File size: 15,546 Bytes
9ad9e91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from ..utils import call_to_str
from abc import ABC, abstractmethod
class PipeSchedule(ABC):
"""Directs the execution of a pipeline engine by generating sequences of
:class:`PipeInstruction`.
Schedules are generators that yield sequences of
:class:`PipeInstruction` to process the micro-batches in one batch.
Each yielded step is atomic in the sense that a barrier
synchronization can be placed between successive steps without
deadlock.
Below is an example schedule that implements data parallelism with gradient accumulation:
.. code-block:: python
class DataParallelSchedule(PipeSchedule):
def steps(self):
for step_id in range(self.micro_batches):
cmds = [
LoadMicroBatch(buffer_id=0),
ForwardPass(buffer_id=0),
BackwardPass(buffer_id=0),
]
if step_id == self.micro_batches - 1:
cmds.extend([
ReduceGrads(),
OptimizerStep(),
])
yield cmds
def num_pipe_buffers(self):
return 1
Args:
micro_batches (int): The number of micro-batches that comprise a batch.
stages (int): The number of pipeline stages.
stage_id (int): The pipe stage that will execute the generated schedule.
"""
def __init__(self, micro_batches, stages, stage_id):
super().__init__()
self.micro_batches = micro_batches
self.stages = stages
self.stage_id = stage_id
self.prev_stage = self.stage_id - 1
self.next_stage = self.stage_id + 1
@abstractmethod
def steps(self):
"""Yield a list of :class:`PipeInstruction` for each step in the schedule.
.. note::
Schedules must implement ``steps()`` to define the schedule.
Returns:
Instructions to be executed as one step of the pipeline
"""
pass
def num_pipe_buffers(self):
"""The number of pipeline buffers that will be used by this stage.
.. note::
Schedules should specialize ``num_pipe_buffers()`` for memory savings at scale.
Returns:
The number of buffers for the engine to allocate.
"""
return self.micro_batches
def _valid_micro_batch(self, micro_batch_id):
return 0 <= micro_batch_id < self.micro_batches
def _valid_stage(self, stage_id):
return 0 <= stage_id < self.stages
@property
def stage(self):
"""Stage index used to configure this schedule."""
return self.stage_id
@property
def num_stages(self):
"""The number of total pipeline stages used to configure this schedule."""
return self.stages
@property
def num_micro_batches(self):
"""The number of total micro_batches used to configure this schedule."""
return self.micro_batches
@property
def is_first_stage(self):
"""True if the configured ``stage_id`` is the first stage in the pipeline."""
return self.stage_id == 0
@property
def is_last_stage(self):
"""True if the configured ``stage_id`` is the last stage in the pipeline."""
return self.stage_id == self.stages - 1
def _buffer_idx(self, micro_batch_id):
"""Map a micro-batch index to a pipeline buffer index.
This method uses a cyclic allocation strategy.
Args:
micro_batch_id (int): The micro-batch index relative to the beginning of the schedule.
Returns:
int: The index of the buffer that should store data.
"""
assert self._valid_micro_batch(micro_batch_id)
return micro_batch_id % self.num_pipe_buffers()
def __iter__(self):
self.it = None
return self
def __next__(self):
if self.it is None:
self.it = self.steps()
return next(self.it)
class InferenceSchedule(PipeSchedule):
"""A schedule for inferencing batches using pipeline parallelism.
"""
def steps(self):
""""""
prev_micro_batch_id = -1
total_steps = self.micro_batches + self.stages - 1
for step_id in range(total_steps):
cmds = []
micro_batch_id = step_id - self.stage_id
# Alternate send/recv buffers
if _is_even(self.stage_id):
recv_buf = step_id % 2
send_buf = (step_id + 1) % 2
else:
recv_buf = (step_id + 1) % 2
send_buf = step_id % 2
if self.is_first_stage or self.is_last_stage:
if self._valid_micro_batch(micro_batch_id):
cmds.append(LoadMicroBatch(recv_buf))
if _is_even(self.stage_id):
if self._valid_stage(self.next_stage):
if self._valid_micro_batch(micro_batch_id - 1):
cmds.append(SendActivation(send_buf))
if self._valid_stage(self.prev_stage):
if self._valid_micro_batch(micro_batch_id):
cmds.append(RecvActivation(recv_buf))
else:
if self._valid_stage(self.prev_stage):
if self._valid_micro_batch(micro_batch_id):
cmds.append(RecvActivation(recv_buf))
if self._valid_stage(self.next_stage):
if self._valid_micro_batch(micro_batch_id - 1):
cmds.append(SendActivation(send_buf))
if self._valid_micro_batch(micro_batch_id):
cmds.append(ForwardPass(recv_buf))
yield cmds
def num_pipe_buffers(self):
"""Only two pipeline buffers are required for inferencing.
Returns:
``2``
"""
return 2
class TrainSchedule(PipeSchedule):
"""A schedule for training a batch using hybrid parallelism.
Pipeline parallelism is extracted through gradient accumulation and thus
convergence follows that of a data parallel approach with the same batch
size.
"""
def steps(self):
""""""
prev_micro_batch_id = -1
total_steps = 2 * (self.micro_batches + self.stages - 1)
for step_id in range(total_steps):
# Map the step of the pipeline to the micro-batch id and also whether it is a
# forward or backward pass step.
micro_batch_id, is_forward = self._step_to_micro_batch(step_id)
if self._valid_micro_batch(prev_micro_batch_id):
prev_buffer = self._buffer_idx(prev_micro_batch_id)
if self._valid_micro_batch(micro_batch_id):
curr_buffer = self._buffer_idx(micro_batch_id)
cmds = []
# Exchange activations
if is_forward:
if self._valid_micro_batch(prev_micro_batch_id) and self._valid_stage(self.prev_stage):
cmds.append(SendGrad(prev_buffer))
if self._valid_micro_batch(micro_batch_id) and self._valid_stage(self.prev_stage):
cmds.append(RecvActivation(curr_buffer))
else:
if self._valid_micro_batch(micro_batch_id) and self._valid_stage(self.next_stage):
cmds.append(RecvGrad(curr_buffer))
if self._valid_micro_batch(prev_micro_batch_id) and self._valid_stage(self.next_stage):
cmds.append(SendActivation(prev_buffer))
# First/last stage loads
if self.stage_id == 0 or self.stage_id == self.stages - 1:
if is_forward and self._valid_micro_batch(micro_batch_id):
cmds.append(LoadMicroBatch(curr_buffer))
# Computation
if self._valid_micro_batch(micro_batch_id):
if is_forward:
cmds.append(ForwardPass(curr_buffer))
else:
cmds.append(BackwardPass(curr_buffer))
# Model step at the end of the batch
if step_id == total_steps - 1:
cmds.append(ReduceTiedGrads())
cmds.append(ReduceGrads())
cmds.append(OptimizerStep())
# Prepare state for next time
prev_micro_batch_id = micro_batch_id
yield cmds
def num_pipe_buffers(self):
"""Return the number of pipeline buffers required for this stage.
This is equivalent to the maximum number of in-flight forward passes,
since we need to remember the activations of forward passes in order
to run backpropagation. For synchronous 1F1B, this is equivalent to
the index difference between this stage and the last stage.
"""
buffers = min(self.stages - self.stage_id, self.micro_batches)
return max(2, buffers)
def _step_to_micro_batch(self, step_id):
if _is_even(step_id) and _is_even(self.stage_id):
micro_batch_id = self._even_step_forward_id(step_id)
is_forward = True
elif _is_odd(step_id) and _is_odd(self.stage_id):
micro_batch_id = self._odd_step_forward_id(step_id)
is_forward = True
elif _is_even(step_id) and _is_odd(self.stage_id):
micro_batch_id = self._even_step_backward_id(step_id)
is_forward = False
elif _is_odd(step_id) and _is_even(self.stage_id):
micro_batch_id = self._odd_step_backward_id(step_id)
is_forward = False
else:
assert False
return micro_batch_id, is_forward
def _even_step_forward_id(self, step_id):
base = step_id // 2
micro_batch_id = int(base - self.stage_id // 2)
return micro_batch_id
def _odd_step_forward_id(self, step_id):
base = (step_id - 1) // 2
micro_batch_id = int(base - self.stage_id // 2)
return micro_batch_id
def _even_step_backward_id(self, step_id):
base = step_id // 2
micro_batch_id = int(base - self.stages + (self.stage_id + 1) // 2)
return micro_batch_id
def _odd_step_backward_id(self, step_id):
base = ((step_id - 1) // 2) - self.stages + 1
micro_batch_id = int(base + self.stage_id // 2)
return micro_batch_id
class DataParallelSchedule(PipeSchedule):
"""An example schedule that trains using traditional data parallelism with gradient
accumulation.
"""
def steps(self):
""""""
for step_id in range(self.micro_batches):
cmds = [
LoadMicroBatch(buffer_id=0),
ForwardPass(buffer_id=0),
BackwardPass(buffer_id=0),
]
if step_id == self.micro_batches - 1:
cmds.extend([
ReduceGrads(),
OptimizerStep(),
])
yield cmds
def num_pipe_buffers(self):
"""Only one pipeline buffer needed.
"""
return 1
class PipeInstruction:
"""Base class for all instructions to be executed by the pipeline engine.
All keyword arguments are stored as members similar to a ``namedtuple``. These are
then accessible to the :class:`PipeEngine` during execution.
Args:
kwargs (optional): keyword arguments to store as members
"""
def __init__(self, **kwargs):
self.name = self.__class__.__name__
self.kwargs = kwargs
for key, val in kwargs.items():
setattr(self, key, val)
def __repr__(self):
return call_to_str(self.name, **self.kwargs)
class OptimizerStep(PipeInstruction):
"""Performs one step with the optimizer and zeros gradients.
.. note:: Should be issued after :class:`ReduceGrads` and :class:`ReduceTiedGrads`.
.. note:: Can be a synchronization point among data-parallel ranks.
"""
pass
class ReduceGrads(PipeInstruction):
"""Reduce the computed gradients among data-parallel processes within the stage.
"""
pass
class ReduceTiedGrads(PipeInstruction):
"""Reduce the computed gradients of tied modules within a pipeline-parallel group.
.. warning::
The stages included in this synchronization point are not known until
the model is partitioned among pipeline stages. In the worst case, it
includes all pipeline stages. This instruction should be scheduled
carefully to avoid deadlocks.
"""
pass
class BufferOpInstruction(PipeInstruction):
"""A pipeline instruction that operates on pipeline buffer(s).
Args:
buffer_id (int): the index of the pipeline buffer() to modify.
"""
def __init__(self, buffer_id, **kwargs):
super().__init__(buffer_id=buffer_id, **kwargs)
# IO
class LoadMicroBatch(BufferOpInstruction):
"""Load a micro-batch into a buffer.
Roughly:
.. code-block:: python
buffers['inputs'][buffer_id] = next(data_iter)
"""
pass
# Compute
class ForwardPass(BufferOpInstruction):
"""Compute a forward pass.
Roughly:
.. code-block:: python
buffers['outputs'][buffer_id] = forward(buffers['inputs'][buffer_id])
"""
pass
class BackwardPass(BufferOpInstruction):
"""Compute a backward pass and accumulate gradients.
Roughly:
.. code-block:: python
outputs = buffers['outputs'][buffer_id]
gradients = buffers['gradients'][buffer_id]
torch.autograd.backward(tensors=outputs,
grad_tensors=gradients)
"""
pass
# Communication
class SendActivation(BufferOpInstruction):
"""Send activations to the next stage in the pipeline.
Roughly:
.. code-block:: python
send(buffers['outputs'][buffer_id])
.. note::
The communication is blocking and must be paired with a :class:`RecvActivation`
on the next pipeline stage to avoid deadlock.
"""
pass
class RecvActivation(BufferOpInstruction):
"""Receive activations from the previous stage in the pipeline.
Roughly:
.. code-block:: python
buffers['inputs'][buffer_id] = recv()
.. note::
The communication is blocking and must be paired with a :class:`SendActivation`
on the previous pipeline stage to avoid deadlock.
"""
pass
class SendGrad(BufferOpInstruction):
"""Send computed gradients to the previous pipeline stage.
with respect to the received activations
.. note::
Only received tensors with ``requires_grad==True`` will produce gradients.
Missing gradients will be replaced with ``None`` on the receiving stage.
.. note::
The communication is blocking and must be paired with a :class:`RecvGrad`
on the previous pipeline stage to avoid deadlock.
"""
pass
class RecvGrad(BufferOpInstruction):
"""Receive computed gradients the next pipeline stage.
.. note::
Only activations with ``requires_grad==True`` will produce gradients.
Missing gradients will be replaced with ``None``.
.. note::
The communication is blocking and must be paired with a :class:`SendGrad`
on the next pipeline stage to avoid deadlock.
"""
pass
def _is_even(x):
return x % 2 == 0
def _is_odd(x):
return x % 2 != 0
|