None:
238
+ tmp, copied = _fix_shape_1d(tmp, n, axis)
239
+ overwrite_x = overwrite_x or copied
240
+ elif tmp.shape[axis] < 1:
241
+ raise ValueError(f"invalid number of data points ({tmp.shape[axis]}) specified")
242
+
243
+ out = (tmp if overwrite_x else None)
244
+
245
+ return pfft.r2r_fftpack(tmp, (axis,), forward, forward, norm, out, workers)
246
+
247
+
248
+ rfft_fftpack = functools.partial(r2r_fftpack, True)
249
+ rfft_fftpack.__name__ = 'rfft_fftpack'
250
+ irfft_fftpack = functools.partial(r2r_fftpack, False)
251
+ irfft_fftpack.__name__ = 'irfft_fftpack'
venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/helper.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from numbers import Number
2
+ import operator
3
+ import os
4
+ import threading
5
+ import contextlib
6
+
7
+ import numpy as np
8
+
9
+ from scipy._lib._util import copy_if_needed
10
+
11
+ # good_size is exposed (and used) from this import
12
+ from .pypocketfft import good_size
13
+
14
+
15
+ __all__ = ['good_size', 'set_workers', 'get_workers']
16
+
17
+ _config = threading.local()
18
+ _cpu_count = os.cpu_count()
19
+
20
+
21
+ def _iterable_of_int(x, name=None):
22
+ """Convert ``x`` to an iterable sequence of int
23
+
24
+ Parameters
25
+ ----------
26
+ x : value, or sequence of values, convertible to int
27
+ name : str, optional
28
+ Name of the argument being converted, only used in the error message
29
+
30
+ Returns
31
+ -------
32
+ y : ``List[int]``
33
+ """
34
+ if isinstance(x, Number):
35
+ x = (x,)
36
+
37
+ try:
38
+ x = [operator.index(a) for a in x]
39
+ except TypeError as e:
40
+ name = name or "value"
41
+ raise ValueError(f"{name} must be a scalar or iterable of integers") from e
42
+
43
+ return x
44
+
45
+
46
+ def _init_nd_shape_and_axes(x, shape, axes):
47
+ """Handles shape and axes arguments for nd transforms"""
48
+ noshape = shape is None
49
+ noaxes = axes is None
50
+
51
+ if not noaxes:
52
+ axes = _iterable_of_int(axes, 'axes')
53
+ axes = [a + x.ndim if a < 0 else a for a in axes]
54
+
55
+ if any(a >= x.ndim or a < 0 for a in axes):
56
+ raise ValueError("axes exceeds dimensionality of input")
57
+ if len(set(axes)) != len(axes):
58
+ raise ValueError("all axes must be unique")
59
+
60
+ if not noshape:
61
+ shape = _iterable_of_int(shape, 'shape')
62
+
63
+ if axes and len(axes) != len(shape):
64
+ raise ValueError("when given, axes and shape arguments"
65
+ " have to be of the same length")
66
+ if noaxes:
67
+ if len(shape) > x.ndim:
68
+ raise ValueError("shape requires more axes than are present")
69
+ axes = range(x.ndim - len(shape), x.ndim)
70
+
71
+ shape = [x.shape[a] if s == -1 else s for s, a in zip(shape, axes)]
72
+ elif noaxes:
73
+ shape = list(x.shape)
74
+ axes = range(x.ndim)
75
+ else:
76
+ shape = [x.shape[a] for a in axes]
77
+
78
+ if any(s < 1 for s in shape):
79
+ raise ValueError(
80
+ f"invalid number of data points ({shape}) specified")
81
+
82
+ return tuple(shape), list(axes)
83
+
84
+
85
+ def _asfarray(x):
86
+ """
87
+ Convert to array with floating or complex dtype.
88
+
89
+ float16 values are also promoted to float32.
90
+ """
91
+ if not hasattr(x, "dtype"):
92
+ x = np.asarray(x)
93
+
94
+ if x.dtype == np.float16:
95
+ return np.asarray(x, np.float32)
96
+ elif x.dtype.kind not in 'fc':
97
+ return np.asarray(x, np.float64)
98
+
99
+ # Require native byte order
100
+ dtype = x.dtype.newbyteorder('=')
101
+ # Always align input
102
+ copy = True if not x.flags['ALIGNED'] else copy_if_needed
103
+ return np.array(x, dtype=dtype, copy=copy)
104
+
105
+ def _datacopied(arr, original):
106
+ """
107
+ Strict check for `arr` not sharing any data with `original`,
108
+ under the assumption that arr = asarray(original)
109
+ """
110
+ if arr is original:
111
+ return False
112
+ if not isinstance(original, np.ndarray) and hasattr(original, '__array__'):
113
+ return False
114
+ return arr.base is None
115
+
116
+
117
+ def _fix_shape(x, shape, axes):
118
+ """Internal auxiliary function for _raw_fft, _raw_fftnd."""
119
+ must_copy = False
120
+
121
+ # Build an nd slice with the dimensions to be read from x
122
+ index = [slice(None)]*x.ndim
123
+ for n, ax in zip(shape, axes):
124
+ if x.shape[ax] >= n:
125
+ index[ax] = slice(0, n)
126
+ else:
127
+ index[ax] = slice(0, x.shape[ax])
128
+ must_copy = True
129
+
130
+ index = tuple(index)
131
+
132
+ if not must_copy:
133
+ return x[index], False
134
+
135
+ s = list(x.shape)
136
+ for n, axis in zip(shape, axes):
137
+ s[axis] = n
138
+
139
+ z = np.zeros(s, x.dtype)
140
+ z[index] = x[index]
141
+ return z, True
142
+
143
+
144
+ def _fix_shape_1d(x, n, axis):
145
+ if n < 1:
146
+ raise ValueError(
147
+ f"invalid number of data points ({n}) specified")
148
+
149
+ return _fix_shape(x, (n,), (axis,))
150
+
151
+
152
+ _NORM_MAP = {None: 0, 'backward': 0, 'ortho': 1, 'forward': 2}
153
+
154
+
155
+ def _normalization(norm, forward):
156
+ """Returns the pypocketfft normalization mode from the norm argument"""
157
+ try:
158
+ inorm = _NORM_MAP[norm]
159
+ return inorm if forward else (2 - inorm)
160
+ except KeyError:
161
+ raise ValueError(
162
+ f'Invalid norm value {norm!r}, should '
163
+ 'be "backward", "ortho" or "forward"') from None
164
+
165
+
166
+ def _workers(workers):
167
+ if workers is None:
168
+ return getattr(_config, 'default_workers', 1)
169
+
170
+ if workers < 0:
171
+ if workers >= -_cpu_count:
172
+ workers += 1 + _cpu_count
173
+ else:
174
+ raise ValueError(f"workers value out of range; got {workers}, must not be"
175
+ f" less than {-_cpu_count}")
176
+ elif workers == 0:
177
+ raise ValueError("workers must not be zero")
178
+
179
+ return workers
180
+
181
+
182
+ @contextlib.contextmanager
183
+ def set_workers(workers):
184
+ """Context manager for the default number of workers used in `scipy.fft`
185
+
186
+ Parameters
187
+ ----------
188
+ workers : int
189
+ The default number of workers to use
190
+
191
+ Examples
192
+ --------
193
+ >>> import numpy as np
194
+ >>> from scipy import fft, signal
195
+ >>> rng = np.random.default_rng()
196
+ >>> x = rng.standard_normal((128, 64))
197
+ >>> with fft.set_workers(4):
198
+ ... y = signal.fftconvolve(x, x)
199
+
200
+ """
201
+ old_workers = get_workers()
202
+ _config.default_workers = _workers(operator.index(workers))
203
+ try:
204
+ yield
205
+ finally:
206
+ _config.default_workers = old_workers
207
+
208
+
209
+ def get_workers():
210
+ """Returns the default number of workers within the current context
211
+
212
+ Examples
213
+ --------
214
+ >>> from scipy import fft
215
+ >>> fft.get_workers()
216
+ 1
217
+ >>> with fft.set_workers(4):
218
+ ... fft.get_workers()
219
+ 4
220
+ """
221
+ return getattr(_config, 'default_workers', 1)
venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/realtransforms.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from . import pypocketfft as pfft
3
+ from .helper import (_asfarray, _init_nd_shape_and_axes, _datacopied,
4
+ _fix_shape, _fix_shape_1d, _normalization, _workers)
5
+ import functools
6
+
7
+
8
+ def _r2r(forward, transform, x, type=2, n=None, axis=-1, norm=None,
9
+ overwrite_x=False, workers=None, orthogonalize=None):
10
+ """Forward or backward 1-D DCT/DST
11
+
12
+ Parameters
13
+ ----------
14
+ forward : bool
15
+ Transform direction (determines type and normalisation)
16
+ transform : {pypocketfft.dct, pypocketfft.dst}
17
+ The transform to perform
18
+ """
19
+ tmp = _asfarray(x)
20
+ overwrite_x = overwrite_x or _datacopied(tmp, x)
21
+ norm = _normalization(norm, forward)
22
+ workers = _workers(workers)
23
+
24
+ if not forward:
25
+ if type == 2:
26
+ type = 3
27
+ elif type == 3:
28
+ type = 2
29
+
30
+ if n is not None:
31
+ tmp, copied = _fix_shape_1d(tmp, n, axis)
32
+ overwrite_x = overwrite_x or copied
33
+ elif tmp.shape[axis] < 1:
34
+ raise ValueError(f"invalid number of data points ({tmp.shape[axis]}) specified")
35
+
36
+ out = (tmp if overwrite_x else None)
37
+
38
+ # For complex input, transform real and imaginary components separably
39
+ if np.iscomplexobj(x):
40
+ out = np.empty_like(tmp) if out is None else out
41
+ transform(tmp.real, type, (axis,), norm, out.real, workers)
42
+ transform(tmp.imag, type, (axis,), norm, out.imag, workers)
43
+ return out
44
+
45
+ return transform(tmp, type, (axis,), norm, out, workers, orthogonalize)
46
+
47
+
48
+ dct = functools.partial(_r2r, True, pfft.dct)
49
+ dct.__name__ = 'dct'
50
+ idct = functools.partial(_r2r, False, pfft.dct)
51
+ idct.__name__ = 'idct'
52
+
53
+ dst = functools.partial(_r2r, True, pfft.dst)
54
+ dst.__name__ = 'dst'
55
+ idst = functools.partial(_r2r, False, pfft.dst)
56
+ idst.__name__ = 'idst'
57
+
58
+
59
+ def _r2rn(forward, transform, x, type=2, s=None, axes=None, norm=None,
60
+ overwrite_x=False, workers=None, orthogonalize=None):
61
+ """Forward or backward nd DCT/DST
62
+
63
+ Parameters
64
+ ----------
65
+ forward : bool
66
+ Transform direction (determines type and normalisation)
67
+ transform : {pypocketfft.dct, pypocketfft.dst}
68
+ The transform to perform
69
+ """
70
+ tmp = _asfarray(x)
71
+
72
+ shape, axes = _init_nd_shape_and_axes(tmp, s, axes)
73
+ overwrite_x = overwrite_x or _datacopied(tmp, x)
74
+
75
+ if len(axes) == 0:
76
+ return x
77
+
78
+ tmp, copied = _fix_shape(tmp, shape, axes)
79
+ overwrite_x = overwrite_x or copied
80
+
81
+ if not forward:
82
+ if type == 2:
83
+ type = 3
84
+ elif type == 3:
85
+ type = 2
86
+
87
+ norm = _normalization(norm, forward)
88
+ workers = _workers(workers)
89
+ out = (tmp if overwrite_x else None)
90
+
91
+ # For complex input, transform real and imaginary components separably
92
+ if np.iscomplexobj(x):
93
+ out = np.empty_like(tmp) if out is None else out
94
+ transform(tmp.real, type, axes, norm, out.real, workers)
95
+ transform(tmp.imag, type, axes, norm, out.imag, workers)
96
+ return out
97
+
98
+ return transform(tmp, type, axes, norm, out, workers, orthogonalize)
99
+
100
+
101
+ dctn = functools.partial(_r2rn, True, pfft.dct)
102
+ dctn.__name__ = 'dctn'
103
+ idctn = functools.partial(_r2rn, False, pfft.dct)
104
+ idctn.__name__ = 'idctn'
105
+
106
+ dstn = functools.partial(_r2rn, True, pfft.dst)
107
+ dstn.__name__ = 'dstn'
108
+ idstn = functools.partial(_r2rn, False, pfft.dst)
109
+ idstn.__name__ = 'idstn'
venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/tests/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (194 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/tests/__pycache__/test_basic.cpython-310.pyc ADDED
Binary file (32.9 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/tests/__pycache__/test_real_transforms.cpython-310.pyc ADDED
Binary file (14.1 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/tests/test_basic.py ADDED
@@ -0,0 +1,1005 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Created by Pearu Peterson, September 2002
2
+
3
+ from numpy.testing import (assert_, assert_equal, assert_array_almost_equal,
4
+ assert_array_almost_equal_nulp, assert_array_less,
5
+ assert_allclose)
6
+ import pytest
7
+ from pytest import raises as assert_raises
8
+ from scipy.fft._pocketfft import (ifft, fft, fftn, ifftn,
9
+ rfft, irfft, rfftn, irfftn,
10
+ hfft, ihfft, hfftn, ihfftn)
11
+
12
+ from numpy import (arange, array, asarray, zeros, dot, exp, pi,
13
+ swapaxes, cdouble)
14
+ import numpy as np
15
+ import numpy.fft
16
+ from numpy.random import rand
17
+
18
+ # "large" composite numbers supported by FFT._PYPOCKETFFT
19
+ LARGE_COMPOSITE_SIZES = [
20
+ 2**13,
21
+ 2**5 * 3**5,
22
+ 2**3 * 3**3 * 5**2,
23
+ ]
24
+ SMALL_COMPOSITE_SIZES = [
25
+ 2,
26
+ 2*3*5,
27
+ 2*2*3*3,
28
+ ]
29
+ # prime
30
+ LARGE_PRIME_SIZES = [
31
+ 2011
32
+ ]
33
+ SMALL_PRIME_SIZES = [
34
+ 29
35
+ ]
36
+
37
+
38
+ def _assert_close_in_norm(x, y, rtol, size, rdt):
39
+ # helper function for testing
40
+ err_msg = f"size: {size} rdt: {rdt}"
41
+ assert_array_less(np.linalg.norm(x - y), rtol*np.linalg.norm(x), err_msg)
42
+
43
+
44
+ def random(size):
45
+ return rand(*size)
46
+
47
+ def swap_byteorder(arr):
48
+ """Returns the same array with swapped byteorder"""
49
+ dtype = arr.dtype.newbyteorder('S')
50
+ return arr.astype(dtype)
51
+
52
+ def direct_dft(x):
53
+ x = asarray(x)
54
+ n = len(x)
55
+ y = zeros(n, dtype=cdouble)
56
+ w = -arange(n)*(2j*pi/n)
57
+ for i in range(n):
58
+ y[i] = dot(exp(i*w), x)
59
+ return y
60
+
61
+
62
+ def direct_idft(x):
63
+ x = asarray(x)
64
+ n = len(x)
65
+ y = zeros(n, dtype=cdouble)
66
+ w = arange(n)*(2j*pi/n)
67
+ for i in range(n):
68
+ y[i] = dot(exp(i*w), x)/n
69
+ return y
70
+
71
+
72
+ def direct_dftn(x):
73
+ x = asarray(x)
74
+ for axis in range(x.ndim):
75
+ x = fft(x, axis=axis)
76
+ return x
77
+
78
+
79
+ def direct_idftn(x):
80
+ x = asarray(x)
81
+ for axis in range(x.ndim):
82
+ x = ifft(x, axis=axis)
83
+ return x
84
+
85
+
86
+ def direct_rdft(x):
87
+ x = asarray(x)
88
+ n = len(x)
89
+ w = -arange(n)*(2j*pi/n)
90
+ y = zeros(n//2+1, dtype=cdouble)
91
+ for i in range(n//2+1):
92
+ y[i] = dot(exp(i*w), x)
93
+ return y
94
+
95
+
96
+ def direct_irdft(x, n):
97
+ x = asarray(x)
98
+ x1 = zeros(n, dtype=cdouble)
99
+ for i in range(n//2+1):
100
+ x1[i] = x[i]
101
+ if i > 0 and 2*i < n:
102
+ x1[n-i] = np.conj(x[i])
103
+ return direct_idft(x1).real
104
+
105
+
106
+ def direct_rdftn(x):
107
+ return fftn(rfft(x), axes=range(x.ndim - 1))
108
+
109
+
110
+ class _TestFFTBase:
111
+ def setup_method(self):
112
+ self.cdt = None
113
+ self.rdt = None
114
+ np.random.seed(1234)
115
+
116
+ def test_definition(self):
117
+ x = np.array([1,2,3,4+1j,1,2,3,4+2j], dtype=self.cdt)
118
+ y = fft(x)
119
+ assert_equal(y.dtype, self.cdt)
120
+ y1 = direct_dft(x)
121
+ assert_array_almost_equal(y,y1)
122
+ x = np.array([1,2,3,4+0j,5], dtype=self.cdt)
123
+ assert_array_almost_equal(fft(x),direct_dft(x))
124
+
125
+ def test_n_argument_real(self):
126
+ x1 = np.array([1,2,3,4], dtype=self.rdt)
127
+ x2 = np.array([1,2,3,4], dtype=self.rdt)
128
+ y = fft([x1,x2],n=4)
129
+ assert_equal(y.dtype, self.cdt)
130
+ assert_equal(y.shape,(2,4))
131
+ assert_array_almost_equal(y[0],direct_dft(x1))
132
+ assert_array_almost_equal(y[1],direct_dft(x2))
133
+
134
+ def _test_n_argument_complex(self):
135
+ x1 = np.array([1,2,3,4+1j], dtype=self.cdt)
136
+ x2 = np.array([1,2,3,4+1j], dtype=self.cdt)
137
+ y = fft([x1,x2],n=4)
138
+ assert_equal(y.dtype, self.cdt)
139
+ assert_equal(y.shape,(2,4))
140
+ assert_array_almost_equal(y[0],direct_dft(x1))
141
+ assert_array_almost_equal(y[1],direct_dft(x2))
142
+
143
+ def test_djbfft(self):
144
+ for i in range(2,14):
145
+ n = 2**i
146
+ x = np.arange(n)
147
+ y = fft(x.astype(complex))
148
+ y2 = numpy.fft.fft(x)
149
+ assert_array_almost_equal(y,y2)
150
+ y = fft(x)
151
+ assert_array_almost_equal(y,y2)
152
+
153
+ def test_invalid_sizes(self):
154
+ assert_raises(ValueError, fft, [])
155
+ assert_raises(ValueError, fft, [[1,1],[2,2]], -5)
156
+
157
+
158
+ class TestLongDoubleFFT(_TestFFTBase):
159
+ def setup_method(self):
160
+ self.cdt = np.clongdouble
161
+ self.rdt = np.longdouble
162
+
163
+
164
+ class TestDoubleFFT(_TestFFTBase):
165
+ def setup_method(self):
166
+ self.cdt = np.cdouble
167
+ self.rdt = np.float64
168
+
169
+
170
+ class TestSingleFFT(_TestFFTBase):
171
+ def setup_method(self):
172
+ self.cdt = np.complex64
173
+ self.rdt = np.float32
174
+
175
+
176
+ class TestFloat16FFT:
177
+
178
+ def test_1_argument_real(self):
179
+ x1 = np.array([1, 2, 3, 4], dtype=np.float16)
180
+ y = fft(x1, n=4)
181
+ assert_equal(y.dtype, np.complex64)
182
+ assert_equal(y.shape, (4, ))
183
+ assert_array_almost_equal(y, direct_dft(x1.astype(np.float32)))
184
+
185
+ def test_n_argument_real(self):
186
+ x1 = np.array([1, 2, 3, 4], dtype=np.float16)
187
+ x2 = np.array([1, 2, 3, 4], dtype=np.float16)
188
+ y = fft([x1, x2], n=4)
189
+ assert_equal(y.dtype, np.complex64)
190
+ assert_equal(y.shape, (2, 4))
191
+ assert_array_almost_equal(y[0], direct_dft(x1.astype(np.float32)))
192
+ assert_array_almost_equal(y[1], direct_dft(x2.astype(np.float32)))
193
+
194
+
195
+ class _TestIFFTBase:
196
+ def setup_method(self):
197
+ np.random.seed(1234)
198
+
199
+ def test_definition(self):
200
+ x = np.array([1,2,3,4+1j,1,2,3,4+2j], self.cdt)
201
+ y = ifft(x)
202
+ y1 = direct_idft(x)
203
+ assert_equal(y.dtype, self.cdt)
204
+ assert_array_almost_equal(y,y1)
205
+
206
+ x = np.array([1,2,3,4+0j,5], self.cdt)
207
+ assert_array_almost_equal(ifft(x),direct_idft(x))
208
+
209
+ def test_definition_real(self):
210
+ x = np.array([1,2,3,4,1,2,3,4], self.rdt)
211
+ y = ifft(x)
212
+ assert_equal(y.dtype, self.cdt)
213
+ y1 = direct_idft(x)
214
+ assert_array_almost_equal(y,y1)
215
+
216
+ x = np.array([1,2,3,4,5], dtype=self.rdt)
217
+ assert_equal(y.dtype, self.cdt)
218
+ assert_array_almost_equal(ifft(x),direct_idft(x))
219
+
220
+ def test_djbfft(self):
221
+ for i in range(2,14):
222
+ n = 2**i
223
+ x = np.arange(n)
224
+ y = ifft(x.astype(self.cdt))
225
+ y2 = numpy.fft.ifft(x.astype(self.cdt))
226
+ assert_allclose(y,y2, rtol=self.rtol, atol=self.atol)
227
+ y = ifft(x)
228
+ assert_allclose(y,y2, rtol=self.rtol, atol=self.atol)
229
+
230
+ def test_random_complex(self):
231
+ for size in [1,51,111,100,200,64,128,256,1024]:
232
+ x = random([size]).astype(self.cdt)
233
+ x = random([size]).astype(self.cdt) + 1j*x
234
+ y1 = ifft(fft(x))
235
+ y2 = fft(ifft(x))
236
+ assert_equal(y1.dtype, self.cdt)
237
+ assert_equal(y2.dtype, self.cdt)
238
+ assert_array_almost_equal(y1, x)
239
+ assert_array_almost_equal(y2, x)
240
+
241
+ def test_random_real(self):
242
+ for size in [1,51,111,100,200,64,128,256,1024]:
243
+ x = random([size]).astype(self.rdt)
244
+ y1 = ifft(fft(x))
245
+ y2 = fft(ifft(x))
246
+ assert_equal(y1.dtype, self.cdt)
247
+ assert_equal(y2.dtype, self.cdt)
248
+ assert_array_almost_equal(y1, x)
249
+ assert_array_almost_equal(y2, x)
250
+
251
+ def test_size_accuracy(self):
252
+ # Sanity check for the accuracy for prime and non-prime sized inputs
253
+ for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES:
254
+ np.random.seed(1234)
255
+ x = np.random.rand(size).astype(self.rdt)
256
+ y = ifft(fft(x))
257
+ _assert_close_in_norm(x, y, self.rtol, size, self.rdt)
258
+ y = fft(ifft(x))
259
+ _assert_close_in_norm(x, y, self.rtol, size, self.rdt)
260
+
261
+ x = (x + 1j*np.random.rand(size)).astype(self.cdt)
262
+ y = ifft(fft(x))
263
+ _assert_close_in_norm(x, y, self.rtol, size, self.rdt)
264
+ y = fft(ifft(x))
265
+ _assert_close_in_norm(x, y, self.rtol, size, self.rdt)
266
+
267
+ def test_invalid_sizes(self):
268
+ assert_raises(ValueError, ifft, [])
269
+ assert_raises(ValueError, ifft, [[1,1],[2,2]], -5)
270
+
271
+
272
+ @pytest.mark.skipif(np.longdouble is np.float64,
273
+ reason="Long double is aliased to double")
274
+ class TestLongDoubleIFFT(_TestIFFTBase):
275
+ def setup_method(self):
276
+ self.cdt = np.clongdouble
277
+ self.rdt = np.longdouble
278
+ self.rtol = 1e-10
279
+ self.atol = 1e-10
280
+
281
+
282
+ class TestDoubleIFFT(_TestIFFTBase):
283
+ def setup_method(self):
284
+ self.cdt = np.complex128
285
+ self.rdt = np.float64
286
+ self.rtol = 1e-10
287
+ self.atol = 1e-10
288
+
289
+
290
+ class TestSingleIFFT(_TestIFFTBase):
291
+ def setup_method(self):
292
+ self.cdt = np.complex64
293
+ self.rdt = np.float32
294
+ self.rtol = 1e-5
295
+ self.atol = 1e-4
296
+
297
+
298
+ class _TestRFFTBase:
299
+ def setup_method(self):
300
+ np.random.seed(1234)
301
+
302
+ def test_definition(self):
303
+ for t in [[1, 2, 3, 4, 1, 2, 3, 4], [1, 2, 3, 4, 1, 2, 3, 4, 5]]:
304
+ x = np.array(t, dtype=self.rdt)
305
+ y = rfft(x)
306
+ y1 = direct_rdft(x)
307
+ assert_array_almost_equal(y,y1)
308
+ assert_equal(y.dtype, self.cdt)
309
+
310
+ def test_djbfft(self):
311
+ for i in range(2,14):
312
+ n = 2**i
313
+ x = np.arange(n)
314
+ y1 = np.fft.rfft(x)
315
+ y = rfft(x)
316
+ assert_array_almost_equal(y,y1)
317
+
318
+ def test_invalid_sizes(self):
319
+ assert_raises(ValueError, rfft, [])
320
+ assert_raises(ValueError, rfft, [[1,1],[2,2]], -5)
321
+
322
+ def test_complex_input(self):
323
+ x = np.zeros(10, dtype=self.cdt)
324
+ with assert_raises(TypeError, match="x must be a real sequence"):
325
+ rfft(x)
326
+
327
+ # See gh-5790
328
+ class MockSeries:
329
+ def __init__(self, data):
330
+ self.data = np.asarray(data)
331
+
332
+ def __getattr__(self, item):
333
+ try:
334
+ return getattr(self.data, item)
335
+ except AttributeError as e:
336
+ raise AttributeError("'MockSeries' object "
337
+ f"has no attribute '{item}'") from e
338
+
339
+ def test_non_ndarray_with_dtype(self):
340
+ x = np.array([1., 2., 3., 4., 5.])
341
+ xs = _TestRFFTBase.MockSeries(x)
342
+
343
+ expected = [1, 2, 3, 4, 5]
344
+ rfft(xs)
345
+
346
+ # Data should not have been overwritten
347
+ assert_equal(x, expected)
348
+ assert_equal(xs.data, expected)
349
+
350
+ @pytest.mark.skipif(np.longdouble is np.float64,
351
+ reason="Long double is aliased to double")
352
+ class TestRFFTLongDouble(_TestRFFTBase):
353
+ def setup_method(self):
354
+ self.cdt = np.clongdouble
355
+ self.rdt = np.longdouble
356
+
357
+
358
+ class TestRFFTDouble(_TestRFFTBase):
359
+ def setup_method(self):
360
+ self.cdt = np.complex128
361
+ self.rdt = np.float64
362
+
363
+
364
+ class TestRFFTSingle(_TestRFFTBase):
365
+ def setup_method(self):
366
+ self.cdt = np.complex64
367
+ self.rdt = np.float32
368
+
369
+
370
+ class _TestIRFFTBase:
371
+ def setup_method(self):
372
+ np.random.seed(1234)
373
+
374
+ def test_definition(self):
375
+ x1 = [1,2+3j,4+1j,1+2j,3+4j]
376
+ x1_1 = [1,2+3j,4+1j,2+3j,4,2-3j,4-1j,2-3j]
377
+ x1 = x1_1[:5]
378
+ x2_1 = [1,2+3j,4+1j,2+3j,4+5j,4-5j,2-3j,4-1j,2-3j]
379
+ x2 = x2_1[:5]
380
+
381
+ def _test(x, xr):
382
+ y = irfft(np.array(x, dtype=self.cdt), n=len(xr))
383
+ y1 = direct_irdft(x, len(xr))
384
+ assert_equal(y.dtype, self.rdt)
385
+ assert_array_almost_equal(y,y1, decimal=self.ndec)
386
+ assert_array_almost_equal(y,ifft(xr), decimal=self.ndec)
387
+
388
+ _test(x1, x1_1)
389
+ _test(x2, x2_1)
390
+
391
+ def test_djbfft(self):
392
+ for i in range(2,14):
393
+ n = 2**i
394
+ x = np.arange(-1, n, 2) + 1j * np.arange(0, n+1, 2)
395
+ x[0] = 0
396
+ if n % 2 == 0:
397
+ x[-1] = np.real(x[-1])
398
+ y1 = np.fft.irfft(x)
399
+ y = irfft(x)
400
+ assert_array_almost_equal(y,y1)
401
+
402
+ def test_random_real(self):
403
+ for size in [1,51,111,100,200,64,128,256,1024]:
404
+ x = random([size]).astype(self.rdt)
405
+ y1 = irfft(rfft(x), n=size)
406
+ y2 = rfft(irfft(x, n=(size*2-1)))
407
+ assert_equal(y1.dtype, self.rdt)
408
+ assert_equal(y2.dtype, self.cdt)
409
+ assert_array_almost_equal(y1, x, decimal=self.ndec,
410
+ err_msg="size=%d" % size)
411
+ assert_array_almost_equal(y2, x, decimal=self.ndec,
412
+ err_msg="size=%d" % size)
413
+
414
+ def test_size_accuracy(self):
415
+ # Sanity check for the accuracy for prime and non-prime sized inputs
416
+ if self.rdt == np.float32:
417
+ rtol = 1e-5
418
+ elif self.rdt == np.float64:
419
+ rtol = 1e-10
420
+
421
+ for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES:
422
+ np.random.seed(1234)
423
+ x = np.random.rand(size).astype(self.rdt)
424
+ y = irfft(rfft(x), len(x))
425
+ _assert_close_in_norm(x, y, rtol, size, self.rdt)
426
+ y = rfft(irfft(x, 2 * len(x) - 1))
427
+ _assert_close_in_norm(x, y, rtol, size, self.rdt)
428
+
429
+ def test_invalid_sizes(self):
430
+ assert_raises(ValueError, irfft, [])
431
+ assert_raises(ValueError, irfft, [[1,1],[2,2]], -5)
432
+
433
+
434
+ # self.ndec is bogus; we should have a assert_array_approx_equal for number of
435
+ # significant digits
436
+
437
+ @pytest.mark.skipif(np.longdouble is np.float64,
438
+ reason="Long double is aliased to double")
439
+ class TestIRFFTLongDouble(_TestIRFFTBase):
440
+ def setup_method(self):
441
+ self.cdt = np.complex128
442
+ self.rdt = np.float64
443
+ self.ndec = 14
444
+
445
+
446
+ class TestIRFFTDouble(_TestIRFFTBase):
447
+ def setup_method(self):
448
+ self.cdt = np.complex128
449
+ self.rdt = np.float64
450
+ self.ndec = 14
451
+
452
+
453
+ class TestIRFFTSingle(_TestIRFFTBase):
454
+ def setup_method(self):
455
+ self.cdt = np.complex64
456
+ self.rdt = np.float32
457
+ self.ndec = 5
458
+
459
+
460
+ class TestFftnSingle:
461
+ def setup_method(self):
462
+ np.random.seed(1234)
463
+
464
+ def test_definition(self):
465
+ x = [[1, 2, 3],
466
+ [4, 5, 6],
467
+ [7, 8, 9]]
468
+ y = fftn(np.array(x, np.float32))
469
+ assert_(y.dtype == np.complex64,
470
+ msg="double precision output with single precision")
471
+
472
+ y_r = np.array(fftn(x), np.complex64)
473
+ assert_array_almost_equal_nulp(y, y_r)
474
+
475
+ @pytest.mark.parametrize('size', SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES)
476
+ def test_size_accuracy_small(self, size):
477
+ x = np.random.rand(size, size) + 1j*np.random.rand(size, size)
478
+ y1 = fftn(x.real.astype(np.float32))
479
+ y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
480
+
481
+ assert_equal(y1.dtype, np.complex64)
482
+ assert_array_almost_equal_nulp(y1, y2, 2000)
483
+
484
+ @pytest.mark.parametrize('size', LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES)
485
+ def test_size_accuracy_large(self, size):
486
+ x = np.random.rand(size, 3) + 1j*np.random.rand(size, 3)
487
+ y1 = fftn(x.real.astype(np.float32))
488
+ y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
489
+
490
+ assert_equal(y1.dtype, np.complex64)
491
+ assert_array_almost_equal_nulp(y1, y2, 2000)
492
+
493
+ def test_definition_float16(self):
494
+ x = [[1, 2, 3],
495
+ [4, 5, 6],
496
+ [7, 8, 9]]
497
+ y = fftn(np.array(x, np.float16))
498
+ assert_equal(y.dtype, np.complex64)
499
+ y_r = np.array(fftn(x), np.complex64)
500
+ assert_array_almost_equal_nulp(y, y_r)
501
+
502
+ @pytest.mark.parametrize('size', SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES)
503
+ def test_float16_input_small(self, size):
504
+ x = np.random.rand(size, size) + 1j*np.random.rand(size, size)
505
+ y1 = fftn(x.real.astype(np.float16))
506
+ y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
507
+
508
+ assert_equal(y1.dtype, np.complex64)
509
+ assert_array_almost_equal_nulp(y1, y2, 5e5)
510
+
511
+ @pytest.mark.parametrize('size', LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES)
512
+ def test_float16_input_large(self, size):
513
+ x = np.random.rand(size, 3) + 1j*np.random.rand(size, 3)
514
+ y1 = fftn(x.real.astype(np.float16))
515
+ y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)
516
+
517
+ assert_equal(y1.dtype, np.complex64)
518
+ assert_array_almost_equal_nulp(y1, y2, 2e6)
519
+
520
+
521
+ class TestFftn:
522
+ def setup_method(self):
523
+ np.random.seed(1234)
524
+
525
+ def test_definition(self):
526
+ x = [[1, 2, 3],
527
+ [4, 5, 6],
528
+ [7, 8, 9]]
529
+ y = fftn(x)
530
+ assert_array_almost_equal(y, direct_dftn(x))
531
+
532
+ x = random((20, 26))
533
+ assert_array_almost_equal(fftn(x), direct_dftn(x))
534
+
535
+ x = random((5, 4, 3, 20))
536
+ assert_array_almost_equal(fftn(x), direct_dftn(x))
537
+
538
+ def test_axes_argument(self):
539
+ # plane == ji_plane, x== kji_space
540
+ plane1 = [[1, 2, 3],
541
+ [4, 5, 6],
542
+ [7, 8, 9]]
543
+ plane2 = [[10, 11, 12],
544
+ [13, 14, 15],
545
+ [16, 17, 18]]
546
+ plane3 = [[19, 20, 21],
547
+ [22, 23, 24],
548
+ [25, 26, 27]]
549
+ ki_plane1 = [[1, 2, 3],
550
+ [10, 11, 12],
551
+ [19, 20, 21]]
552
+ ki_plane2 = [[4, 5, 6],
553
+ [13, 14, 15],
554
+ [22, 23, 24]]
555
+ ki_plane3 = [[7, 8, 9],
556
+ [16, 17, 18],
557
+ [25, 26, 27]]
558
+ jk_plane1 = [[1, 10, 19],
559
+ [4, 13, 22],
560
+ [7, 16, 25]]
561
+ jk_plane2 = [[2, 11, 20],
562
+ [5, 14, 23],
563
+ [8, 17, 26]]
564
+ jk_plane3 = [[3, 12, 21],
565
+ [6, 15, 24],
566
+ [9, 18, 27]]
567
+ kj_plane1 = [[1, 4, 7],
568
+ [10, 13, 16], [19, 22, 25]]
569
+ kj_plane2 = [[2, 5, 8],
570
+ [11, 14, 17], [20, 23, 26]]
571
+ kj_plane3 = [[3, 6, 9],
572
+ [12, 15, 18], [21, 24, 27]]
573
+ ij_plane1 = [[1, 4, 7],
574
+ [2, 5, 8],
575
+ [3, 6, 9]]
576
+ ij_plane2 = [[10, 13, 16],
577
+ [11, 14, 17],
578
+ [12, 15, 18]]
579
+ ij_plane3 = [[19, 22, 25],
580
+ [20, 23, 26],
581
+ [21, 24, 27]]
582
+ ik_plane1 = [[1, 10, 19],
583
+ [2, 11, 20],
584
+ [3, 12, 21]]
585
+ ik_plane2 = [[4, 13, 22],
586
+ [5, 14, 23],
587
+ [6, 15, 24]]
588
+ ik_plane3 = [[7, 16, 25],
589
+ [8, 17, 26],
590
+ [9, 18, 27]]
591
+ ijk_space = [jk_plane1, jk_plane2, jk_plane3]
592
+ ikj_space = [kj_plane1, kj_plane2, kj_plane3]
593
+ jik_space = [ik_plane1, ik_plane2, ik_plane3]
594
+ jki_space = [ki_plane1, ki_plane2, ki_plane3]
595
+ kij_space = [ij_plane1, ij_plane2, ij_plane3]
596
+ x = array([plane1, plane2, plane3])
597
+
598
+ assert_array_almost_equal(fftn(x),
599
+ fftn(x, axes=(-3, -2, -1))) # kji_space
600
+ assert_array_almost_equal(fftn(x), fftn(x, axes=(0, 1, 2)))
601
+ assert_array_almost_equal(fftn(x, axes=(0, 2)), fftn(x, axes=(0, -1)))
602
+ y = fftn(x, axes=(2, 1, 0)) # ijk_space
603
+ assert_array_almost_equal(swapaxes(y, -1, -3), fftn(ijk_space))
604
+ y = fftn(x, axes=(2, 0, 1)) # ikj_space
605
+ assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -1, -2),
606
+ fftn(ikj_space))
607
+ y = fftn(x, axes=(1, 2, 0)) # jik_space
608
+ assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -3, -2),
609
+ fftn(jik_space))
610
+ y = fftn(x, axes=(1, 0, 2)) # jki_space
611
+ assert_array_almost_equal(swapaxes(y, -2, -3), fftn(jki_space))
612
+ y = fftn(x, axes=(0, 2, 1)) # kij_space
613
+ assert_array_almost_equal(swapaxes(y, -2, -1), fftn(kij_space))
614
+
615
+ y = fftn(x, axes=(-2, -1)) # ji_plane
616
+ assert_array_almost_equal(fftn(plane1), y[0])
617
+ assert_array_almost_equal(fftn(plane2), y[1])
618
+ assert_array_almost_equal(fftn(plane3), y[2])
619
+
620
+ y = fftn(x, axes=(1, 2)) # ji_plane
621
+ assert_array_almost_equal(fftn(plane1), y[0])
622
+ assert_array_almost_equal(fftn(plane2), y[1])
623
+ assert_array_almost_equal(fftn(plane3), y[2])
624
+
625
+ y = fftn(x, axes=(-3, -2)) # kj_plane
626
+ assert_array_almost_equal(fftn(x[:, :, 0]), y[:, :, 0])
627
+ assert_array_almost_equal(fftn(x[:, :, 1]), y[:, :, 1])
628
+ assert_array_almost_equal(fftn(x[:, :, 2]), y[:, :, 2])
629
+
630
+ y = fftn(x, axes=(-3, -1)) # ki_plane
631
+ assert_array_almost_equal(fftn(x[:, 0, :]), y[:, 0, :])
632
+ assert_array_almost_equal(fftn(x[:, 1, :]), y[:, 1, :])
633
+ assert_array_almost_equal(fftn(x[:, 2, :]), y[:, 2, :])
634
+
635
+ y = fftn(x, axes=(-1, -2)) # ij_plane
636
+ assert_array_almost_equal(fftn(ij_plane1), swapaxes(y[0], -2, -1))
637
+ assert_array_almost_equal(fftn(ij_plane2), swapaxes(y[1], -2, -1))
638
+ assert_array_almost_equal(fftn(ij_plane3), swapaxes(y[2], -2, -1))
639
+
640
+ y = fftn(x, axes=(-1, -3)) # ik_plane
641
+ assert_array_almost_equal(fftn(ik_plane1),
642
+ swapaxes(y[:, 0, :], -1, -2))
643
+ assert_array_almost_equal(fftn(ik_plane2),
644
+ swapaxes(y[:, 1, :], -1, -2))
645
+ assert_array_almost_equal(fftn(ik_plane3),
646
+ swapaxes(y[:, 2, :], -1, -2))
647
+
648
+ y = fftn(x, axes=(-2, -3)) # jk_plane
649
+ assert_array_almost_equal(fftn(jk_plane1),
650
+ swapaxes(y[:, :, 0], -1, -2))
651
+ assert_array_almost_equal(fftn(jk_plane2),
652
+ swapaxes(y[:, :, 1], -1, -2))
653
+ assert_array_almost_equal(fftn(jk_plane3),
654
+ swapaxes(y[:, :, 2], -1, -2))
655
+
656
+ y = fftn(x, axes=(-1,)) # i_line
657
+ for i in range(3):
658
+ for j in range(3):
659
+ assert_array_almost_equal(fft(x[i, j, :]), y[i, j, :])
660
+ y = fftn(x, axes=(-2,)) # j_line
661
+ for i in range(3):
662
+ for j in range(3):
663
+ assert_array_almost_equal(fft(x[i, :, j]), y[i, :, j])
664
+ y = fftn(x, axes=(0,)) # k_line
665
+ for i in range(3):
666
+ for j in range(3):
667
+ assert_array_almost_equal(fft(x[:, i, j]), y[:, i, j])
668
+
669
+ y = fftn(x, axes=()) # point
670
+ assert_array_almost_equal(y, x)
671
+
672
+ def test_shape_argument(self):
673
+ small_x = [[1, 2, 3],
674
+ [4, 5, 6]]
675
+ large_x1 = [[1, 2, 3, 0],
676
+ [4, 5, 6, 0],
677
+ [0, 0, 0, 0],
678
+ [0, 0, 0, 0]]
679
+
680
+ y = fftn(small_x, s=(4, 4))
681
+ assert_array_almost_equal(y, fftn(large_x1))
682
+
683
+ y = fftn(small_x, s=(3, 4))
684
+ assert_array_almost_equal(y, fftn(large_x1[:-1]))
685
+
686
+ def test_shape_axes_argument(self):
687
+ small_x = [[1, 2, 3],
688
+ [4, 5, 6],
689
+ [7, 8, 9]]
690
+ large_x1 = array([[1, 2, 3, 0],
691
+ [4, 5, 6, 0],
692
+ [7, 8, 9, 0],
693
+ [0, 0, 0, 0]])
694
+ y = fftn(small_x, s=(4, 4), axes=(-2, -1))
695
+ assert_array_almost_equal(y, fftn(large_x1))
696
+ y = fftn(small_x, s=(4, 4), axes=(-1, -2))
697
+
698
+ assert_array_almost_equal(y, swapaxes(
699
+ fftn(swapaxes(large_x1, -1, -2)), -1, -2))
700
+
701
+ def test_shape_axes_argument2(self):
702
+ # Change shape of the last axis
703
+ x = numpy.random.random((10, 5, 3, 7))
704
+ y = fftn(x, axes=(-1,), s=(8,))
705
+ assert_array_almost_equal(y, fft(x, axis=-1, n=8))
706
+
707
+ # Change shape of an arbitrary axis which is not the last one
708
+ x = numpy.random.random((10, 5, 3, 7))
709
+ y = fftn(x, axes=(-2,), s=(8,))
710
+ assert_array_almost_equal(y, fft(x, axis=-2, n=8))
711
+
712
+ # Change shape of axes: cf #244, where shape and axes were mixed up
713
+ x = numpy.random.random((4, 4, 2))
714
+ y = fftn(x, axes=(-3, -2), s=(8, 8))
715
+ assert_array_almost_equal(y,
716
+ numpy.fft.fftn(x, axes=(-3, -2), s=(8, 8)))
717
+
718
+ def test_shape_argument_more(self):
719
+ x = zeros((4, 4, 2))
720
+ with assert_raises(ValueError,
721
+ match="shape requires more axes than are present"):
722
+ fftn(x, s=(8, 8, 2, 1))
723
+
724
+ def test_invalid_sizes(self):
725
+ with assert_raises(ValueError,
726
+ match="invalid number of data points"
727
+ r" \(\[1, 0\]\) specified"):
728
+ fftn([[]])
729
+
730
+ with assert_raises(ValueError,
731
+ match="invalid number of data points"
732
+ r" \(\[4, -3\]\) specified"):
733
+ fftn([[1, 1], [2, 2]], (4, -3))
734
+
735
+ def test_no_axes(self):
736
+ x = numpy.random.random((2,2,2))
737
+ assert_allclose(fftn(x, axes=[]), x, atol=1e-7)
738
+
739
+ def test_regression_244(self):
740
+ """FFT returns wrong result with axes parameter."""
741
+ # fftn (and hence fft2) used to break when both axes and shape were used
742
+ x = numpy.ones((4, 4, 2))
743
+ y = fftn(x, s=(8, 8), axes=(-3, -2))
744
+ y_r = numpy.fft.fftn(x, s=(8, 8), axes=(-3, -2))
745
+ assert_allclose(y, y_r)
746
+
747
+
748
+ class TestIfftn:
749
+ dtype = None
750
+ cdtype = None
751
+
752
+ def setup_method(self):
753
+ np.random.seed(1234)
754
+
755
+ @pytest.mark.parametrize('dtype,cdtype,maxnlp',
756
+ [(np.float64, np.complex128, 2000),
757
+ (np.float32, np.complex64, 3500)])
758
+ def test_definition(self, dtype, cdtype, maxnlp):
759
+ x = np.array([[1, 2, 3],
760
+ [4, 5, 6],
761
+ [7, 8, 9]], dtype=dtype)
762
+ y = ifftn(x)
763
+ assert_equal(y.dtype, cdtype)
764
+ assert_array_almost_equal_nulp(y, direct_idftn(x), maxnlp)
765
+
766
+ x = random((20, 26))
767
+ assert_array_almost_equal_nulp(ifftn(x), direct_idftn(x), maxnlp)
768
+
769
+ x = random((5, 4, 3, 20))
770
+ assert_array_almost_equal_nulp(ifftn(x), direct_idftn(x), maxnlp)
771
+
772
+ @pytest.mark.parametrize('maxnlp', [2000, 3500])
773
+ @pytest.mark.parametrize('size', [1, 2, 51, 32, 64, 92])
774
+ def test_random_complex(self, maxnlp, size):
775
+ x = random([size, size]) + 1j*random([size, size])
776
+ assert_array_almost_equal_nulp(ifftn(fftn(x)), x, maxnlp)
777
+ assert_array_almost_equal_nulp(fftn(ifftn(x)), x, maxnlp)
778
+
779
+ def test_invalid_sizes(self):
780
+ with assert_raises(ValueError,
781
+ match="invalid number of data points"
782
+ r" \(\[1, 0\]\) specified"):
783
+ ifftn([[]])
784
+
785
+ with assert_raises(ValueError,
786
+ match="invalid number of data points"
787
+ r" \(\[4, -3\]\) specified"):
788
+ ifftn([[1, 1], [2, 2]], (4, -3))
789
+
790
+ def test_no_axes(self):
791
+ x = numpy.random.random((2,2,2))
792
+ assert_allclose(ifftn(x, axes=[]), x, atol=1e-7)
793
+
794
+ class TestRfftn:
795
+ dtype = None
796
+ cdtype = None
797
+
798
+ def setup_method(self):
799
+ np.random.seed(1234)
800
+
801
+ @pytest.mark.parametrize('dtype,cdtype,maxnlp',
802
+ [(np.float64, np.complex128, 2000),
803
+ (np.float32, np.complex64, 3500)])
804
+ def test_definition(self, dtype, cdtype, maxnlp):
805
+ x = np.array([[1, 2, 3],
806
+ [4, 5, 6],
807
+ [7, 8, 9]], dtype=dtype)
808
+ y = rfftn(x)
809
+ assert_equal(y.dtype, cdtype)
810
+ assert_array_almost_equal_nulp(y, direct_rdftn(x), maxnlp)
811
+
812
+ x = random((20, 26))
813
+ assert_array_almost_equal_nulp(rfftn(x), direct_rdftn(x), maxnlp)
814
+
815
+ x = random((5, 4, 3, 20))
816
+ assert_array_almost_equal_nulp(rfftn(x), direct_rdftn(x), maxnlp)
817
+
818
+ @pytest.mark.parametrize('size', [1, 2, 51, 32, 64, 92])
819
+ def test_random(self, size):
820
+ x = random([size, size])
821
+ assert_allclose(irfftn(rfftn(x), x.shape), x, atol=1e-10)
822
+
823
+ @pytest.mark.parametrize('func', [rfftn, irfftn])
824
+ def test_invalid_sizes(self, func):
825
+ with assert_raises(ValueError,
826
+ match="invalid number of data points"
827
+ r" \(\[1, 0\]\) specified"):
828
+ func([[]])
829
+
830
+ with assert_raises(ValueError,
831
+ match="invalid number of data points"
832
+ r" \(\[4, -3\]\) specified"):
833
+ func([[1, 1], [2, 2]], (4, -3))
834
+
835
+ @pytest.mark.parametrize('func', [rfftn, irfftn])
836
+ def test_no_axes(self, func):
837
+ with assert_raises(ValueError,
838
+ match="at least 1 axis must be transformed"):
839
+ func([], axes=[])
840
+
841
+ def test_complex_input(self):
842
+ with assert_raises(TypeError, match="x must be a real sequence"):
843
+ rfftn(np.zeros(10, dtype=np.complex64))
844
+
845
+
846
+ class FakeArray:
847
+ def __init__(self, data):
848
+ self._data = data
849
+ self.__array_interface__ = data.__array_interface__
850
+
851
+
852
+ class FakeArray2:
853
+ def __init__(self, data):
854
+ self._data = data
855
+
856
+ def __array__(self, dtype=None, copy=None):
857
+ return self._data
858
+
859
+ # TODO: Is this test actually valuable? The behavior it's testing shouldn't be
860
+ # relied upon by users except for overwrite_x = False
861
+ class TestOverwrite:
862
+ """Check input overwrite behavior of the FFT functions."""
863
+
864
+ real_dtypes = [np.float32, np.float64, np.longdouble]
865
+ dtypes = real_dtypes + [np.complex64, np.complex128, np.clongdouble]
866
+ fftsizes = [8, 16, 32]
867
+
868
+ def _check(self, x, routine, fftsize, axis, overwrite_x, should_overwrite):
869
+ x2 = x.copy()
870
+ for fake in [lambda x: x, FakeArray, FakeArray2]:
871
+ routine(fake(x2), fftsize, axis, overwrite_x=overwrite_x)
872
+
873
+ sig = "{}({}{!r}, {!r}, axis={!r}, overwrite_x={!r})".format(
874
+ routine.__name__, x.dtype, x.shape, fftsize, axis, overwrite_x)
875
+ if not should_overwrite:
876
+ assert_equal(x2, x, err_msg="spurious overwrite in %s" % sig)
877
+
878
+ def _check_1d(self, routine, dtype, shape, axis, overwritable_dtypes,
879
+ fftsize, overwrite_x):
880
+ np.random.seed(1234)
881
+ if np.issubdtype(dtype, np.complexfloating):
882
+ data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
883
+ else:
884
+ data = np.random.randn(*shape)
885
+ data = data.astype(dtype)
886
+
887
+ should_overwrite = (overwrite_x
888
+ and dtype in overwritable_dtypes
889
+ and fftsize <= shape[axis])
890
+ self._check(data, routine, fftsize, axis,
891
+ overwrite_x=overwrite_x,
892
+ should_overwrite=should_overwrite)
893
+
894
+ @pytest.mark.parametrize('dtype', dtypes)
895
+ @pytest.mark.parametrize('fftsize', fftsizes)
896
+ @pytest.mark.parametrize('overwrite_x', [True, False])
897
+ @pytest.mark.parametrize('shape,axes', [((16,), -1),
898
+ ((16, 2), 0),
899
+ ((2, 16), 1)])
900
+ def test_fft_ifft(self, dtype, fftsize, overwrite_x, shape, axes):
901
+ overwritable = (np.clongdouble, np.complex128, np.complex64)
902
+ self._check_1d(fft, dtype, shape, axes, overwritable,
903
+ fftsize, overwrite_x)
904
+ self._check_1d(ifft, dtype, shape, axes, overwritable,
905
+ fftsize, overwrite_x)
906
+
907
+ @pytest.mark.parametrize('dtype', real_dtypes)
908
+ @pytest.mark.parametrize('fftsize', fftsizes)
909
+ @pytest.mark.parametrize('overwrite_x', [True, False])
910
+ @pytest.mark.parametrize('shape,axes', [((16,), -1),
911
+ ((16, 2), 0),
912
+ ((2, 16), 1)])
913
+ def test_rfft_irfft(self, dtype, fftsize, overwrite_x, shape, axes):
914
+ overwritable = self.real_dtypes
915
+ self._check_1d(irfft, dtype, shape, axes, overwritable,
916
+ fftsize, overwrite_x)
917
+ self._check_1d(rfft, dtype, shape, axes, overwritable,
918
+ fftsize, overwrite_x)
919
+
920
+ def _check_nd_one(self, routine, dtype, shape, axes, overwritable_dtypes,
921
+ overwrite_x):
922
+ np.random.seed(1234)
923
+ if np.issubdtype(dtype, np.complexfloating):
924
+ data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
925
+ else:
926
+ data = np.random.randn(*shape)
927
+ data = data.astype(dtype)
928
+
929
+ def fftshape_iter(shp):
930
+ if len(shp) <= 0:
931
+ yield ()
932
+ else:
933
+ for j in (shp[0]//2, shp[0], shp[0]*2):
934
+ for rest in fftshape_iter(shp[1:]):
935
+ yield (j,) + rest
936
+
937
+ def part_shape(shape, axes):
938
+ if axes is None:
939
+ return shape
940
+ else:
941
+ return tuple(np.take(shape, axes))
942
+
943
+ def should_overwrite(data, shape, axes):
944
+ s = part_shape(data.shape, axes)
945
+ return (overwrite_x and
946
+ np.prod(shape) <= np.prod(s)
947
+ and dtype in overwritable_dtypes)
948
+
949
+ for fftshape in fftshape_iter(part_shape(shape, axes)):
950
+ self._check(data, routine, fftshape, axes,
951
+ overwrite_x=overwrite_x,
952
+ should_overwrite=should_overwrite(data, fftshape, axes))
953
+ if data.ndim > 1:
954
+ # check fortran order
955
+ self._check(data.T, routine, fftshape, axes,
956
+ overwrite_x=overwrite_x,
957
+ should_overwrite=should_overwrite(
958
+ data.T, fftshape, axes))
959
+
960
+ @pytest.mark.parametrize('dtype', dtypes)
961
+ @pytest.mark.parametrize('overwrite_x', [True, False])
962
+ @pytest.mark.parametrize('shape,axes', [((16,), None),
963
+ ((16,), (0,)),
964
+ ((16, 2), (0,)),
965
+ ((2, 16), (1,)),
966
+ ((8, 16), None),
967
+ ((8, 16), (0, 1)),
968
+ ((8, 16, 2), (0, 1)),
969
+ ((8, 16, 2), (1, 2)),
970
+ ((8, 16, 2), (0,)),
971
+ ((8, 16, 2), (1,)),
972
+ ((8, 16, 2), (2,)),
973
+ ((8, 16, 2), None),
974
+ ((8, 16, 2), (0, 1, 2))])
975
+ def test_fftn_ifftn(self, dtype, overwrite_x, shape, axes):
976
+ overwritable = (np.clongdouble, np.complex128, np.complex64)
977
+ self._check_nd_one(fftn, dtype, shape, axes, overwritable,
978
+ overwrite_x)
979
+ self._check_nd_one(ifftn, dtype, shape, axes, overwritable,
980
+ overwrite_x)
981
+
982
+
983
+ @pytest.mark.parametrize('func', [fft, ifft, fftn, ifftn,
984
+ rfft, irfft, rfftn, irfftn])
985
+ def test_invalid_norm(func):
986
+ x = np.arange(10, dtype=float)
987
+ with assert_raises(ValueError,
988
+ match='Invalid norm value \'o\', should be'
989
+ ' "backward", "ortho" or "forward"'):
990
+ func(x, norm='o')
991
+
992
+
993
+ @pytest.mark.parametrize('func', [fft, ifft, fftn, ifftn,
994
+ irfft, irfftn, hfft, hfftn])
995
+ def test_swapped_byte_order_complex(func):
996
+ rng = np.random.RandomState(1234)
997
+ x = rng.rand(10) + 1j * rng.rand(10)
998
+ assert_allclose(func(swap_byteorder(x)), func(x))
999
+
1000
+
1001
+ @pytest.mark.parametrize('func', [ihfft, ihfftn, rfft, rfftn])
1002
+ def test_swapped_byte_order_real(func):
1003
+ rng = np.random.RandomState(1234)
1004
+ x = rng.rand(10)
1005
+ assert_allclose(func(swap_byteorder(x)), func(x))
venv/lib/python3.10/site-packages/scipy/fft/_pocketfft/tests/test_real_transforms.py ADDED
@@ -0,0 +1,494 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from os.path import join, dirname
2
+ from typing import Callable, Union
3
+
4
+ import numpy as np
5
+ from numpy.testing import (
6
+ assert_array_almost_equal, assert_equal, assert_allclose)
7
+ import pytest
8
+ from pytest import raises as assert_raises
9
+
10
+ from scipy.fft._pocketfft.realtransforms import (
11
+ dct, idct, dst, idst, dctn, idctn, dstn, idstn)
12
+
13
+ fftpack_test_dir = join(dirname(__file__), '..', '..', '..', 'fftpack', 'tests')
14
+
15
+ MDATA_COUNT = 8
16
+ FFTWDATA_COUNT = 14
17
+
18
+ def is_longdouble_binary_compatible():
19
+ try:
20
+ one = np.frombuffer(
21
+ b'\x00\x00\x00\x00\x00\x00\x00\x80\xff\x3f\x00\x00\x00\x00\x00\x00',
22
+ dtype='<f16')
23
+ return one == np.longdouble(1.)
24
+ except TypeError:
25
+ return False
26
+
27
+
28
+ @pytest.fixture(scope="module")
29
+ def reference_data():
30
+ # Matlab reference data
31
+ MDATA = np.load(join(fftpack_test_dir, 'test.npz'))
32
+ X = [MDATA['x%d' % i] for i in range(MDATA_COUNT)]
33
+ Y = [MDATA['y%d' % i] for i in range(MDATA_COUNT)]
34
+
35
+ # FFTW reference data: the data are organized as follows:
36
+ # * SIZES is an array containing all available sizes
37
+ # * for every type (1, 2, 3, 4) and every size, the array dct_type_size
38
+ # contains the output of the DCT applied to the input np.linspace(0, size-1,
39
+ # size)
40
+ FFTWDATA_DOUBLE = np.load(join(fftpack_test_dir, 'fftw_double_ref.npz'))
41
+ FFTWDATA_SINGLE = np.load(join(fftpack_test_dir, 'fftw_single_ref.npz'))
42
+ FFTWDATA_SIZES = FFTWDATA_DOUBLE['sizes']
43
+ assert len(FFTWDATA_SIZES) == FFTWDATA_COUNT
44
+
45
+ if is_longdouble_binary_compatible():
46
+ FFTWDATA_LONGDOUBLE = np.load(
47
+ join(fftpack_test_dir, 'fftw_longdouble_ref.npz'))
48
+ else:
49
+ FFTWDATA_LONGDOUBLE = {k: v.astype(np.longdouble)
50
+ for k,v in FFTWDATA_DOUBLE.items()}
51
+
52
+ ref = {
53
+ 'FFTWDATA_LONGDOUBLE': FFTWDATA_LONGDOUBLE,
54
+ 'FFTWDATA_DOUBLE': FFTWDATA_DOUBLE,
55
+ 'FFTWDATA_SINGLE': FFTWDATA_SINGLE,
56
+ 'FFTWDATA_SIZES': FFTWDATA_SIZES,
57
+ 'X': X,
58
+ 'Y': Y
59
+ }
60
+
61
+ yield ref
62
+
63
+ if is_longdouble_binary_compatible():
64
+ FFTWDATA_LONGDOUBLE.close()
65
+ FFTWDATA_SINGLE.close()
66
+ FFTWDATA_DOUBLE.close()
67
+ MDATA.close()
68
+
69
+
70
+ @pytest.fixture(params=range(FFTWDATA_COUNT))
71
+ def fftwdata_size(request, reference_data):
72
+ return reference_data['FFTWDATA_SIZES'][request.param]
73
+
74
+ @pytest.fixture(params=range(MDATA_COUNT))
75
+ def mdata_x(request, reference_data):
76
+ return reference_data['X'][request.param]
77
+
78
+
79
+ @pytest.fixture(params=range(MDATA_COUNT))
80
+ def mdata_xy(request, reference_data):
81
+ y = reference_data['Y'][request.param]
82
+ x = reference_data['X'][request.param]
83
+ return x, y
84
+
85
+
86
+ def fftw_dct_ref(type, size, dt, reference_data):
87
+ x = np.linspace(0, size-1, size).astype(dt)
88
+ dt = np.result_type(np.float32, dt)
89
+ if dt == np.float64:
90
+ data = reference_data['FFTWDATA_DOUBLE']
91
+ elif dt == np.float32:
92
+ data = reference_data['FFTWDATA_SINGLE']
93
+ elif dt == np.longdouble:
94
+ data = reference_data['FFTWDATA_LONGDOUBLE']
95
+ else:
96
+ raise ValueError()
97
+ y = (data['dct_%d_%d' % (type, size)]).astype(dt)
98
+ return x, y, dt
99
+
100
+
101
+ def fftw_dst_ref(type, size, dt, reference_data):
102
+ x = np.linspace(0, size-1, size).astype(dt)
103
+ dt = np.result_type(np.float32, dt)
104
+ if dt == np.float64:
105
+ data = reference_data['FFTWDATA_DOUBLE']
106
+ elif dt == np.float32:
107
+ data = reference_data['FFTWDATA_SINGLE']
108
+ elif dt == np.longdouble:
109
+ data = reference_data['FFTWDATA_LONGDOUBLE']
110
+ else:
111
+ raise ValueError()
112
+ y = (data['dst_%d_%d' % (type, size)]).astype(dt)
113
+ return x, y, dt
114
+
115
+
116
+ def ref_2d(func, x, **kwargs):
117
+ """Calculate 2-D reference data from a 1d transform"""
118
+ x = np.array(x, copy=True)
119
+ for row in range(x.shape[0]):
120
+ x[row, :] = func(x[row, :], **kwargs)
121
+ for col in range(x.shape[1]):
122
+ x[:, col] = func(x[:, col], **kwargs)
123
+ return x
124
+
125
+
126
+ def naive_dct1(x, norm=None):
127
+ """Calculate textbook definition version of DCT-I."""
128
+ x = np.array(x, copy=True)
129
+ N = len(x)
130
+ M = N-1
131
+ y = np.zeros(N)
132
+ m0, m = 1, 2
133
+ if norm == 'ortho':
134
+ m0 = np.sqrt(1.0/M)
135
+ m = np.sqrt(2.0/M)
136
+ for k in range(N):
137
+ for n in range(1, N-1):
138
+ y[k] += m*x[n]*np.cos(np.pi*n*k/M)
139
+ y[k] += m0 * x[0]
140
+ y[k] += m0 * x[N-1] * (1 if k % 2 == 0 else -1)
141
+ if norm == 'ortho':
142
+ y[0] *= 1/np.sqrt(2)
143
+ y[N-1] *= 1/np.sqrt(2)
144
+ return y
145
+
146
+
147
+ def naive_dst1(x, norm=None):
148
+ """Calculate textbook definition version of DST-I."""
149
+ x = np.array(x, copy=True)
150
+ N = len(x)
151
+ M = N+1
152
+ y = np.zeros(N)
153
+ for k in range(N):
154
+ for n in range(N):
155
+ y[k] += 2*x[n]*np.sin(np.pi*(n+1.0)*(k+1.0)/M)
156
+ if norm == 'ortho':
157
+ y *= np.sqrt(0.5/M)
158
+ return y
159
+
160
+
161
+ def naive_dct4(x, norm=None):
162
+ """Calculate textbook definition version of DCT-IV."""
163
+ x = np.array(x, copy=True)
164
+ N = len(x)
165
+ y = np.zeros(N)
166
+ for k in range(N):
167
+ for n in range(N):
168
+ y[k] += x[n]*np.cos(np.pi*(n+0.5)*(k+0.5)/(N))
169
+ if norm == 'ortho':
170
+ y *= np.sqrt(2.0/N)
171
+ else:
172
+ y *= 2
173
+ return y
174
+
175
+
176
+ def naive_dst4(x, norm=None):
177
+ """Calculate textbook definition version of DST-IV."""
178
+ x = np.array(x, copy=True)
179
+ N = len(x)
180
+ y = np.zeros(N)
181
+ for k in range(N):
182
+ for n in range(N):
183
+ y[k] += x[n]*np.sin(np.pi*(n+0.5)*(k+0.5)/(N))
184
+ if norm == 'ortho':
185
+ y *= np.sqrt(2.0/N)
186
+ else:
187
+ y *= 2
188
+ return y
189
+
190
+
191
+ @pytest.mark.parametrize('dtype', [np.complex64, np.complex128, np.clongdouble])
192
+ @pytest.mark.parametrize('transform', [dct, dst, idct, idst])
193
+ def test_complex(transform, dtype):
194
+ y = transform(1j*np.arange(5, dtype=dtype))
195
+ x = 1j*transform(np.arange(5))
196
+ assert_array_almost_equal(x, y)
197
+
198
+
199
+ DecMapType = dict[
200
+ tuple[Callable[..., np.ndarray], Union[type[np.floating], type[int]], int],
201
+ int,
202
+ ]
203
+
204
+ # map (transform, dtype, type) -> decimal
205
+ dec_map: DecMapType = {
206
+ # DCT
207
+ (dct, np.float64, 1): 13,
208
+ (dct, np.float32, 1): 6,
209
+
210
+ (dct, np.float64, 2): 14,
211
+ (dct, np.float32, 2): 5,
212
+
213
+ (dct, np.float64, 3): 14,
214
+ (dct, np.float32, 3): 5,
215
+
216
+ (dct, np.float64, 4): 13,
217
+ (dct, np.float32, 4): 6,
218
+
219
+ # IDCT
220
+ (idct, np.float64, 1): 14,
221
+ (idct, np.float32, 1): 6,
222
+
223
+ (idct, np.float64, 2): 14,
224
+ (idct, np.float32, 2): 5,
225
+
226
+ (idct, np.float64, 3): 14,
227
+ (idct, np.float32, 3): 5,
228
+
229
+ (idct, np.float64, 4): 14,
230
+ (idct, np.float32, 4): 6,
231
+
232
+ # DST
233
+ (dst, np.float64, 1): 13,
234
+ (dst, np.float32, 1): 6,
235
+
236
+ (dst, np.float64, 2): 14,
237
+ (dst, np.float32, 2): 6,
238
+
239
+ (dst, np.float64, 3): 14,
240
+ (dst, np.float32, 3): 7,
241
+
242
+ (dst, np.float64, 4): 13,
243
+ (dst, np.float32, 4): 5,
244
+
245
+ # IDST
246
+ (idst, np.float64, 1): 14,
247
+ (idst, np.float32, 1): 6,
248
+
249
+ (idst, np.float64, 2): 14,
250
+ (idst, np.float32, 2): 6,
251
+
252
+ (idst, np.float64, 3): 14,
253
+ (idst, np.float32, 3): 6,
254
+
255
+ (idst, np.float64, 4): 14,
256
+ (idst, np.float32, 4): 6,
257
+ }
258
+
259
+ for k,v in dec_map.copy().items():
260
+ if k[1] == np.float64:
261
+ dec_map[(k[0], np.longdouble, k[2])] = v
262
+ elif k[1] == np.float32:
263
+ dec_map[(k[0], int, k[2])] = v
264
+
265
+
266
+ @pytest.mark.parametrize('rdt', [np.longdouble, np.float64, np.float32, int])
267
+ @pytest.mark.parametrize('type', [1, 2, 3, 4])
268
+ class TestDCT:
269
+ def test_definition(self, rdt, type, fftwdata_size, reference_data):
270
+ x, yr, dt = fftw_dct_ref(type, fftwdata_size, rdt, reference_data)
271
+ y = dct(x, type=type)
272
+ assert_equal(y.dtype, dt)
273
+ dec = dec_map[(dct, rdt, type)]
274
+ assert_allclose(y, yr, rtol=0., atol=np.max(yr)*10**(-dec))
275
+
276
+ @pytest.mark.parametrize('size', [7, 8, 9, 16, 32, 64])
277
+ def test_axis(self, rdt, type, size):
278
+ nt = 2
279
+ dec = dec_map[(dct, rdt, type)]
280
+ x = np.random.randn(nt, size)
281
+ y = dct(x, type=type)
282
+ for j in range(nt):
283
+ assert_array_almost_equal(y[j], dct(x[j], type=type),
284
+ decimal=dec)
285
+
286
+ x = x.T
287
+ y = dct(x, axis=0, type=type)
288
+ for j in range(nt):
289
+ assert_array_almost_equal(y[:,j], dct(x[:,j], type=type),
290
+ decimal=dec)
291
+
292
+
293
+ @pytest.mark.parametrize('rdt', [np.longdouble, np.float64, np.float32, int])
294
+ def test_dct1_definition_ortho(rdt, mdata_x):
295
+ # Test orthornomal mode.
296
+ dec = dec_map[(dct, rdt, 1)]
297
+ x = np.array(mdata_x, dtype=rdt)
298
+ dt = np.result_type(np.float32, rdt)
299
+ y = dct(x, norm='ortho', type=1)
300
+ y2 = naive_dct1(x, norm='ortho')
301
+ assert_equal(y.dtype, dt)
302
+ assert_allclose(y, y2, rtol=0., atol=np.max(y2)*10**(-dec))
303
+
304
+
305
+ @pytest.mark.parametrize('rdt', [np.longdouble, np.float64, np.float32, int])
306
+ def test_dct2_definition_matlab(mdata_xy, rdt):
307
+ # Test correspondence with matlab (orthornomal mode).
308
+ dt = np.result_type(np.float32, rdt)
309
+ x = np.array(mdata_xy[0], dtype=dt)
310
+
311
+ yr = mdata_xy[1]
312
+ y = dct(x, norm="ortho", type=2)
313
+ dec = dec_map[(dct, rdt, 2)]
314
+ assert_equal(y.dtype, dt)
315
+ assert_array_almost_equal(y, yr, decimal=dec)
316
+
317
+
318
+ @pytest.mark.parametrize('rdt', [np.longdouble, np.float64, np.float32, int])
319
+ def test_dct3_definition_ortho(mdata_x, rdt):
320
+ # Test orthornomal mode.
321
+ x = np.array(mdata_x, dtype=rdt)
322
+ dt = np.result_type(np.float32, rdt)
323
+ y = dct(x, norm='ortho', type=2)
324
+ xi = dct(y, norm="ortho", type=3)
325
+ dec = dec_map[(dct, rdt, 3)]
326
+ assert_equal(xi.dtype, dt)
327
+ assert_array_almost_equal(xi, x, decimal=dec)
328
+
329
+
330
+ @pytest.mark.parametrize('rdt', [np.longdouble, np.float64, np.float32, int])
331
+ def test_dct4_definition_ortho(mdata_x, rdt):
332
+ # Test orthornomal mode.
333
+ x = np.array(mdata_x, dtype=rdt)
334
+ dt = np.result_type(np.float32, rdt)
335
+ y = dct(x, norm='ortho', type=4)
336
+ y2 = naive_dct4(x, norm='ortho')
337
+ dec = dec_map[(dct, rdt, 4)]
338
+ assert_equal(y.dtype, dt)
339
+ assert_allclose(y, y2, rtol=0., atol=np.max(y2)*10**(-dec))
340
+
341
+
342
+ @pytest.mark.parametrize('rdt', [np.longdouble, np.float64, np.float32, int])
343
+ @pytest.mark.parametrize('type', [1, 2, 3, 4])
344
+ def test_idct_definition(fftwdata_size, rdt, type, reference_data):
345
+ xr, yr, dt = fftw_dct_ref(type, fftwdata_size, rdt, reference_data)
346
+ x = idct(yr, type=type)
347
+ dec = dec_map[(idct, rdt, type)]
348
+ assert_equal(x.dtype, dt)
349
+ assert_allclose(x, xr, rtol=0., atol=np.max(xr)*10**(-dec))
350
+
351
+
352
+ @pytest.mark.parametrize('rdt', [np.longdouble, np.float64, np.float32, int])
353
+ @pytest.mark.parametrize('type', [1, 2, 3, 4])
354
+ def test_definition(fftwdata_size, rdt, type, reference_data):
355
+ xr, yr, dt = fftw_dst_ref(type, fftwdata_size, rdt, reference_data)
356
+ y = dst(xr, type=type)
357
+ dec = dec_map[(dst, rdt, type)]
358
+ assert_equal(y.dtype, dt)
359
+ assert_allclose(y, yr, rtol=0., atol=np.max(yr)*10**(-dec))
360
+
361
+
362
+ @pytest.mark.parametrize('rdt', [np.longdouble, np.float64, np.float32, int])
363
+ def test_dst1_definition_ortho(rdt, mdata_x):
364
+ # Test orthornomal mode.
365
+ dec = dec_map[(dst, rdt, 1)]
366
+ x = np.array(mdata_x, dtype=rdt)
367
+ dt = np.result_type(np.float32, rdt)
368
+ y = dst(x, norm='ortho', type=1)
369
+ y2 = naive_dst1(x, norm='ortho')
370
+ assert_equal(y.dtype, dt)
371
+ assert_allclose(y, y2, rtol=0., atol=np.max(y2)*10**(-dec))
372
+
373
+
374
+ @pytest.mark.parametrize('rdt', [np.longdouble, np.float64, np.float32, int])
375
+ def test_dst4_definition_ortho(rdt, mdata_x):
376
+ # Test orthornomal mode.
377
+ dec = dec_map[(dst, rdt, 4)]
378
+ x = np.array(mdata_x, dtype=rdt)
379
+ dt = np.result_type(np.float32, rdt)
380
+ y = dst(x, norm='ortho', type=4)
381
+ y2 = naive_dst4(x, norm='ortho')
382
+ assert_equal(y.dtype, dt)
383
+ assert_array_almost_equal(y, y2, decimal=dec)
384
+
385
+
386
+ @pytest.mark.parametrize('rdt', [np.longdouble, np.float64, np.float32, int])
387
+ @pytest.mark.parametrize('type', [1, 2, 3, 4])
388
+ def test_idst_definition(fftwdata_size, rdt, type, reference_data):
389
+ xr, yr, dt = fftw_dst_ref(type, fftwdata_size, rdt, reference_data)
390
+ x = idst(yr, type=type)
391
+ dec = dec_map[(idst, rdt, type)]
392
+ assert_equal(x.dtype, dt)
393
+ assert_allclose(x, xr, rtol=0., atol=np.max(xr)*10**(-dec))
394
+
395
+
396
+ @pytest.mark.parametrize('routine', [dct, dst, idct, idst])
397
+ @pytest.mark.parametrize('dtype', [np.float32, np.float64, np.longdouble])
398
+ @pytest.mark.parametrize('shape, axis', [
399
+ ((16,), -1), ((16, 2), 0), ((2, 16), 1)
400
+ ])
401
+ @pytest.mark.parametrize('type', [1, 2, 3, 4])
402
+ @pytest.mark.parametrize('overwrite_x', [True, False])
403
+ @pytest.mark.parametrize('norm', [None, 'ortho'])
404
+ def test_overwrite(routine, dtype, shape, axis, type, norm, overwrite_x):
405
+ # Check input overwrite behavior
406
+ np.random.seed(1234)
407
+ if np.issubdtype(dtype, np.complexfloating):
408
+ x = np.random.randn(*shape) + 1j*np.random.randn(*shape)
409
+ else:
410
+ x = np.random.randn(*shape)
411
+ x = x.astype(dtype)
412
+ x2 = x.copy()
413
+ routine(x2, type, None, axis, norm, overwrite_x=overwrite_x)
414
+
415
+ sig = "{}({}{!r}, {!r}, axis={!r}, overwrite_x={!r})".format(
416
+ routine.__name__, x.dtype, x.shape, None, axis, overwrite_x)
417
+ if not overwrite_x:
418
+ assert_equal(x2, x, err_msg="spurious overwrite in %s" % sig)
419
+
420
+
421
+ class Test_DCTN_IDCTN:
422
+ dec = 14
423
+ dct_type = [1, 2, 3, 4]
424
+ norms = [None, 'backward', 'ortho', 'forward']
425
+ rstate = np.random.RandomState(1234)
426
+ shape = (32, 16)
427
+ data = rstate.randn(*shape)
428
+
429
+ @pytest.mark.parametrize('fforward,finverse', [(dctn, idctn),
430
+ (dstn, idstn)])
431
+ @pytest.mark.parametrize('axes', [None,
432
+ 1, (1,), [1],
433
+ 0, (0,), [0],
434
+ (0, 1), [0, 1],
435
+ (-2, -1), [-2, -1]])
436
+ @pytest.mark.parametrize('dct_type', dct_type)
437
+ @pytest.mark.parametrize('norm', ['ortho'])
438
+ def test_axes_round_trip(self, fforward, finverse, axes, dct_type, norm):
439
+ tmp = fforward(self.data, type=dct_type, axes=axes, norm=norm)
440
+ tmp = finverse(tmp, type=dct_type, axes=axes, norm=norm)
441
+ assert_array_almost_equal(self.data, tmp, decimal=12)
442
+
443
+ @pytest.mark.parametrize('funcn,func', [(dctn, dct), (dstn, dst)])
444
+ @pytest.mark.parametrize('dct_type', dct_type)
445
+ @pytest.mark.parametrize('norm', norms)
446
+ def test_dctn_vs_2d_reference(self, funcn, func, dct_type, norm):
447
+ y1 = funcn(self.data, type=dct_type, axes=None, norm=norm)
448
+ y2 = ref_2d(func, self.data, type=dct_type, norm=norm)
449
+ assert_array_almost_equal(y1, y2, decimal=11)
450
+
451
+ @pytest.mark.parametrize('funcn,func', [(idctn, idct), (idstn, idst)])
452
+ @pytest.mark.parametrize('dct_type', dct_type)
453
+ @pytest.mark.parametrize('norm', norms)
454
+ def test_idctn_vs_2d_reference(self, funcn, func, dct_type, norm):
455
+ fdata = dctn(self.data, type=dct_type, norm=norm)
456
+ y1 = funcn(fdata, type=dct_type, norm=norm)
457
+ y2 = ref_2d(func, fdata, type=dct_type, norm=norm)
458
+ assert_array_almost_equal(y1, y2, decimal=11)
459
+
460
+ @pytest.mark.parametrize('fforward,finverse', [(dctn, idctn),
461
+ (dstn, idstn)])
462
+ def test_axes_and_shape(self, fforward, finverse):
463
+ with assert_raises(ValueError,
464
+ match="when given, axes and shape arguments"
465
+ " have to be of the same length"):
466
+ fforward(self.data, s=self.data.shape[0], axes=(0, 1))
467
+
468
+ with assert_raises(ValueError,
469
+ match="when given, axes and shape arguments"
470
+ " have to be of the same length"):
471
+ fforward(self.data, s=self.data.shape, axes=0)
472
+
473
+ @pytest.mark.parametrize('fforward', [dctn, dstn])
474
+ def test_shape(self, fforward):
475
+ tmp = fforward(self.data, s=(128, 128), axes=None)
476
+ assert_equal(tmp.shape, (128, 128))
477
+
478
+ @pytest.mark.parametrize('fforward,finverse', [(dctn, idctn),
479
+ (dstn, idstn)])
480
+ @pytest.mark.parametrize('axes', [1, (1,), [1],
481
+ 0, (0,), [0]])
482
+ def test_shape_is_none_with_axes(self, fforward, finverse, axes):
483
+ tmp = fforward(self.data, s=None, axes=axes, norm='ortho')
484
+ tmp = finverse(tmp, s=None, axes=axes, norm='ortho')
485
+ assert_array_almost_equal(self.data, tmp, decimal=self.dec)
486
+
487
+
488
+ @pytest.mark.parametrize('func', [dct, dctn, idct, idctn,
489
+ dst, dstn, idst, idstn])
490
+ def test_swapped_byte_order(func):
491
+ rng = np.random.RandomState(1234)
492
+ x = rng.rand(10)
493
+ swapped_dt = x.dtype.newbyteorder('S')
494
+ assert_allclose(func(x.astype(swapped_dt)), func(x))
venv/lib/python3.10/site-packages/scipy/fft/_realtransforms.py ADDED
@@ -0,0 +1,693 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ._basic import _dispatch
2
+ from scipy._lib.uarray import Dispatchable
3
+ import numpy as np
4
+
5
+ __all__ = ['dct', 'idct', 'dst', 'idst', 'dctn', 'idctn', 'dstn', 'idstn']
6
+
7
+
8
+ @_dispatch
9
+ def dctn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False,
10
+ workers=None, *, orthogonalize=None):
11
+ """
12
+ Return multidimensional Discrete Cosine Transform along the specified axes.
13
+
14
+ Parameters
15
+ ----------
16
+ x : array_like
17
+ The input array.
18
+ type : {1, 2, 3, 4}, optional
19
+ Type of the DCT (see Notes). Default type is 2.
20
+ s : int or array_like of ints or None, optional
21
+ The shape of the result. If both `s` and `axes` (see below) are None,
22
+ `s` is ``x.shape``; if `s` is None but `axes` is not None, then `s` is
23
+ ``numpy.take(x.shape, axes, axis=0)``.
24
+ If ``s[i] > x.shape[i]``, the ith dimension of the input is padded with zeros.
25
+ If ``s[i] < x.shape[i]``, the ith dimension of the input is truncated to length
26
+ ``s[i]``.
27
+ If any element of `s` is -1, the size of the corresponding dimension of
28
+ `x` is used.
29
+ axes : int or array_like of ints or None, optional
30
+ Axes over which the DCT is computed. If not given, the last ``len(s)``
31
+ axes are used, or all axes if `s` is also not specified.
32
+ norm : {"backward", "ortho", "forward"}, optional
33
+ Normalization mode (see Notes). Default is "backward".
34
+ overwrite_x : bool, optional
35
+ If True, the contents of `x` can be destroyed; the default is False.
36
+ workers : int, optional
37
+ Maximum number of workers to use for parallel computation. If negative,
38
+ the value wraps around from ``os.cpu_count()``.
39
+ See :func:`~scipy.fft.fft` for more details.
40
+ orthogonalize : bool, optional
41
+ Whether to use the orthogonalized DCT variant (see Notes).
42
+ Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
43
+
44
+ .. versionadded:: 1.8.0
45
+
46
+ Returns
47
+ -------
48
+ y : ndarray of real
49
+ The transformed input array.
50
+
51
+ See Also
52
+ --------
53
+ idctn : Inverse multidimensional DCT
54
+
55
+ Notes
56
+ -----
57
+ For full details of the DCT types and normalization modes, as well as
58
+ references, see `dct`.
59
+
60
+ Examples
61
+ --------
62
+ >>> import numpy as np
63
+ >>> from scipy.fft import dctn, idctn
64
+ >>> rng = np.random.default_rng()
65
+ >>> y = rng.standard_normal((16, 16))
66
+ >>> np.allclose(y, idctn(dctn(y)))
67
+ True
68
+
69
+ """
70
+ return (Dispatchable(x, np.ndarray),)
71
+
72
+
73
+ @_dispatch
74
+ def idctn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False,
75
+ workers=None, orthogonalize=None):
76
+ """
77
+ Return multidimensional Inverse Discrete Cosine Transform along the specified axes.
78
+
79
+ Parameters
80
+ ----------
81
+ x : array_like
82
+ The input array.
83
+ type : {1, 2, 3, 4}, optional
84
+ Type of the DCT (see Notes). Default type is 2.
85
+ s : int or array_like of ints or None, optional
86
+ The shape of the result. If both `s` and `axes` (see below) are
87
+ None, `s` is ``x.shape``; if `s` is None but `axes` is
88
+ not None, then `s` is ``numpy.take(x.shape, axes, axis=0)``.
89
+ If ``s[i] > x.shape[i]``, the ith dimension of the input is padded with zeros.
90
+ If ``s[i] < x.shape[i]``, the ith dimension of the input is truncated to length
91
+ ``s[i]``.
92
+ If any element of `s` is -1, the size of the corresponding dimension of
93
+ `x` is used.
94
+ axes : int or array_like of ints or None, optional
95
+ Axes over which the IDCT is computed. If not given, the last ``len(s)``
96
+ axes are used, or all axes if `s` is also not specified.
97
+ norm : {"backward", "ortho", "forward"}, optional
98
+ Normalization mode (see Notes). Default is "backward".
99
+ overwrite_x : bool, optional
100
+ If True, the contents of `x` can be destroyed; the default is False.
101
+ workers : int, optional
102
+ Maximum number of workers to use for parallel computation. If negative,
103
+ the value wraps around from ``os.cpu_count()``.
104
+ See :func:`~scipy.fft.fft` for more details.
105
+ orthogonalize : bool, optional
106
+ Whether to use the orthogonalized IDCT variant (see Notes).
107
+ Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
108
+
109
+ .. versionadded:: 1.8.0
110
+
111
+ Returns
112
+ -------
113
+ y : ndarray of real
114
+ The transformed input array.
115
+
116
+ See Also
117
+ --------
118
+ dctn : multidimensional DCT
119
+
120
+ Notes
121
+ -----
122
+ For full details of the IDCT types and normalization modes, as well as
123
+ references, see `idct`.
124
+
125
+ Examples
126
+ --------
127
+ >>> import numpy as np
128
+ >>> from scipy.fft import dctn, idctn
129
+ >>> rng = np.random.default_rng()
130
+ >>> y = rng.standard_normal((16, 16))
131
+ >>> np.allclose(y, idctn(dctn(y)))
132
+ True
133
+
134
+ """
135
+ return (Dispatchable(x, np.ndarray),)
136
+
137
+
138
+ @_dispatch
139
+ def dstn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False,
140
+ workers=None, orthogonalize=None):
141
+ """
142
+ Return multidimensional Discrete Sine Transform along the specified axes.
143
+
144
+ Parameters
145
+ ----------
146
+ x : array_like
147
+ The input array.
148
+ type : {1, 2, 3, 4}, optional
149
+ Type of the DST (see Notes). Default type is 2.
150
+ s : int or array_like of ints or None, optional
151
+ The shape of the result. If both `s` and `axes` (see below) are None,
152
+ `s` is ``x.shape``; if `s` is None but `axes` is not None, then `s` is
153
+ ``numpy.take(x.shape, axes, axis=0)``.
154
+ If ``s[i] > x.shape[i]``, the ith dimension of the input is padded with zeros.
155
+ If ``s[i] < x.shape[i]``, the ith dimension of the input is truncated to length
156
+ ``s[i]``.
157
+ If any element of `shape` is -1, the size of the corresponding dimension
158
+ of `x` is used.
159
+ axes : int or array_like of ints or None, optional
160
+ Axes over which the DST is computed. If not given, the last ``len(s)``
161
+ axes are used, or all axes if `s` is also not specified.
162
+ norm : {"backward", "ortho", "forward"}, optional
163
+ Normalization mode (see Notes). Default is "backward".
164
+ overwrite_x : bool, optional
165
+ If True, the contents of `x` can be destroyed; the default is False.
166
+ workers : int, optional
167
+ Maximum number of workers to use for parallel computation. If negative,
168
+ the value wraps around from ``os.cpu_count()``.
169
+ See :func:`~scipy.fft.fft` for more details.
170
+ orthogonalize : bool, optional
171
+ Whether to use the orthogonalized DST variant (see Notes).
172
+ Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
173
+
174
+ .. versionadded:: 1.8.0
175
+
176
+ Returns
177
+ -------
178
+ y : ndarray of real
179
+ The transformed input array.
180
+
181
+ See Also
182
+ --------
183
+ idstn : Inverse multidimensional DST
184
+
185
+ Notes
186
+ -----
187
+ For full details of the DST types and normalization modes, as well as
188
+ references, see `dst`.
189
+
190
+ Examples
191
+ --------
192
+ >>> import numpy as np
193
+ >>> from scipy.fft import dstn, idstn
194
+ >>> rng = np.random.default_rng()
195
+ >>> y = rng.standard_normal((16, 16))
196
+ >>> np.allclose(y, idstn(dstn(y)))
197
+ True
198
+
199
+ """
200
+ return (Dispatchable(x, np.ndarray),)
201
+
202
+
203
+ @_dispatch
204
+ def idstn(x, type=2, s=None, axes=None, norm=None, overwrite_x=False,
205
+ workers=None, orthogonalize=None):
206
+ """
207
+ Return multidimensional Inverse Discrete Sine Transform along the specified axes.
208
+
209
+ Parameters
210
+ ----------
211
+ x : array_like
212
+ The input array.
213
+ type : {1, 2, 3, 4}, optional
214
+ Type of the DST (see Notes). Default type is 2.
215
+ s : int or array_like of ints or None, optional
216
+ The shape of the result. If both `s` and `axes` (see below) are None,
217
+ `s` is ``x.shape``; if `s` is None but `axes` is not None, then `s` is
218
+ ``numpy.take(x.shape, axes, axis=0)``.
219
+ If ``s[i] > x.shape[i]``, the ith dimension of the input is padded with zeros.
220
+ If ``s[i] < x.shape[i]``, the ith dimension of the input is truncated to length
221
+ ``s[i]``.
222
+ If any element of `s` is -1, the size of the corresponding dimension of
223
+ `x` is used.
224
+ axes : int or array_like of ints or None, optional
225
+ Axes over which the IDST is computed. If not given, the last ``len(s)``
226
+ axes are used, or all axes if `s` is also not specified.
227
+ norm : {"backward", "ortho", "forward"}, optional
228
+ Normalization mode (see Notes). Default is "backward".
229
+ overwrite_x : bool, optional
230
+ If True, the contents of `x` can be destroyed; the default is False.
231
+ workers : int, optional
232
+ Maximum number of workers to use for parallel computation. If negative,
233
+ the value wraps around from ``os.cpu_count()``.
234
+ See :func:`~scipy.fft.fft` for more details.
235
+ orthogonalize : bool, optional
236
+ Whether to use the orthogonalized IDST variant (see Notes).
237
+ Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
238
+
239
+ .. versionadded:: 1.8.0
240
+
241
+ Returns
242
+ -------
243
+ y : ndarray of real
244
+ The transformed input array.
245
+
246
+ See Also
247
+ --------
248
+ dstn : multidimensional DST
249
+
250
+ Notes
251
+ -----
252
+ For full details of the IDST types and normalization modes, as well as
253
+ references, see `idst`.
254
+
255
+ Examples
256
+ --------
257
+ >>> import numpy as np
258
+ >>> from scipy.fft import dstn, idstn
259
+ >>> rng = np.random.default_rng()
260
+ >>> y = rng.standard_normal((16, 16))
261
+ >>> np.allclose(y, idstn(dstn(y)))
262
+ True
263
+
264
+ """
265
+ return (Dispatchable(x, np.ndarray),)
266
+
267
+
268
+ @_dispatch
269
+ def dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False, workers=None,
270
+ orthogonalize=None):
271
+ r"""Return the Discrete Cosine Transform of arbitrary type sequence x.
272
+
273
+ Parameters
274
+ ----------
275
+ x : array_like
276
+ The input array.
277
+ type : {1, 2, 3, 4}, optional
278
+ Type of the DCT (see Notes). Default type is 2.
279
+ n : int, optional
280
+ Length of the transform. If ``n < x.shape[axis]``, `x` is
281
+ truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
282
+ default results in ``n = x.shape[axis]``.
283
+ axis : int, optional
284
+ Axis along which the dct is computed; the default is over the
285
+ last axis (i.e., ``axis=-1``).
286
+ norm : {"backward", "ortho", "forward"}, optional
287
+ Normalization mode (see Notes). Default is "backward".
288
+ overwrite_x : bool, optional
289
+ If True, the contents of `x` can be destroyed; the default is False.
290
+ workers : int, optional
291
+ Maximum number of workers to use for parallel computation. If negative,
292
+ the value wraps around from ``os.cpu_count()``.
293
+ See :func:`~scipy.fft.fft` for more details.
294
+ orthogonalize : bool, optional
295
+ Whether to use the orthogonalized DCT variant (see Notes).
296
+ Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
297
+
298
+ .. versionadded:: 1.8.0
299
+
300
+ Returns
301
+ -------
302
+ y : ndarray of real
303
+ The transformed input array.
304
+
305
+ See Also
306
+ --------
307
+ idct : Inverse DCT
308
+
309
+ Notes
310
+ -----
311
+ For a single dimension array ``x``, ``dct(x, norm='ortho')`` is equal to
312
+ MATLAB ``dct(x)``.
313
+
314
+ .. warning:: For ``type in {1, 2, 3}``, ``norm="ortho"`` breaks the direct
315
+ correspondence with the direct Fourier transform. To recover
316
+ it you must specify ``orthogonalize=False``.
317
+
318
+ For ``norm="ortho"`` both the `dct` and `idct` are scaled by the same
319
+ overall factor in both directions. By default, the transform is also
320
+ orthogonalized which for types 1, 2 and 3 means the transform definition is
321
+ modified to give orthogonality of the DCT matrix (see below).
322
+
323
+ For ``norm="backward"``, there is no scaling on `dct` and the `idct` is
324
+ scaled by ``1/N`` where ``N`` is the "logical" size of the DCT. For
325
+ ``norm="forward"`` the ``1/N`` normalization is applied to the forward
326
+ `dct` instead and the `idct` is unnormalized.
327
+
328
+ There are, theoretically, 8 types of the DCT, only the first 4 types are
329
+ implemented in SciPy.'The' DCT generally refers to DCT type 2, and 'the'
330
+ Inverse DCT generally refers to DCT type 3.
331
+
332
+ **Type I**
333
+
334
+ There are several definitions of the DCT-I; we use the following
335
+ (for ``norm="backward"``)
336
+
337
+ .. math::
338
+
339
+ y_k = x_0 + (-1)^k x_{N-1} + 2 \sum_{n=1}^{N-2} x_n \cos\left(
340
+ \frac{\pi k n}{N-1} \right)
341
+
342
+ If ``orthogonalize=True``, ``x[0]`` and ``x[N-1]`` are multiplied by a
343
+ scaling factor of :math:`\sqrt{2}`, and ``y[0]`` and ``y[N-1]`` are divided
344
+ by :math:`\sqrt{2}`. When combined with ``norm="ortho"``, this makes the
345
+ corresponding matrix of coefficients orthonormal (``O @ O.T = np.eye(N)``).
346
+
347
+ .. note::
348
+ The DCT-I is only supported for input size > 1.
349
+
350
+ **Type II**
351
+
352
+ There are several definitions of the DCT-II; we use the following
353
+ (for ``norm="backward"``)
354
+
355
+ .. math::
356
+
357
+ y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi k(2n+1)}{2N} \right)
358
+
359
+ If ``orthogonalize=True``, ``y[0]`` is divided by :math:`\sqrt{2}` which,
360
+ when combined with ``norm="ortho"``, makes the corresponding matrix of
361
+ coefficients orthonormal (``O @ O.T = np.eye(N)``).
362
+
363
+ **Type III**
364
+
365
+ There are several definitions, we use the following (for
366
+ ``norm="backward"``)
367
+
368
+ .. math::
369
+
370
+ y_k = x_0 + 2 \sum_{n=1}^{N-1} x_n \cos\left(\frac{\pi(2k+1)n}{2N}\right)
371
+
372
+ If ``orthogonalize=True``, ``x[0]`` terms are multiplied by
373
+ :math:`\sqrt{2}` which, when combined with ``norm="ortho"``, makes the
374
+ corresponding matrix of coefficients orthonormal (``O @ O.T = np.eye(N)``).
375
+
376
+ The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up
377
+ to a factor `2N`. The orthonormalized DCT-III is exactly the inverse of
378
+ the orthonormalized DCT-II.
379
+
380
+ **Type IV**
381
+
382
+ There are several definitions of the DCT-IV; we use the following
383
+ (for ``norm="backward"``)
384
+
385
+ .. math::
386
+
387
+ y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi(2k+1)(2n+1)}{4N} \right)
388
+
389
+ ``orthogonalize`` has no effect here, as the DCT-IV matrix is already
390
+ orthogonal up to a scale factor of ``2N``.
391
+
392
+ References
393
+ ----------
394
+ .. [1] 'A Fast Cosine Transform in One and Two Dimensions', by J.
395
+ Makhoul, `IEEE Transactions on acoustics, speech and signal
396
+ processing` vol. 28(1), pp. 27-34,
397
+ :doi:`10.1109/TASSP.1980.1163351` (1980).
398
+ .. [2] Wikipedia, "Discrete cosine transform",
399
+ https://en.wikipedia.org/wiki/Discrete_cosine_transform
400
+
401
+ Examples
402
+ --------
403
+ The Type 1 DCT is equivalent to the FFT (though faster) for real,
404
+ even-symmetrical inputs. The output is also real and even-symmetrical.
405
+ Half of the FFT input is used to generate half of the FFT output:
406
+
407
+ >>> from scipy.fft import fft, dct
408
+ >>> import numpy as np
409
+ >>> fft(np.array([4., 3., 5., 10., 5., 3.])).real
410
+ array([ 30., -8., 6., -2., 6., -8.])
411
+ >>> dct(np.array([4., 3., 5., 10.]), 1)
412
+ array([ 30., -8., 6., -2.])
413
+
414
+ """
415
+ return (Dispatchable(x, np.ndarray),)
416
+
417
+
418
+ @_dispatch
419
+ def idct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False,
420
+ workers=None, orthogonalize=None):
421
+ """
422
+ Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.
423
+
424
+ Parameters
425
+ ----------
426
+ x : array_like
427
+ The input array.
428
+ type : {1, 2, 3, 4}, optional
429
+ Type of the DCT (see Notes). Default type is 2.
430
+ n : int, optional
431
+ Length of the transform. If ``n < x.shape[axis]``, `x` is
432
+ truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
433
+ default results in ``n = x.shape[axis]``.
434
+ axis : int, optional
435
+ Axis along which the idct is computed; the default is over the
436
+ last axis (i.e., ``axis=-1``).
437
+ norm : {"backward", "ortho", "forward"}, optional
438
+ Normalization mode (see Notes). Default is "backward".
439
+ overwrite_x : bool, optional
440
+ If True, the contents of `x` can be destroyed; the default is False.
441
+ workers : int, optional
442
+ Maximum number of workers to use for parallel computation. If negative,
443
+ the value wraps around from ``os.cpu_count()``.
444
+ See :func:`~scipy.fft.fft` for more details.
445
+ orthogonalize : bool, optional
446
+ Whether to use the orthogonalized IDCT variant (see Notes).
447
+ Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
448
+
449
+ .. versionadded:: 1.8.0
450
+
451
+ Returns
452
+ -------
453
+ idct : ndarray of real
454
+ The transformed input array.
455
+
456
+ See Also
457
+ --------
458
+ dct : Forward DCT
459
+
460
+ Notes
461
+ -----
462
+ For a single dimension array `x`, ``idct(x, norm='ortho')`` is equal to
463
+ MATLAB ``idct(x)``.
464
+
465
+ .. warning:: For ``type in {1, 2, 3}``, ``norm="ortho"`` breaks the direct
466
+ correspondence with the inverse direct Fourier transform. To
467
+ recover it you must specify ``orthogonalize=False``.
468
+
469
+ For ``norm="ortho"`` both the `dct` and `idct` are scaled by the same
470
+ overall factor in both directions. By default, the transform is also
471
+ orthogonalized which for types 1, 2 and 3 means the transform definition is
472
+ modified to give orthogonality of the IDCT matrix (see `dct` for the full
473
+ definitions).
474
+
475
+ 'The' IDCT is the IDCT-II, which is the same as the normalized DCT-III.
476
+
477
+ The IDCT is equivalent to a normal DCT except for the normalization and
478
+ type. DCT type 1 and 4 are their own inverse and DCTs 2 and 3 are each
479
+ other's inverses.
480
+
481
+ Examples
482
+ --------
483
+ The Type 1 DCT is equivalent to the DFT for real, even-symmetrical
484
+ inputs. The output is also real and even-symmetrical. Half of the IFFT
485
+ input is used to generate half of the IFFT output:
486
+
487
+ >>> from scipy.fft import ifft, idct
488
+ >>> import numpy as np
489
+ >>> ifft(np.array([ 30., -8., 6., -2., 6., -8.])).real
490
+ array([ 4., 3., 5., 10., 5., 3.])
491
+ >>> idct(np.array([ 30., -8., 6., -2.]), 1)
492
+ array([ 4., 3., 5., 10.])
493
+
494
+ """
495
+ return (Dispatchable(x, np.ndarray),)
496
+
497
+
498
+ @_dispatch
499
+ def dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False, workers=None,
500
+ orthogonalize=None):
501
+ r"""
502
+ Return the Discrete Sine Transform of arbitrary type sequence x.
503
+
504
+ Parameters
505
+ ----------
506
+ x : array_like
507
+ The input array.
508
+ type : {1, 2, 3, 4}, optional
509
+ Type of the DST (see Notes). Default type is 2.
510
+ n : int, optional
511
+ Length of the transform. If ``n < x.shape[axis]``, `x` is
512
+ truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
513
+ default results in ``n = x.shape[axis]``.
514
+ axis : int, optional
515
+ Axis along which the dst is computed; the default is over the
516
+ last axis (i.e., ``axis=-1``).
517
+ norm : {"backward", "ortho", "forward"}, optional
518
+ Normalization mode (see Notes). Default is "backward".
519
+ overwrite_x : bool, optional
520
+ If True, the contents of `x` can be destroyed; the default is False.
521
+ workers : int, optional
522
+ Maximum number of workers to use for parallel computation. If negative,
523
+ the value wraps around from ``os.cpu_count()``.
524
+ See :func:`~scipy.fft.fft` for more details.
525
+ orthogonalize : bool, optional
526
+ Whether to use the orthogonalized DST variant (see Notes).
527
+ Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
528
+
529
+ .. versionadded:: 1.8.0
530
+
531
+ Returns
532
+ -------
533
+ dst : ndarray of reals
534
+ The transformed input array.
535
+
536
+ See Also
537
+ --------
538
+ idst : Inverse DST
539
+
540
+ Notes
541
+ -----
542
+ .. warning:: For ``type in {2, 3}``, ``norm="ortho"`` breaks the direct
543
+ correspondence with the direct Fourier transform. To recover
544
+ it you must specify ``orthogonalize=False``.
545
+
546
+ For ``norm="ortho"`` both the `dst` and `idst` are scaled by the same
547
+ overall factor in both directions. By default, the transform is also
548
+ orthogonalized which for types 2 and 3 means the transform definition is
549
+ modified to give orthogonality of the DST matrix (see below).
550
+
551
+ For ``norm="backward"``, there is no scaling on the `dst` and the `idst` is
552
+ scaled by ``1/N`` where ``N`` is the "logical" size of the DST.
553
+
554
+ There are, theoretically, 8 types of the DST for different combinations of
555
+ even/odd boundary conditions and boundary off sets [1]_, only the first
556
+ 4 types are implemented in SciPy.
557
+
558
+ **Type I**
559
+
560
+ There are several definitions of the DST-I; we use the following for
561
+ ``norm="backward"``. DST-I assumes the input is odd around :math:`n=-1` and
562
+ :math:`n=N`.
563
+
564
+ .. math::
565
+
566
+ y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(n+1)}{N+1}\right)
567
+
568
+ Note that the DST-I is only supported for input size > 1.
569
+ The (unnormalized) DST-I is its own inverse, up to a factor :math:`2(N+1)`.
570
+ The orthonormalized DST-I is exactly its own inverse.
571
+
572
+ ``orthogonalize`` has no effect here, as the DST-I matrix is already
573
+ orthogonal up to a scale factor of ``2N``.
574
+
575
+ **Type II**
576
+
577
+ There are several definitions of the DST-II; we use the following for
578
+ ``norm="backward"``. DST-II assumes the input is odd around :math:`n=-1/2` and
579
+ :math:`n=N-1/2`; the output is odd around :math:`k=-1` and even around :math:`k=N-1`
580
+
581
+ .. math::
582
+
583
+ y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(2n+1)}{2N}\right)
584
+
585
+ If ``orthogonalize=True``, ``y[-1]`` is divided :math:`\sqrt{2}` which, when
586
+ combined with ``norm="ortho"``, makes the corresponding matrix of
587
+ coefficients orthonormal (``O @ O.T = np.eye(N)``).
588
+
589
+ **Type III**
590
+
591
+ There are several definitions of the DST-III, we use the following (for
592
+ ``norm="backward"``). DST-III assumes the input is odd around :math:`n=-1` and
593
+ even around :math:`n=N-1`
594
+
595
+ .. math::
596
+
597
+ y_k = (-1)^k x_{N-1} + 2 \sum_{n=0}^{N-2} x_n \sin\left(
598
+ \frac{\pi(2k+1)(n+1)}{2N}\right)
599
+
600
+ If ``orthogonalize=True``, ``x[-1]`` is multiplied by :math:`\sqrt{2}`
601
+ which, when combined with ``norm="ortho"``, makes the corresponding matrix
602
+ of coefficients orthonormal (``O @ O.T = np.eye(N)``).
603
+
604
+ The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up
605
+ to a factor :math:`2N`. The orthonormalized DST-III is exactly the inverse of the
606
+ orthonormalized DST-II.
607
+
608
+ **Type IV**
609
+
610
+ There are several definitions of the DST-IV, we use the following (for
611
+ ``norm="backward"``). DST-IV assumes the input is odd around :math:`n=-0.5` and
612
+ even around :math:`n=N-0.5`
613
+
614
+ .. math::
615
+
616
+ y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(2k+1)(2n+1)}{4N}\right)
617
+
618
+ ``orthogonalize`` has no effect here, as the DST-IV matrix is already
619
+ orthogonal up to a scale factor of ``2N``.
620
+
621
+ The (unnormalized) DST-IV is its own inverse, up to a factor :math:`2N`. The
622
+ orthonormalized DST-IV is exactly its own inverse.
623
+
624
+ References
625
+ ----------
626
+ .. [1] Wikipedia, "Discrete sine transform",
627
+ https://en.wikipedia.org/wiki/Discrete_sine_transform
628
+
629
+ """
630
+ return (Dispatchable(x, np.ndarray),)
631
+
632
+
633
+ @_dispatch
634
+ def idst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False,
635
+ workers=None, orthogonalize=None):
636
+ """
637
+ Return the Inverse Discrete Sine Transform of an arbitrary type sequence.
638
+
639
+ Parameters
640
+ ----------
641
+ x : array_like
642
+ The input array.
643
+ type : {1, 2, 3, 4}, optional
644
+ Type of the DST (see Notes). Default type is 2.
645
+ n : int, optional
646
+ Length of the transform. If ``n < x.shape[axis]``, `x` is
647
+ truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
648
+ default results in ``n = x.shape[axis]``.
649
+ axis : int, optional
650
+ Axis along which the idst is computed; the default is over the
651
+ last axis (i.e., ``axis=-1``).
652
+ norm : {"backward", "ortho", "forward"}, optional
653
+ Normalization mode (see Notes). Default is "backward".
654
+ overwrite_x : bool, optional
655
+ If True, the contents of `x` can be destroyed; the default is False.
656
+ workers : int, optional
657
+ Maximum number of workers to use for parallel computation. If negative,
658
+ the value wraps around from ``os.cpu_count()``.
659
+ See :func:`~scipy.fft.fft` for more details.
660
+ orthogonalize : bool, optional
661
+ Whether to use the orthogonalized IDST variant (see Notes).
662
+ Defaults to ``True`` when ``norm="ortho"`` and ``False`` otherwise.
663
+
664
+ .. versionadded:: 1.8.0
665
+
666
+ Returns
667
+ -------
668
+ idst : ndarray of real
669
+ The transformed input array.
670
+
671
+ See Also
672
+ --------
673
+ dst : Forward DST
674
+
675
+ Notes
676
+ -----
677
+ .. warning:: For ``type in {2, 3}``, ``norm="ortho"`` breaks the direct
678
+ correspondence with the inverse direct Fourier transform.
679
+
680
+ For ``norm="ortho"`` both the `dst` and `idst` are scaled by the same
681
+ overall factor in both directions. By default, the transform is also
682
+ orthogonalized which for types 2 and 3 means the transform definition is
683
+ modified to give orthogonality of the DST matrix (see `dst` for the full
684
+ definitions).
685
+
686
+ 'The' IDST is the IDST-II, which is the same as the normalized DST-III.
687
+
688
+ The IDST is equivalent to a normal DST except for the normalization and
689
+ type. DST type 1 and 4 are their own inverse and DSTs 2 and 3 are each
690
+ other's inverses.
691
+
692
+ """
693
+ return (Dispatchable(x, np.ndarray),)
venv/lib/python3.10/site-packages/scipy/fft/_realtransforms_backend.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from scipy._lib._array_api import array_namespace
2
+ import numpy as np
3
+ from . import _pocketfft
4
+
5
+ __all__ = ['dct', 'idct', 'dst', 'idst', 'dctn', 'idctn', 'dstn', 'idstn']
6
+
7
+
8
+ def _execute(pocketfft_func, x, type, s, axes, norm,
9
+ overwrite_x, workers, orthogonalize):
10
+ xp = array_namespace(x)
11
+ x = np.asarray(x)
12
+ y = pocketfft_func(x, type, s, axes, norm,
13
+ overwrite_x=overwrite_x, workers=workers,
14
+ orthogonalize=orthogonalize)
15
+ return xp.asarray(y)
16
+
17
+
18
+ def dctn(x, type=2, s=None, axes=None, norm=None,
19
+ overwrite_x=False, workers=None, *, orthogonalize=None):
20
+ return _execute(_pocketfft.dctn, x, type, s, axes, norm,
21
+ overwrite_x, workers, orthogonalize)
22
+
23
+
24
+ def idctn(x, type=2, s=None, axes=None, norm=None,
25
+ overwrite_x=False, workers=None, *, orthogonalize=None):
26
+ return _execute(_pocketfft.idctn, x, type, s, axes, norm,
27
+ overwrite_x, workers, orthogonalize)
28
+
29
+
30
+ def dstn(x, type=2, s=None, axes=None, norm=None,
31
+ overwrite_x=False, workers=None, orthogonalize=None):
32
+ return _execute(_pocketfft.dstn, x, type, s, axes, norm,
33
+ overwrite_x, workers, orthogonalize)
34
+
35
+
36
+ def idstn(x, type=2, s=None, axes=None, norm=None,
37
+ overwrite_x=False, workers=None, *, orthogonalize=None):
38
+ return _execute(_pocketfft.idstn, x, type, s, axes, norm,
39
+ overwrite_x, workers, orthogonalize)
40
+
41
+
42
+ def dct(x, type=2, n=None, axis=-1, norm=None,
43
+ overwrite_x=False, workers=None, orthogonalize=None):
44
+ return _execute(_pocketfft.dct, x, type, n, axis, norm,
45
+ overwrite_x, workers, orthogonalize)
46
+
47
+
48
+ def idct(x, type=2, n=None, axis=-1, norm=None,
49
+ overwrite_x=False, workers=None, orthogonalize=None):
50
+ return _execute(_pocketfft.idct, x, type, n, axis, norm,
51
+ overwrite_x, workers, orthogonalize)
52
+
53
+
54
+ def dst(x, type=2, n=None, axis=-1, norm=None,
55
+ overwrite_x=False, workers=None, orthogonalize=None):
56
+ return _execute(_pocketfft.dst, x, type, n, axis, norm,
57
+ overwrite_x, workers, orthogonalize)
58
+
59
+
60
+ def idst(x, type=2, n=None, axis=-1, norm=None,
61
+ overwrite_x=False, workers=None, orthogonalize=None):
62
+ return _execute(_pocketfft.idst, x, type, n, axis, norm,
63
+ overwrite_x, workers, orthogonalize)
venv/lib/python3.10/site-packages/scipy/fft/tests/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/scipy/fft/tests/__pycache__/mock_backend.cpython-310.pyc ADDED
Binary file (2.09 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/tests/__pycache__/test_backend.cpython-310.pyc ADDED
Binary file (2.67 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/tests/__pycache__/test_basic.cpython-310.pyc ADDED
Binary file (17.3 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/tests/__pycache__/test_fftlog.cpython-310.pyc ADDED
Binary file (3.92 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/tests/__pycache__/test_multithreading.cpython-310.pyc ADDED
Binary file (2.94 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/tests/__pycache__/test_real_transforms.cpython-310.pyc ADDED
Binary file (5.92 kB). View file
 
venv/lib/python3.10/site-packages/scipy/fft/tests/mock_backend.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import scipy.fft
3
+
4
+ class _MockFunction:
5
+ def __init__(self, return_value = None):
6
+ self.number_calls = 0
7
+ self.return_value = return_value
8
+ self.last_args = ([], {})
9
+
10
+ def __call__(self, *args, **kwargs):
11
+ self.number_calls += 1
12
+ self.last_args = (args, kwargs)
13
+ return self.return_value
14
+
15
+
16
+ fft = _MockFunction(np.random.random(10))
17
+ fft2 = _MockFunction(np.random.random(10))
18
+ fftn = _MockFunction(np.random.random(10))
19
+
20
+ ifft = _MockFunction(np.random.random(10))
21
+ ifft2 = _MockFunction(np.random.random(10))
22
+ ifftn = _MockFunction(np.random.random(10))
23
+
24
+ rfft = _MockFunction(np.random.random(10))
25
+ rfft2 = _MockFunction(np.random.random(10))
26
+ rfftn = _MockFunction(np.random.random(10))
27
+
28
+ irfft = _MockFunction(np.random.random(10))
29
+ irfft2 = _MockFunction(np.random.random(10))
30
+ irfftn = _MockFunction(np.random.random(10))
31
+
32
+ hfft = _MockFunction(np.random.random(10))
33
+ hfft2 = _MockFunction(np.random.random(10))
34
+ hfftn = _MockFunction(np.random.random(10))
35
+
36
+ ihfft = _MockFunction(np.random.random(10))
37
+ ihfft2 = _MockFunction(np.random.random(10))
38
+ ihfftn = _MockFunction(np.random.random(10))
39
+
40
+ dct = _MockFunction(np.random.random(10))
41
+ idct = _MockFunction(np.random.random(10))
42
+ dctn = _MockFunction(np.random.random(10))
43
+ idctn = _MockFunction(np.random.random(10))
44
+
45
+ dst = _MockFunction(np.random.random(10))
46
+ idst = _MockFunction(np.random.random(10))
47
+ dstn = _MockFunction(np.random.random(10))
48
+ idstn = _MockFunction(np.random.random(10))
49
+
50
+ fht = _MockFunction(np.random.random(10))
51
+ ifht = _MockFunction(np.random.random(10))
52
+
53
+
54
+ __ua_domain__ = "numpy.scipy.fft"
55
+
56
+
57
+ _implements = {
58
+ scipy.fft.fft: fft,
59
+ scipy.fft.fft2: fft2,
60
+ scipy.fft.fftn: fftn,
61
+ scipy.fft.ifft: ifft,
62
+ scipy.fft.ifft2: ifft2,
63
+ scipy.fft.ifftn: ifftn,
64
+ scipy.fft.rfft: rfft,
65
+ scipy.fft.rfft2: rfft2,
66
+ scipy.fft.rfftn: rfftn,
67
+ scipy.fft.irfft: irfft,
68
+ scipy.fft.irfft2: irfft2,
69
+ scipy.fft.irfftn: irfftn,
70
+ scipy.fft.hfft: hfft,
71
+ scipy.fft.hfft2: hfft2,
72
+ scipy.fft.hfftn: hfftn,
73
+ scipy.fft.ihfft: ihfft,
74
+ scipy.fft.ihfft2: ihfft2,
75
+ scipy.fft.ihfftn: ihfftn,
76
+ scipy.fft.dct: dct,
77
+ scipy.fft.idct: idct,
78
+ scipy.fft.dctn: dctn,
79
+ scipy.fft.idctn: idctn,
80
+ scipy.fft.dst: dst,
81
+ scipy.fft.idst: idst,
82
+ scipy.fft.dstn: dstn,
83
+ scipy.fft.idstn: idstn,
84
+ scipy.fft.fht: fht,
85
+ scipy.fft.ifht: ifht
86
+ }
87
+
88
+
89
+ def __ua_function__(method, args, kwargs):
90
+ fn = _implements.get(method)
91
+ return (fn(*args, **kwargs) if fn is not None
92
+ else NotImplemented)