File size: 64,565 Bytes
9ad9e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

from types import MethodType
from collections import OrderedDict

import torch
from deepspeed import comm as dist

from deepspeed.utils import logger
from deepspeed.utils.timer import ThroughputTimer
from deepspeed.accelerator import get_accelerator
from deepspeed.runtime.bf16_optimizer import BF16_Optimizer

from ..engine import DeepSpeedEngine, MEMORY_OPT_ALLREDUCE_SIZE
from deepspeed.utils.timer import FORWARD_MICRO_TIMER, FORWARD_GLOBAL_TIMER, BACKWARD_MICRO_TIMER, \
    BACKWARD_GLOBAL_TIMER, BACKWARD_INNER_MICRO_TIMER, BACKWARD_INNER_GLOBAL_TIMER, \
    BACKWARD_REDUCE_MICRO_TIMER, BACKWARD_REDUCE_GLOBAL_TIMER, \
    STEP_MICRO_TIMER, STEP_GLOBAL_TIMER

from ..utils import PartitionedTensor
from ..dataloader import RepeatingLoader
from ..zero.config import ZeroStageEnum
from ..activation_checkpointing import checkpointing as ds_checkpointing

from .module import PipelineModule, PipelineError
from . import p2p
from . import schedule

TARGET_ID = -2
LOG_STAGE = -2
DATA_PARALLEL_ID = -2

BATCH_INPUT_TIMER = 'batch_input'
TRAIN_BATCH_TIMER = 'train_batch'
PIPE_SEND_OUTPUT_TIMER = 'pipe_send_output'
PIPE_SEND_GRAD_TIMER = 'pipe_send_grad'
PIPE_RECV_INPUT_TIMER = 'pipe_recv_input'
PIPE_RECV_GRAD_TIMER = 'pipe_recv_grad'


def is_even(number):
    return number % 2 == 0


mem_alloced = 0
mem_cached = 0


def _tensor_bytes(tensor):
    return tensor.numel() * tensor.element_size()


class PipelineEngine(DeepSpeedEngine):
    """ A training engine hybrid pipeline, data, and model parallel training.

    This engine is created by ``deepspeed.initialize()`` when a :class:`PipelineModule`
    is provided.
    """
    ID_TO_DTYPE = [
        torch.float32, torch.float64, torch.complex64, torch.complex128, torch.float16, torch.bfloat16, torch.uint8,
        torch.int8, torch.int16, torch.int32, torch.int64, torch.bool
    ]
    DTYPE_TO_ID = {dtype: id_ for id_, dtype in enumerate(ID_TO_DTYPE)}

    def __init__(self, has_bool_tensors=False, *super_args, **super_kwargs):
        super().__init__(*super_args, **super_kwargs)
        assert isinstance(self.module, PipelineModule) \
            or (hasattr(self.module, 'wrapped') and isinstance(self.module.wrapped, PipelineModule)), \
            "model must base PipelineModule"

        assert self.zero_optimization_stage(
        ) < ZeroStageEnum.gradients, "ZeRO-2 and ZeRO-3 are incompatible with pipeline parallelism"

        # We schedule the all-reduces, so disable it in super().backward()
        self.enable_backward_allreduce = False
        self.has_bool_tensors = has_bool_tensors
        self.eval_return_logits = False
        self.outputs = None
        # BF16 Optimizer is hardcoded for fp32 gradient accumulation
        self.using_bf16_optimizer = type(self.optimizer) == BF16_Optimizer

        # used to disable the pipeline all-reduce when used with 1-bit Adam/1-bit LAMB
        self.pipeline_enable_backward_allreduce = True

        if self.elasticity_enabled():
            if not self.is_elastic_model_parallel_supported():
                assert not self.elasticity_enabled(), "Elasticity is not currently supported" \
                " with pipeline parallelism."

        # pipeline step for logging
        self.log_batch_step_id = -1

        self.micro_batch_size = self.train_micro_batch_size_per_gpu()
        self.micro_batches = self.gradient_accumulation_steps()

        # Set Grid and Communication Groups
        self.grid = self.module._grid
        if self.grid.get_global_rank() == 0:
            logger.info(f'CONFIG: micro_batches={self.micro_batches} '
                        f'micro_batch_size={self.micro_batch_size}')

        self.global_rank = self.grid.get_global_rank()

        assert self.dp_world_size == self.grid.data_parallel_size
        assert self.train_batch_size() == \
            self.micro_batch_size * self.micro_batches * self.grid.data_parallel_size

        #  Set Stage Inf
        self.num_stages = self.grid.pipe_parallel_size
        self.stage_id = self.grid.get_stage_id()
        self.prev_stage = self.stage_id - 1
        self.next_stage = self.stage_id + 1

        self.data_iterator = None
        self.batch_fn = None

        self._force_grad_boundary = False

        self.batch_timer = ThroughputTimer(batch_size=self.train_batch_size(),
                                           logging_fn=self.tput_log,
                                           monitor_memory=False,
                                           steps_per_output=self.steps_per_print())

        # PipelineEngine needs to handle data loading specially due to only the first
        # and last stages loading inputs/labels. We construct a sampler that uses
        if self.training_data:
            self._build_data_iter(self.training_data)

        self.is_pipe_parallel = self.grid.pipe_parallel_size > 1
        self.is_data_parallel = self.grid.data_parallel_size > 1
        self.is_model_parallel = self.grid.model_parallel_size > 1

        # Partition input/output buffers
        # XXX temporarily disable while I revert some partition hacks.
        assert isinstance(self._config.pipeline['pipe_partitioned'], bool)
        assert isinstance(self._config.pipeline['grad_partitioned'], bool)
        self.is_pipe_partitioned = self.is_model_parallel and self._config.pipeline['pipe_partitioned']
        self.is_grad_partitioned = self.is_model_parallel and self._config.pipeline['grad_partitioned']
        logger.info(f'is_pipe_partitioned= {self.is_pipe_partitioned} '
                    f'is_grad_partitioned= {self.is_grad_partitioned}')

        model_parameters = filter(lambda p: p.requires_grad, self.module.parameters())
        num_params = sum([p.numel() for p in model_parameters])
        unique_params = num_params
        # Subtract tied parameters if we don't own them
        if self.module.tied_comms:
            tied_params = 0
            for key, d in self.module.tied_comms.items():
                if self.global_rank != min(d['ranks']):
                    tied_params += sum(p.numel() for p in d['module'].parameters())
            unique_params -= tied_params
        params_tensor = torch.LongTensor(data=[num_params, unique_params]).to(self.device)
        dist.all_reduce(params_tensor, group=self.grid.get_model_parallel_group())
        params_tensor = params_tensor.tolist()
        total_params = params_tensor[0]
        unique_params = params_tensor[1]
        if self.grid.data_parallel_id == 0:
            logger.info(f'RANK={self.global_rank} '
                        f'STAGE={self.stage_id} '
                        f'LAYERS={self.module._local_stop - self.module._local_start} '
                        f'[{self.module._local_start}, {self.module._local_stop}) '
                        f'STAGE_PARAMS={num_params} ({num_params/1e6:0.3f}M) '
                        f'TOTAL_PARAMS={total_params} ({total_params/1e6:0.3f}M) '
                        f'UNIQUE_PARAMS={unique_params} ({unique_params/1e6:0.3f}M)')

        #initialize peer-2-peer communication and allreduce groups
        if self.is_pipe_parallel:
            p2p.init_process_groups(self.grid)

        # Pipeline buffers
        self.num_pipe_buffers = 0
        self.pipe_buffers = {
            'inputs': [],  # batch input and received activations
            'labels': [],  # labels from batch input
            'outputs': [],  # activations
            'output_tensors': [],  # tensor object to preserve backward graph
        }
        self.pipe_recv_buf = None
        self.grad_layer = None

        self.meta_buffer = None

        self.first_output_send = True
        self.first_gradient_send = True
        self.pipe_partition_input_meta_cache = None
        self.pipe_partition_output_meta_cache = None
        self.pipe_partition_grad_meta_cache = None
        self.grad_partition_grad_layer_meta_cache = None

        #stores the loss for the current micro batch being processed
        self.loss = torch.tensor(0.0).to(self.device)

        #stores the loss for the entire batch
        self.total_loss = None
        self.total_additional_losses = None
        self.agg_loss = torch.tensor(0.0, requires_grad=False).to(self.device)
        self.dp_group_loss = torch.tensor(0.0, requires_grad=False).to(self.device)

        # stores aggregated-DP train final loss and aggregated-DP additional losses, if any
        # additional losses are stored as dict: {loss-name: agg-loss}
        self.agg_train_loss = None
        self.agg_additional_losses = None

        if self._config.pipeline['activation_checkpoint_interval'] > 0:
            self.module.activation_checkpoint_interval = self._config.pipeline['activation_checkpoint_interval']
            # set use_reentrant default to True.
            if self._config.pipeline.get('use_reentrant') is None:
                self._config.pipeline['use_reentrant'] = True
            if self._config.pipeline['use_reentrant'] is False:
                # set activation_checkpoint_func to non_reentrant_checkpoint func.
                self.module.activation_checkpoint_func = ds_checkpointing.non_reentrant_checkpoint
                if self.grid.get_global_rank() == 0:
                    logger.info(f'CONFIG: activation_checkpoint_func=non_reentrant_checkpoint')

        self.module.checkpoint_parallel_write_pipeline = self._config.checkpoint_parallel_write_pipeline

        if self.is_last_stage():
            self.loss_model = self.module.loss_fn

        self.has_attention_mask = self.module.__class__.__name__ == 'GPT2ModelPipe'
        # Initialize pipeline communicators. Just send a 0.
        if is_even(self.stage_id):
            if not self.is_last_stage():
                p2p.send(self.loss, self.next_stage)
            if not self.is_first_stage():
                p2p.recv(self.loss, self.prev_stage)
        else:
            if not self.is_first_stage():
                p2p.recv(self.loss, self.prev_stage)
            if not self.is_last_stage():
                p2p.send(self.loss, self.next_stage)

        # XXX look into timer reporting timing
        # Initialize some timers because of early weirdness.
        if self.wall_clock_breakdown():
            self.timers(FORWARD_MICRO_TIMER).start()
            self.timers(FORWARD_MICRO_TIMER).stop()
            self.timers(BACKWARD_MICRO_TIMER).start()
            self.timers(BACKWARD_MICRO_TIMER).stop()
            self.timers(BACKWARD_INNER_MICRO_TIMER).start()
            self.timers(BACKWARD_INNER_MICRO_TIMER).stop()
            self.timers(BACKWARD_REDUCE_MICRO_TIMER).start()
            self.timers(BACKWARD_REDUCE_MICRO_TIMER).stop()
            self.timers(BACKWARD_REDUCE_GLOBAL_TIMER).start()
            self.timers(BACKWARD_REDUCE_GLOBAL_TIMER).stop()
            self.timers(STEP_MICRO_TIMER).start()
            self.timers(STEP_MICRO_TIMER).stop()

    def set_has_attention_mask(self, value):
        assert isinstance(value, bool)
        self.has_attention_mask = value

    def _build_data_iter(self, dataset):
        sampler = torch.utils.data.distributed.DistributedSampler(dataset,
                                                                  num_replicas=self.dp_world_size,
                                                                  rank=self.mpu.get_data_parallel_rank(),
                                                                  shuffle=False)
        # Build a loader and make it repeating.
        pipe_dataloader = self.deepspeed_io(dataset, data_sampler=sampler)
        pipe_dataloader = RepeatingLoader(pipe_dataloader)
        self.set_dataloader(pipe_dataloader)

    def _exec_reduce_tied_grads(self):
        # We need to run this first to write to self.averaged_gradients;
        # since this class turns `enable_backward_allreduce` off,
        # `self.overlapping_partition_gradients_reduce_epilogue()` defined in the DeepSpeedEngine
        # never actually runs. I suspect this is because of efficiency problems; get_flat_partition in
        # stage2.py might do something expensive; someone will have to look into that later. But
        # in the meantime, this fixes ZeRO2 + Pipelining enough to run a demo. Further profiling
        # needed to decide if it actually breaks everything.
        # (see https://github.com/EleutherAI/gpt-neox/issues/62#issuecomment-761471944)
        if self.zero_optimization_partition_gradients():
            self.optimizer.overlapping_partition_gradients_reduce_epilogue()

        weight_group_list = self.module.get_tied_weights_and_groups()
        for weight, group in weight_group_list:
            grad = weight._hp_grad if self.using_bf16_optimizer else weight.grad
            dist.all_reduce(grad, group=group)

    def _exec_reduce_grads(self):
        self._force_grad_boundary = True
        if self.pipeline_enable_backward_allreduce:
            if self.using_bf16_optimizer:
                # PP+BF16 work for ZeRO Stage 1
                self._bf16_reduce_grads()
            else:
                self.allreduce_gradients(bucket_size=MEMORY_OPT_ALLREDUCE_SIZE)
        self._force_grad_boundary = False

    def _bf16_reduce_grads(self):
        self.buffered_allreduce_fallback(grads=None, elements_per_buffer=MEMORY_OPT_ALLREDUCE_SIZE)

    def _reserve_pipe_buffers(self, num_buffers):
        """Ensure that each pipeline buffer has at least ``num_buffers`` slots.

        This method only reserves slots and does not allocate tensors.

        Args:
            num_buffers (int): The number of buffers to reserve.
        """
        if self.num_pipe_buffers >= num_buffers:
            return

        num_added = num_buffers - self.num_pipe_buffers
        for key in self.pipe_buffers:
            self.pipe_buffers[key].extend([None] * num_added)
        self.num_pipe_buffers = num_buffers

    def reset_activation_shape(self):
        """Reset the buffers when the shape of activation and gradient change.
        For example, for curriculum learning that changes the seqlen of each
        sample, we need to call this whenever the seqlen is going to change.
        """
        self.first_output_send = True
        self.pipe_recv_buf = None
        self.grad_layer = None
        self.meta_buffer = None

        self.pipe_partition_input_meta_cache = None
        self.pipe_partition_output_meta_cache = None
        self.pipe_partition_grad_meta_cache = None
        self.grad_partition_grad_layer_meta_cache = None

    def train_batch(self, data_iter=None):
        """Progress the pipeline to train the next batch of data. The engine will ingest
        ``self.train_batch_size()`` total samples collectively across all workers.


        An iterator that over training data should be provided as an argument
        unless ``deepspeed.initialize()`` was provided a training set. In that event,
        the training data will automatically be read.


        .. warning::
            A total of ``self.gradient_accumulation_steps()`` entries will be pulled
            from ``data_iter`` by each pipeline. There must be sufficient
            data left in ``data_iter`` or else a ``StopIteration`` will halt training.

            DeepSpeed provides a convenience class :class:`deepspeed.utils.RepeatingLoader`
            that wraps data loaders to automatically restart upon a ``StopIteration``.

        Args:
            data_iter (Iterator, optional): Iterator of training data.

        Returns:
            The arithmetic mean of the losses computed this batch.
        """
        if not torch._C.is_grad_enabled():
            raise RuntimeError(f'train_batch() requires gradients enabled. Use eval_batch() instead.')

        # Curriculum learning could change activation shape
        if self.curriculum_enabled_legacy():
            new_difficulty = self.curriculum_scheduler_legacy.update_difficulty( \
                self.global_steps + 1)
            if self.global_steps == 0 or self.curriculum_scheduler_legacy.first_step:
                self.reset_activation_shape()
                self.curriculum_scheduler_legacy.first_step = False
            elif new_difficulty != self.curriculum_scheduler_legacy.get_difficulty( \
                self.global_steps):
                self.reset_activation_shape()

        if data_iter is not None:
            self.set_dataiterator(data_iter)

        self.module.train()
        self.total_loss = None
        self.total_additional_losses = None
        self._compute_loss = True

        # Do the work
        self.timers(TRAIN_BATCH_TIMER).start()
        sched = schedule.TrainSchedule(micro_batches=self.micro_batches,
                                       stages=self.num_stages,
                                       stage_id=self.stage_id)
        self._exec_schedule(sched)

        with torch.no_grad():
            self.agg_train_loss = self._aggregate_total_loss()

        self.timers(TRAIN_BATCH_TIMER).stop()

        if self.global_steps % self.steps_per_print() == 0:
            if self.global_rank == 0:
                elapsed = self.timers(TRAIN_BATCH_TIMER).elapsed(reset=True) / 1000.0
                iter_time = elapsed / self.steps_per_print()
                tput = self.train_batch_size() / iter_time
                log_str = f'steps: {self.global_steps} loss: {self.agg_train_loss:0.4f} '
                if self.agg_additional_losses is not None:
                    for loss_name, loss_value in self.agg_additional_losses.items():
                        log_str += f'{loss_name}: {loss_value.item():0.4f} '
                log_str += f'iter time (s): {iter_time:0.3f} samples/sec: {tput:0.3f}'
                print(log_str)
            else:
                self.timers(TRAIN_BATCH_TIMER).elapsed(reset=True)

        # Monitoring
        if self.global_rank == 0 and self.monitor.enabled:
            self.summary_events = [(f'Train/Samples/train_loss', self.agg_train_loss.mean().item(),
                                    self.global_samples)]
            self.monitor.write_events(self.summary_events)

        if self.wall_clock_breakdown() and self.global_steps % self.steps_per_print() == 0:
            self.timers.log([
                PIPE_SEND_OUTPUT_TIMER,
                PIPE_SEND_GRAD_TIMER,
                PIPE_RECV_INPUT_TIMER,
                PIPE_RECV_GRAD_TIMER,
            ])

        # TODO: should return precisely what loss returned and allow others to be queried?
        return self.agg_train_loss

    def eval_batch(self,
                   data_iter,
                   return_logits=False,
                   compute_loss=True,
                   reduce_output='avg',
                   bcast_loss=True,
                   num_micro_batches=None):
        """Evaluate the pipeline on a batch of data from ``data_iter``. The
        engine will evaluate ``self.train_batch_size()`` total samples
        collectively across all workers.

        This method is equivalent to:

        .. code-block:: python

            module.eval()
            with torch.no_grad():
                output = module(batch)

        .. warning::
            A total of ``self.gradient_accumulation_steps()`` entries will be pulled
            from ``data_iter`` by each pipeline. There must be sufficient
            data left in ``data_iter`` or else a ``StopIteration`` will halt training.

            DeepSpeed provides a convenience class :class:`deepspeed.utils.RepeatingLoader`
            that wraps data loaders to automatically restart upon a ``StopIteration``.

        Args:
            data_iter (Iterator): Iterator of data to evaluate.

        Returns:
            The arithmetic mean of the losses computed this batch.
        """
        self.eval_return_logits = return_logits
        self.module.eval()

        # Curriculum learning could change activation shape
        if self.curriculum_enabled_legacy():
            new_difficulty = self.curriculum_scheduler_legacy.update_difficulty( \
                self.global_steps + 1)
            if self.global_steps == 0 or self.curriculum_scheduler_legacy.first_step:
                self.reset_activation_shape()
                self.curriculum_scheduler_legacy.first_step = False
            elif new_difficulty != self.curriculum_scheduler_legacy.get_difficulty( \
                self.global_steps):
                self.reset_activation_shape()

        eval_output = None

        self._compute_loss = compute_loss

        # Use the provided data iterator
        train_iterator = self.data_iterator
        self.set_dataiterator(data_iter)

        # set the number micro batches in case the user chose value than training
        micro_batches = self.micro_batches if num_micro_batches is None else num_micro_batches

        # Do the work
        sched = schedule.InferenceSchedule(micro_batches=self.micro_batches,
                                           stages=self.num_stages,
                                           stage_id=self.stage_id)

        # prevent dead-lock with multiple evals sequence
        dist.barrier()

        with torch.no_grad():
            self._exec_schedule(sched)

        if self.is_last_stage():
            eval_output = self._reduce_outputs(self.fwd_outputs, reduce=reduce_output, micro_batches=micro_batches)

        if compute_loss and (bcast_loss or self.monitor.enabled):
            eval_output = self._bcast_pipe_scalar(eval_output)

        if self.global_rank == 0 and self.monitor.enabled:
            self.summary_events = [(f'Train/Samples/eval_loss', eval_output.mean().item(), self.global_samples)]
            self.monitor.write_events(self.summary_events)

        # Restore the training iterator
        self.set_dataiterator(train_iterator)

        # Reset any buffers that may have been populated during the forward passes.
        #ds_checkpointing.reset()
        self.eval_return_logits = False
        if return_logits:
            outputs = self.outputs
            self.outputs = None
            return eval_output, outputs
        return eval_output

    def set_train_batch_size(self, train_batch_size):
        """Adjust the global batch size by increasing or decreasing the number of
        micro-batches (i.e., gradient accumulation steps). The size of each micro-batch
        (i.e., ``train_micro_batch_size_per_gpu``) is not changed.
        Args:
            train_batch_size (int): The new global batch size for training.
        Raises:
            ValueError: if ``train_batch_size`` is not divisible by the
                configured micro-batch size and data parallelism.
        """
        super().set_train_batch_size(train_batch_size)
        self.micro_batches = self.gradient_accumulation_steps()

    def is_first_stage(self):
        """True if this process is in the first stage in the pipeline."""
        return self.stage_id == 0

    def is_last_stage(self):
        """True if this process is in the last stage in the pipeline."""
        return self.stage_id == self.num_stages - 1

    def _reduce_outputs(self, outputs, reduce='avg', reduce_dp=True, micro_batches=None):
        if reduce is None:
            return outputs

        if reduce.lower() == 'avg':
            # first sum over all microbatches
            if torch.is_tensor(outputs[0]):
                reduced = sum(outputs)
            else:
                assert isinstance(outputs, (list, tuple))
                reduced = [torch.zeros_like(o) for o in outputs[0]]
                for idx, out in outputs:
                    reduced[idx] += out

            # Average over the microbatches
            reduced = self._scale_loss_by_gas(reduced, eval_micro_batches=micro_batches)

            # Average over DP groups
            if reduce_dp and self.is_data_parallel:
                if torch.is_tensor(reduced):
                    dist.all_reduce(reduced, group=self.mpu.get_data_parallel_group())
                    reduced /= self.dp_world_size
                else:
                    for idx in range(len(reduced)):
                        dist.all_reduce(reduced[idx], group=self.mpu.get_data_parallel_group())
                        reduced[idx] /= self.dp_world_size

            return reduced
        else:
            raise NotImplementedError(f'reduction type {reduce} not supported.')

    def _bcast_pipe_scalar(self, data, src_rank=None, dtype=torch.float32):
        # Default to last stage (e.g., for broadcasting loss)
        if src_rank is None:
            src_rank = self.grid.stage_to_global(self.num_stages - 1)
        assert src_rank in self.grid.pp_group

        if self.global_rank == src_rank:
            result = data.clone().detach().type(dtype).to(self.device)
        else:
            result = torch.Tensor([0.]).type(dtype).to(self.device)

        dist.broadcast(tensor=result, src=src_rank, group=self.mpu.get_pipe_parallel_group())

        return result

    def _aggregate_total_loss(self):
        # Scale loss, average among DP ranks, and bcast loss to the rest of my DP group
        if self.is_last_stage():
            # Scale loss and additional losses, if any
            loss = self._scale_loss_by_gas(self.total_loss)
            self.agg_additional_losses = self.total_additional_losses
            if self.agg_additional_losses is not None:
                self.agg_additional_losses = OrderedDict({
                    loss_name: self._scale_loss_by_gas(_loss.clone().detach())
                    for loss_name, _loss in self.agg_additional_losses.items()
                })

            self.dp_group_loss = loss.clone().detach()
            agg_loss = self.dp_group_loss.clone().detach()
            #print(f'RANK={self.global_rank} bcast SENDER src={self.global_rank} group={self.grid.pp_group}', flush=True)

            # Average loss across all data-parallel groups
            if self.is_data_parallel:
                if self.agg_additional_losses is None:
                    dist.all_reduce(agg_loss, group=self.mpu.get_data_parallel_group())
                    agg_loss /= self.dp_world_size
                else:
                    # use a single reduce op for agg_loss and additional losses, if any
                    assert '__train_loss__' not in self.agg_additional_losses.keys()
                    tensors = OrderedDict({'__train_loss__': agg_loss})
                    tensors.update(self.agg_additional_losses.items())
                    flat_tensor = torch.cat([t.clone().reshape(-1).detach() for t in tensors.values()])
                    dist.all_reduce(flat_tensor, group=self.mpu.get_data_parallel_group())
                    flat_tensor /= self.dp_world_size
                    offset = 0
                    reduced_tensor = {}
                    for name, t in tensors.items():
                        n_elem = t.numel()
                        reduced_tensor[name] = flat_tensor[offset:offset + n_elem].clone().detach().reshape(t.shape)
                        offset += n_elem
                    agg_loss = reduced_tensor['__train_loss__']
                    self.agg_additional_losses = OrderedDict(
                        {name: reduced_tensor[name]
                         for name in self.agg_additional_losses.keys()})

            assert self.global_rank in self.grid.pp_group
            losses = [self.dp_group_loss, agg_loss]
            if self.agg_additional_losses is not None:
                losses += list(self.agg_additional_losses.values())
            losses = torch.stack(losses).float()
            if self.is_pipe_parallel:
                dist.broadcast(tensor=losses, src=self.global_rank, group=self.mpu.get_pipe_parallel_group())
        else:
            # Get loss from last stage
            src_rank = self.grid.stage_to_global(self.num_stages - 1)
            assert src_rank in self.grid.pp_group
            # losses to reduce are: dp_group_loss, agg_loss, model additional losses
            # therefore: 2 + n_additional_losses
            additional_losses = self.module.get_additional_losses()
            n_additional_losses = 0 if additional_losses is None else len(additional_losses)
            losses = torch.Tensor([0.] * (2 + n_additional_losses)).to(self.device)
            dist.broadcast(tensor=losses, src=src_rank, group=self.grid.get_pipe_parallel_group())
            self.dp_group_loss = losses[0].clone().detach()
            agg_loss = losses[1].clone().detach()
            if additional_losses is not None:
                self.agg_additional_losses = OrderedDict(
                    {name: losses[2 + i].clone().detach()
                     for i, name in enumerate(additional_losses.keys())})
        return agg_loss

    def set_dataloader(self, loader):
        """"""
        if self.is_first_stage() or self.is_last_stage():
            self.training_dataloader = loader
            self.data_iterator = iter(self.training_dataloader)

    def set_dataiterator(self, iterator):
        """ Store an iterator to sample for training data. """
        if self.is_first_stage() or self.is_last_stage():
            self.training_dataloader = None
            self.data_iterator = iterator

    def set_batch_fn(self, fn):
        """Execute a post-processing function on input data.

        Args:
            fn (function): The function to run.
        """
        self.batch_fn = fn

    def is_gradient_accumulation_boundary(self):
        """True if the engine is executing a gradient reduction or optimizer step instruction.

        This is overridden from :class:`DeepSpeedEngine` to force reductions
        and steps when the pipeline engine is instructed to do so.

        Returns:
            bool: whether reductions and optimizer steps should occur.
        """
        return self._force_grad_boundary

    def log_for_device(self, *msg):
        if LOG_STAGE == self.stage_id or LOG_STAGE == -1:
            if DATA_PARALLEL_ID == self.grid.data_parallel_id or DATA_PARALLEL_ID == -1:
                print(
                    f'RANK={dist.get_rank()} '
                    f'PIPE-ID={self.stage_id} '
                    f'DATA-ID={self.grid.data_parallel_id} '
                    f'MBATCH-ID={self.microbatch_id} '
                    f'STEP-ID={self.log_batch_step_id} '
                    '::',
                    *msg,
                    flush=True)

    def tput_log(self, *msg):
        if self.global_rank == 0 and self.global_steps % self.steps_per_print() == 0:
            print(*msg)

    def _next_batch(self):
        # If using 3D parallelism, only some first-stage ranks may do IO
        batch = None
        if self.data_iterator is not None:
            batch = next(self.data_iterator)

        # Any post-processing, like broadcasting across a slice-parallel group.
        if self.batch_fn:
            batch = self.batch_fn(batch)

        return batch

    def _exec_forward_pass(self, buffer_id):
        self.tput_timer.start()
        self.mem_status('BEFORE FWD', reset_max=True)

        if isinstance(self.pipe_buffers['inputs'][buffer_id], tuple):
            inputs = tuple(t.clone() for t in self.pipe_buffers['inputs'][buffer_id])
        else:
            inputs = self.pipe_buffers['inputs'][buffer_id].clone()

        # collect the partitioned input from the previous stage
        if self.is_pipe_partitioned and not self.is_first_stage():
            if self.pipe_partition_input_meta_cache is None:
                self.pipe_partition_input_meta_cache = inputs[0].to('cpu')
            part_input = PartitionedTensor.from_meta(meta=self.pipe_partition_input_meta_cache,
                                                     local_part=inputs[1],
                                                     group=self.grid.get_slice_parallel_group())

            inputs = (part_input.full(), *inputs[2:])
            inputs[0].requires_grad = True
            # skip mask
            #inputs[1].requires_grad = True
            part_input = None
            inputs = inputs[0] if len(inputs) == 1 else inputs
            self.pipe_buffers['inputs'][buffer_id] = inputs

        # inputs has no gradient because it is from a cloned tensor
        outputs = super().forward(inputs)

        # Reset activation checkpointing buffers.
        # Need to call this between evaluation iterations
        if not self.module.training:
            ds_checkpointing.reset()

        # Partition the outputs if we are not the last stage
        if self.is_pipe_partitioned and not self.is_last_stage():
            if isinstance(outputs, tuple):
                first_output = outputs[0]
                # TODO: Improve pipe partitioning to pass multiple tensors that require grads
                assert all([torch.is_tensor(elt) and elt.requires_grad is False for elt in outputs[1:]])
                outputs_tail = outputs[1:]
            elif torch.is_tensor(outputs):
                first_output = outputs
                outputs_tail = []
            else:
                raise ValueError("expecting a tensor or a tuple of tensors")
            part = PartitionedTensor(tensor=first_output, group=self.grid.get_slice_parallel_group())
            # Clear the large output data, but save the computation graph
            first_output.data = torch.zeros(1)
            self.pipe_buffers['output_tensors'][buffer_id] = first_output
            # Inject the partitioned tensor into the output before sending
            outputs = (part.to_meta(), part.data(), *outputs_tail)
            part = None

        self.pipe_buffers['outputs'][buffer_id] = outputs

        # Optionally compute loss on the last device
        if self.is_last_stage():
            if self._compute_loss and self.module.loss_fn is not None:
                labels = self.pipe_buffers['labels'][buffer_id]
                self.loss = self.module.loss_fn(outputs, labels)
            else:
                # Some models just return loss from forward()
                self.loss = outputs
            if self.eval_return_logits:
                self.outputs = outputs

            if isinstance(self.loss, torch.Tensor):
                self.fwd_outputs.append(self.loss.detach())
            else:
                self.fwd_outputs.append([l.detach() for l in self.loss])

            def add_to_total_loss(_total_loss, _loss):
                if isinstance(_loss, torch.Tensor):
                    if _total_loss is None:
                        _total_loss = torch.zeros_like(_loss)
                    _total_loss += _loss.detach()
                else:
                    if _total_loss is None:
                        _total_loss = [torch.zeros_like(_l) for _l in _loss]
                    for _idx, _l in enumerate(_loss):
                        _total_loss[_idx] += _l.detach()
                return _total_loss

            self.total_loss = add_to_total_loss(self.total_loss, self.loss)

            # aggregate additional losses across gradient accumulation steps
            additional_losses = self.module.get_additional_losses()
            if additional_losses is not None:
                if self.total_additional_losses is None:
                    self.total_additional_losses = OrderedDict()
                for name, loss in additional_losses.items():
                    total = self.total_additional_losses[name] if name in self.total_additional_losses else None
                    self.total_additional_losses[name] = add_to_total_loss(total, loss)

    def _exec_backward_pass(self, buffer_id):
        assert self.optimizer is not None, "must provide optimizer during " \
                                           "init in order to use backward"

        self.mem_status('BEFORE BWD', reset_max=True)

        # The last stage just runs backward on the loss using DeepSpeed's typical
        # mechanisms.
        if self.is_last_stage():
            super().backward(self.loss)
            self.mem_status('AFTER BWD')
            return

        outputs = self.pipe_buffers['outputs'][buffer_id]

        if self.wall_clock_breakdown():
            self.timers(BACKWARD_MICRO_TIMER).start()
            self.timers(BACKWARD_GLOBAL_TIMER).start()
            self.timers(BACKWARD_INNER_MICRO_TIMER).start()
            self.timers(BACKWARD_INNER_GLOBAL_TIMER).start()

        # Reconstruct if we previously partitioned the output. We must be
        # careful to also restore the computational graph of the tensors we partitioned.
        if self.is_pipe_partitioned:
            if self.is_grad_partitioned:
                if self.pipe_partition_output_meta_cache is None:
                    self.pipe_partition_output_meta_cache = outputs[0].to('cpu')
                part_output = PartitionedTensor.from_meta(meta=self.pipe_partition_output_meta_cache,
                                                          local_part=outputs[1],
                                                          group=self.grid.get_slice_parallel_group())
                self.pipe_buffers['output_tensors'][buffer_id].data = part_output.full()
                outputs = (self.pipe_buffers['output_tensors'][buffer_id], *outputs[2:])
            else:
                # Already restored from partition
                self.pipe_buffers['output_tensors'][buffer_id].data = outputs[0]
                outputs = (self.pipe_buffers['output_tensors'][buffer_id], *outputs[1:])

        grad_tensors = self.grad_layer
        if self.is_grad_partitioned:
            #print(f'RANK={self.global_rank} BEFORE-BWD restoring grad={self.grad_layer[0].size()} {self.grad_layer[1].size()}')
            if self.grad_partition_grad_layer_meta_cache is None:
                self.grad_partition_grad_layer_meta_cache = self.grad_layer[0].to('cpu')
            part_grad = PartitionedTensor.from_meta(meta=self.grad_partition_grad_layer_meta_cache,
                                                    local_part=self.grad_layer[1],
                                                    group=self.grid.get_slice_parallel_group())
            grad_tensors = (part_grad.full(), *grad_tensors[2:])
            part_grad = None
            #print(f'RANK={self.global_rank} BEFORE-BWD restored grad={self.grad_layer[0].size()} {self.grad_layer[1].size()}')

        if self.using_bf16_optimizer and not self.is_last_stage():
            # manually call because we don't call optimizer.backward()
            self.optimizer.clear_lp_grads()

        # This handles either a single tensor or tuple of tensors.
        if isinstance(outputs, tuple):
            out_tensors = [t for t in outputs if t.is_floating_point()]
            assert len(out_tensors) == len(grad_tensors)
            torch.autograd.backward(tensors=out_tensors, grad_tensors=grad_tensors)
        else:
            torch.autograd.backward(tensors=(outputs, ), grad_tensors=(grad_tensors, ))

        if self.using_bf16_optimizer and not self.is_last_stage():
            # manually call because we don't call optimizer.backward()
            self.optimizer.update_hp_grads(clear_lp_grads=False)

        # Free up the memory from the output of forward()
        self.pipe_buffers['output_tensors'][buffer_id] = None
        self.pipe_buffers['outputs'][buffer_id] = None
        grad_tensors = None

        if self.wall_clock_breakdown():
            self.timers(BACKWARD_INNER_MICRO_TIMER).stop()
            self.timers(BACKWARD_INNER_GLOBAL_TIMER).stop()
            self.timers(BACKWARD_MICRO_TIMER).stop()
            self.timers(BACKWARD_GLOBAL_TIMER).stop()

        self.mem_status('AFTER BWD')

    def _exec_load_micro_batch(self, buffer_id):
        if self.wall_clock_breakdown():
            self.timers(BATCH_INPUT_TIMER).start()

        batch = self._next_batch()

        if self.is_first_stage():
            loaded = None
            if torch.is_tensor(batch[0]):
                loaded = batch[0].clone().to(self.device).detach()
                if self._config.pipeline['activation_checkpoint_interval'] > 0 and self._config.pipeline[
                        'use_reentrant']:
                    loaded.requires_grad = loaded.is_floating_point()
            else:
                assert isinstance(batch[0], (tuple, list))
                # Assume list or tuple
                loaded = []
                for x in batch[0]:
                    assert torch.is_tensor(x)
                    mine = x.clone().detach().to(self.device)
                    if self._config.pipeline['activation_checkpoint_interval'] > 0 and self._config.pipeline[
                            'use_reentrant']:
                        mine.requires_grad = mine.is_floating_point()
                    loaded.append(mine)
                loaded = tuple(loaded)

            self.pipe_buffers['inputs'][buffer_id] = loaded

        if self.is_last_stage():
            loaded = batch[1]
            if torch.is_tensor(batch[1]):
                loaded = batch[1].to(self.device)
            # XXX: torch 1.6.0 DataLoader will auto convert tuple to list
            elif isinstance(batch[1], (tuple, list)):
                loaded = []
                for x in batch[1]:
                    assert torch.is_tensor(x)
                    x = x.to(self.device).detach()
                    loaded.append(x)
                loaded = tuple(loaded)

            self.pipe_buffers['labels'][buffer_id] = loaded

        if self.wall_clock_breakdown():
            self.timers(BATCH_INPUT_TIMER).stop()

    def _send_tensor_meta(self, buffer, recv_stage):
        """ Communicate metadata about upcoming p2p transfers.

        Metadata is communicated in this order:
            * type (0: tensor, 1: list)
            * num_tensors if type=list
            foreach tensor in buffer:
                * ndims
                * shape
        """
        send_bytes = 0
        if isinstance(buffer, torch.Tensor):
            type_tensor = torch.LongTensor(data=[0]).to(self.device)
            p2p.send(type_tensor, recv_stage)
            send_shape = torch.LongTensor(data=buffer.size()).to(self.device)
            send_ndims = torch.LongTensor(data=[len(buffer.size())]).to(self.device)
            p2p.send(send_ndims, recv_stage)
            p2p.send(send_shape, recv_stage)
            send_bytes += _tensor_bytes(buffer)
        elif isinstance(buffer, list):
            assert (False)
            type_tensor = torch.LongTensor(data=[1]).to(self.device)
            p2p.send(type_tensor, recv_stage)
            count_tensor = torch.LongTensor(data=[len(buffer)]).to(self.device)
            p2p.send(count_tensor, recv_stage)
            for tensor in buffer:
                assert isinstance(tensor, torch.Tensor)
                send_shape = torch.LongTensor(data=tensor.size()).to(self.device)
                send_ndims = torch.LongTensor(data=[len(tensor.size())]).to(self.device)
                p2p.send(send_ndims, recv_stage)
                p2p.send(send_shape, recv_stage)
                send_bytes += _tensor_bytes(tensor)
        elif isinstance(buffer, tuple):
            type_tensor = torch.LongTensor(data=[2]).to(self.device)
            p2p.send(type_tensor, recv_stage)
            count_tensor = torch.LongTensor(data=[len(buffer)]).to(self.device)
            p2p.send(count_tensor, recv_stage)
            for idx, tensor in enumerate(buffer):
                assert isinstance(tensor, torch.Tensor)
                send_shape = torch.LongTensor(data=tensor.size()).to(self.device)
                send_ndims = torch.LongTensor(data=[len(tensor.size())]).to(self.device)
                send_dtype = torch.LongTensor(data=[self.DTYPE_TO_ID[tensor.dtype]]).to(self.device)
                p2p.send(send_dtype, recv_stage)
                p2p.send(send_ndims, recv_stage)
                p2p.send(send_shape, recv_stage)
                # Useful for performance debugging.
                '''
                new_bytes = _tensor_bytes(tensor)
                send_bytes += _tensor_bytes(tensor)
                # Useful for performance debugging.
                if self.grid.data_parallel_id == 0:
                    print(
                        f'STAGE={self.stage_id} pipe-send-volume[{idx}]: shape={send_shape} {new_bytes/1024**2:0.2f}MB'
                    )
                '''
        else:
            raise NotImplementedError(f'Could not send meta type {type(buffer)}')

        # Useful for performance debugging.
        '''
        if self.grid.data_parallel_id == 0:
            print(f'STAGE={self.stage_id} pipe-send-volume: {send_bytes/1024**2:0.2f}MB')
        '''

    def _recv_tensor_meta(self, send_stage):
        """Receive metadata about upcoming p2p transfers and return allocated buffers.

        Metadata is communicated in this order:
            * type (0: tensor, 1: list)
            * num_tensors if type=list
            foreach tensor in buffer:
                * ndims
                * shape

        Returns:
            Allocated buffer for receiving from send_stage.
        """

        type_tensor = torch.LongTensor(data=[0]).to(self.device)
        p2p.recv(type_tensor, send_stage)
        recv_type = type_tensor.item()

        # A single tensor will be sent.
        if recv_type == 0:
            recv_ndims = torch.LongTensor(data=[0]).to(self.device)
            p2p.recv(recv_ndims, send_stage)
            recv_ndims = recv_ndims.item()
            recv_shape = torch.LongTensor([1] * recv_ndims).to(self.device)
            p2p.recv(recv_shape, send_stage)
            recv_shape = recv_shape.tolist()
            return self._allocate_buffer(recv_shape, num_buffers=1)[0]

        # List or tuple of tensors
        elif recv_type == 1 or recv_type == 2:
            count_tensor = torch.LongTensor(data=[0]).to(self.device)
            p2p.recv(count_tensor, send_stage)
            num_tensors = count_tensor.item()
            recv_shapes_and_dtypes = []
            for idx in range(num_tensors):
                recv_dtype = torch.LongTensor(data=[0]).to(self.device)
                p2p.recv(recv_dtype, send_stage)
                recv_dtype = self.ID_TO_DTYPE[recv_dtype.item()]
                recv_ndims = torch.LongTensor(data=[0]).to(self.device)
                p2p.recv(recv_ndims, send_stage)
                recv_ndims = recv_ndims.item()
                recv_shape = torch.LongTensor([1] * recv_ndims).to(self.device)
                p2p.recv(recv_shape, send_stage)
                recv_shapes_and_dtypes.append((recv_shape.tolist(), recv_dtype))

            buffers = self._allocate_buffers(recv_shapes_and_dtypes, num_buffers=1)[0]
            # Convert to tuples if requested.
            if recv_type == 2:
                buffers = tuple(buffers)
            return buffers

        else:
            raise NotImplementedError(f'Could not receive type {type(recv_type)}')

    def _exec_send_activations(self, buffer_id):
        if self.wall_clock_breakdown():
            self.timers(PIPE_SEND_OUTPUT_TIMER).start()

        outputs = self.pipe_buffers['outputs'][buffer_id]

        # NCCL does not like to send torch.BoolTensor types, so cast the mask to half().
        # We could do char, but with half() we can eventually flatten with other fp16
        # messages (TODO)
        if self.has_attention_mask or self.has_bool_tensors:
            outputs = list(outputs)
            outputs[-1] = outputs[-1].half()
            outputs = tuple(outputs)

        if self.first_output_send:
            self.first_output_send = False
            self._send_tensor_meta(outputs, self.next_stage)

        if isinstance(outputs, torch.Tensor):
            p2p.send(outputs, self.next_stage)
        elif isinstance(outputs, tuple):
            for idx, buffer in enumerate(outputs):
                p2p.send(buffer, self.next_stage)
        else:
            raise NotImplementedError('Could not send output of type '
                                      f'{type(outputs)}')

        # Restore the boolean tensor
        if self.has_attention_mask or self.has_bool_tensors:
            outputs = list(outputs)
            outputs[-1] = outputs[-1].bool()
            outputs = tuple(outputs)

        if self.wall_clock_breakdown():
            self.timers(PIPE_SEND_OUTPUT_TIMER).stop()

    def _exec_send_grads(self, buffer_id):
        if self.wall_clock_breakdown():
            self.timers(PIPE_SEND_GRAD_TIMER).start()

        inputs = self.pipe_buffers['inputs'][buffer_id]

        # Partition the gradient
        if self.is_grad_partitioned:
            if isinstance(inputs, tuple):
                first_input = inputs[0]
                assert all([torch.is_tensor(elt) for elt in inputs[1:]])
                inputs_grad_tail = [elt.grad for elt in inputs[1:]]
            elif torch.is_tensor(inputs):
                first_input = inputs
                inputs_grad_tail = []
            else:
                raise ValueError("expecting a tensor or a tuple of tensors")
            assert torch.is_tensor(first_input)
            part = PartitionedTensor(tensor=first_input.grad, group=self.grid.get_slice_parallel_group())

            inputs = (part.to_meta(), part.data(), *inputs_grad_tail)

        # XXX Terrible hack
        # Drop the attention mask from the input buffer here. It does not have
        # a grad that needs to be communicated. We free the buffer immediately
        # after, so no need to restore it. The receiver also has a hack that skips
        # the recv. This is because NCCL does not let us send torch.BoolTensor :-(.
        if self.has_attention_mask or self.has_bool_tensors:
            inputs = list(inputs)
            inputs.pop()
            inputs = tuple(inputs)

        if isinstance(inputs, torch.Tensor):
            assert inputs.grad is not None
            p2p.send(inputs.grad, self.prev_stage)
        else:
            # XXX terrible hacky branch
            if self.is_grad_partitioned:
                # First two sends are partitioned gradient
                p2p.send(inputs[0], self.prev_stage)
                p2p.send(inputs[1], self.prev_stage)
            else:
                for idx, buffer in enumerate(inputs):
                    # Skip tensors that will not produce a grad
                    if not buffer.is_floating_point():
                        assert buffer.grad is None
                        continue
                    assert buffer.grad is not None
                    p2p.send(buffer.grad, self.prev_stage)

        # We can free up the input buffer now
        self.pipe_buffers['inputs'][buffer_id] = None

        if self.wall_clock_breakdown():
            self.timers(PIPE_SEND_GRAD_TIMER).stop()

    def _exec_recv_activations(self, buffer_id):
        if self.wall_clock_breakdown():
            self.timers(PIPE_RECV_INPUT_TIMER).start()

        recvd = None

        # Allocate the buffer if necessary
        if self.pipe_recv_buf is None:
            self.pipe_recv_buf = self._recv_tensor_meta(self.prev_stage)

        if isinstance(self.pipe_recv_buf, torch.Tensor):
            p2p.recv(self.pipe_recv_buf, self.prev_stage)
            recvd = self.pipe_recv_buf.clone().detach()
            recvd.requires_grad = recvd.is_floating_point()
        else:
            assert isinstance(self.pipe_recv_buf, tuple)
            recvd = [None] * len(self.pipe_recv_buf)
            for idx, buffer in enumerate(self.pipe_recv_buf):
                assert torch.is_tensor(buffer)
                # XXX hardcode meta type
                if self.is_pipe_partitioned and idx == 0 and buffer.dtype != torch.long:
                    if self.meta_buffer is None:
                        self.meta_buffer = torch.zeros(buffer.size(), dtype=torch.long, device=self.device)
                    buffer = self.meta_buffer

                p2p.recv(buffer, self.prev_stage)
                recvd[idx] = buffer.clone().detach()

            # NCCL does not like to send torch.BoolTensor types, so un-cast the
            # attention mask
            if self.has_attention_mask or self.has_bool_tensors:
                recvd[-1] = recvd[-1].bool()

            recvd = tuple(recvd)

            for buffer in recvd:
                buffer.requires_grad = buffer.is_floating_point()

        self.pipe_buffers['inputs'][buffer_id] = recvd

        if self.wall_clock_breakdown():
            self.timers(PIPE_RECV_INPUT_TIMER).stop()

    def _exec_recv_grads(self, buffer_id):
        if self.wall_clock_breakdown():
            self.timers(PIPE_RECV_GRAD_TIMER).start()

        outputs = self.pipe_buffers['outputs'][buffer_id]
        # XXX these shapes are hardcoded for Megatron
        # Restore partitioned output if it was partitioned and we are sending full gradients
        if self.is_pipe_partitioned and not self.is_grad_partitioned:
            if self.pipe_partition_grad_meta_cache is None:
                self.pipe_partition_grad_meta_cache = outputs[0].to('cpu')
            part_output = PartitionedTensor.from_meta(meta=self.pipe_partition_grad_meta_cache,
                                                      local_part=outputs[1],
                                                      group=self.grid.get_slice_parallel_group())
            outputs[0].data = part_output.full()
            outputs = (outputs[0], *outputs[2:])
            # save for backward
            self.pipe_buffers['outputs'][buffer_id] = outputs

        # Allocate gradient if necessary
        if self.grad_layer is None:
            if isinstance(outputs, torch.Tensor):
                s = list(outputs.size())
                self.grad_layer = self._allocate_buffer(s, dtype=outputs.dtype, num_buffers=1)[0]
            else:
                # XXX This is a HACK
                # When we exchange activations/gradients, the two pipe stages
                # need to issue the send/recv with the same buffer sizes or
                # else there is a deadlock. The is_floating_point() filter is
                # used to avoid sending gradients for tensors that do not
                # produce gradients. When TP>1, we partition the first
                # activations/gradients across TP ranks to save communication
                # volume and memory. That partitioned tensor is represented as
                # two tensors: a 1/TPth chunk of the original data and also a
                # small LongTensor storing the metadata used to reconstruct on
                # the other side. When combined, the floating point filter also
                # filtered out the metadata tensor. This quick (hacky) fix just
                # branches on is_grad_partitioned so we don't filter out the
                # metadata tensor.
                if self.is_grad_partitioned:
                    sizes_and_dtypes = [(list(t.size()), t.dtype)
                                        for t in outputs[:2]] + [(list(t.size()), t.dtype)
                                                                 for t in outputs[2:] if t.is_floating_point()]
                else:
                    sizes_and_dtypes = [(list(t.size()), t.dtype) for t in outputs if t.is_floating_point()]
                self.grad_layer = self._allocate_buffers(sizes_and_dtypes, num_buffers=1)[0]

        if isinstance(self.grad_layer, torch.Tensor):
            p2p.recv(self.grad_layer, self.next_stage)
        else:
            assert isinstance(outputs, tuple)
            for idx, buffer in enumerate(self.grad_layer):
                # XXX GPT-2 hack
                if self.is_grad_partitioned and idx == 0 and buffer.dtype != torch.long:
                    buffer.data = torch.zeros(buffer.size(), dtype=torch.long, device=self.device)
                p2p.recv(buffer, self.next_stage)

        if self.wall_clock_breakdown():
            self.timers(PIPE_RECV_GRAD_TIMER).stop()

    def _exec_optimizer_step(self, lr_kwargs=None):
        if self.wall_clock_breakdown():
            self.timers(STEP_MICRO_TIMER).start()
            self.timers(STEP_GLOBAL_TIMER).start()
        self.mem_status('BEFORE STEP', reset_max=True)

        self._force_grad_boundary = True
        self._take_model_step(lr_kwargs)
        self._force_grad_boundary = False

        self.mem_status('AFTER STEP')

        if self.global_rank == 0 and self.monitor.enabled:
            self.summary_events = [(f'Train/Samples/lr', self.get_lr()[0], self.global_samples)]
            if self.fp16_enabled() and hasattr(self.optimizer, 'cur_scale'):
                self.summary_events.append(
                    (f'Train/Samples/loss_scale', self.optimizer.cur_scale, self.global_samples))
            self.monitor.write_events(self.summary_events)

        if self.wall_clock_breakdown():
            self.timers(STEP_MICRO_TIMER).stop()
            self.timers(STEP_GLOBAL_TIMER).stop()
            if self.global_steps % self.steps_per_print() == 0:
                self.timers.log([
                    BATCH_INPUT_TIMER,
                    FORWARD_MICRO_TIMER,
                    BACKWARD_MICRO_TIMER,
                    BACKWARD_INNER_MICRO_TIMER,
                    BACKWARD_REDUCE_MICRO_TIMER,
                    STEP_MICRO_TIMER,
                ])
            if self.global_steps % self.steps_per_print() == 0:
                self.timers.log([
                    FORWARD_GLOBAL_TIMER,
                    BACKWARD_GLOBAL_TIMER,
                    BACKWARD_INNER_GLOBAL_TIMER,
                    BACKWARD_REDUCE_GLOBAL_TIMER,
                    STEP_GLOBAL_TIMER,
                ])

    def _allocate_zeros(self, shape, **kwargs):
        """ Allocate a tensor of zeros on the engine's device.

        Arguments:
            shape: the shape of the tensor to allocate
            kwargs: passed to torch.zeros()

        Returns:
            A tensor from torch.zeros() allocated on self.device.
        """
        if "dtype" not in kwargs:
            if self.fp16_enabled():
                kwargs["dtype"] = torch.half
            if self.bfloat16_enabled():
                kwargs["dtype"] = torch.bfloat16

        return torch.zeros(shape, device=self.device, **kwargs)

    def _allocate_buffer(self, shape, num_buffers=-1, **kwargs):
        buffers = []
        if num_buffers == -1:
            num_buffers = self.num_pipe_buffers
        for count in range(num_buffers):
            buffers.append(self._allocate_zeros(shape, **kwargs))
        return buffers

    def _allocate_buffers(self, shapes_and_dtypes, requires_grad=False, num_buffers=-1):
        buffers = []
        if num_buffers == -1:
            num_buffers = self.num_pipe_buffers
        for count in range(num_buffers):
            buffer = []
            for shape, dtype in shapes_and_dtypes:
                buffer.append(self._allocate_zeros(shape, dtype=dtype, requires_grad=requires_grad))
            buffers.append(buffer)
        return buffers

    def forward(self, *args, **kwargs):
        """Disabled for pipeline parallel training. See ``train_batch()``. """
        raise PipelineError("Only train_batch() is accessible in pipeline mode.")

    def backward(self, *args, **kwargs):
        """Disabled for pipeline parallel training. See ``train_batch()``. """
        raise PipelineError("Only train_batch() is accessible in pipeline mode.")

    def step(self, *args, **kwargs):
        """Disabled for pipeline parallel training. See ``train_batch()``. """
        raise PipelineError("Only train_batch() is accessible in pipeline mode.")

    def mem_status(self, msg, print_rank=-1, reset_max=False):
        return
        global mem_alloced, mem_cached
        if not self.global_steps == 0 or not self.global_steps == 9:
            #return
            pass
        if self.mpu.get_data_parallel_rank() != 0:
            return

        if self.global_rank != 0:
            return

        rank = self.global_rank
        if print_rank != -1 and rank != print_rank:
            return

        get_accelerator().synchronize()

        if reset_max:
            get_accelerator().reset_max_memory_cached()
            get_accelerator().reset_max_memory_allocated()

        new_alloced = get_accelerator().memory_allocated()
        new_cached = get_accelerator().memory_cached()

        delta_alloced = new_alloced - mem_alloced
        delta_cached = new_cached - mem_cached

        mem_cached = new_cached
        mem_alloced = new_alloced

        max_alloced = get_accelerator().max_memory_allocated()
        max_cached = get_accelerator().max_memory_cached()

        # convert to GB for printing
        new_alloced /= 1024**3
        new_cached /= 1024**3
        delta_alloced /= 1024**3
        delta_cached /= 1024**3
        max_alloced /= 1024**3
        max_cached /= 1024**3

        print(
            f'RANK={rank} STAGE={self.stage_id} STEP={self.global_steps} MEMSTATS', msg,
            f'current alloc={new_alloced:0.4f}GB (delta={delta_alloced:0.4f}GB max={max_alloced:0.4f}GB) '
            f'current cache={new_cached:0.4f}GB (delta={delta_cached:0.4f}GB max={max_cached:0.4f}GB)')

    def module_state_dict(self, exclude_frozen_parameters=False):
        """Override hack to save a pipe model and return the directory path of the save.

        This method should only be called by DeepSpeed's ``save_checkpoint()``. The
        recommended way of saving a ``PipelineModule`` outside of ``save_checkpoint()``
        is ``save_state_dict()``.

        Returns:
            None
        """
        assert isinstance(self.module, PipelineModule)
        assert self._curr_ckpt_path is not None, \
            "PipelineEngine expects module_state_dict() to be called from save_checkpoint()"

        self.module.save_state_dict(self._curr_ckpt_path,
                                    checkpoint_engine=self.checkpoint_engine,
                                    exclude_frozen_params=exclude_frozen_parameters)
        return None

    def load_module_state_dict(self, checkpoint, strict=True, custom_load_fn=None, fetch_z3_params=False):
        """Override hack to instead use a directory path.

        This is important because pipeline models checkpoint by layer instead of rank.

        If ``state_dict`` is not ``None`` or a ``str``, we revert to ``super()`` expecting a ``dict``.

        Args:
            state_dict (str, None): unused
            strict (bool, optional): Strict state loading. Defaults to True.
        """
        assert custom_load_fn is None, "custom_load_fn not supported w. pipeline parallelism"
        state_dict = checkpoint if self.has_moe_layers else checkpoint['module']
        if (state_dict is not None) and (not isinstance(state_dict, str)):
            super().load_module_state_dict(state_dict, strict)
            return

        self.module.load_state_dir(load_dir=self._curr_ckpt_path,
                                   strict=strict,
                                   checkpoint_engine=self.checkpoint_engine)

    # A map of PipeInstruction types to methods. Each method will be executed with the
    # kwargs provided to the PipeInstruction from the scheduler.
    _INSTRUCTION_MAP = {
        schedule.OptimizerStep: _exec_optimizer_step,
        schedule.ReduceGrads: _exec_reduce_grads,
        schedule.ReduceTiedGrads: _exec_reduce_tied_grads,
        schedule.LoadMicroBatch: _exec_load_micro_batch,
        schedule.ForwardPass: _exec_forward_pass,
        schedule.BackwardPass: _exec_backward_pass,
        schedule.SendActivation: _exec_send_activations,
        schedule.RecvActivation: _exec_recv_activations,
        schedule.SendGrad: _exec_send_grads,
        schedule.RecvGrad: _exec_recv_grads,
    }

    def _exec_schedule(self, pipe_schedule):
        # Reserve and reset buffers.
        self._reserve_pipe_buffers(pipe_schedule.num_pipe_buffers())
        self.fwd_outputs = []

        # For each step in the schedule
        for step_cmds in pipe_schedule:
            # For each instruction in the step
            for cmd in step_cmds:
                if type(cmd) not in self._INSTRUCTION_MAP:
                    raise RuntimeError(f'{self.__class__.__name__} does not understand instruction {repr(cmd)}')

                # Equivalent to: self._exec_forward_pass(buffer_id=0)
                self._exec_instr = MethodType(self._INSTRUCTION_MAP[type(cmd)], self)
                self._exec_instr(**cmd.kwargs)

    def get_additional_losses(self):
        return self.agg_additional_losses