File size: 6,244 Bytes
19a3898
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import torch
from deepspeed.accelerator import get_accelerator
from ..features.cuda_graph import CUDAGraph


class DSVAE(CUDAGraph, torch.nn.Module):

    def __init__(self, vae, enable_cuda_graph=True):
        super().__init__(enable_cuda_graph=enable_cuda_graph)
        self.vae = vae
        self.config = vae.config
        self.device = self.vae.device
        self.dtype = self.vae.dtype
        self.vae.requires_grad_(requires_grad=False)
        self.decoder_cuda_graph_created = False
        self.encoder_cuda_graph_created = False
        self.all_cuda_graph_created = False

    def _graph_replay_decoder(self, *inputs, **kwargs):
        for i in range(len(inputs)):
            if torch.is_tensor(inputs[i]):
                self.static_decoder_inputs[i].copy_(inputs[i])
        for k in kwargs:
            if torch.is_tensor(kwargs[k]):
                self.static_decoder_kwargs[k].copy_(kwargs[k])
        get_accelerator().replay_graph(self._decoder_cuda_graph)
        return self.static_decoder_output

    def _decode(self, x, return_dict=True, generator=None):
        return self.vae.decode(x, return_dict=return_dict)

    def _create_cuda_graph_decoder(self, *inputs, **kwargs):
        # warmup to create the workspace and cublas handle
        cuda_stream = torch.cuda.Stream()
        cuda_stream.wait_stream(torch.cuda.current_stream())
        with torch.cuda.stream(cuda_stream):
            for i in range(3):
                ret = self._decode(*inputs, **kwargs)
        torch.cuda.current_stream().wait_stream(cuda_stream)

        # create cuda_graph and assign static_inputs and static_outputs
        self._decoder_cuda_graph = get_accelerator().create_graph()
        self.static_decoder_inputs = inputs
        self.static_decoder_kwargs = kwargs

        with get_accelerator().capture_to_graph(self._decoder_cuda_graph):
            self.static_decoder_output = self._decode(*self.static_decoder_inputs, **self.static_decoder_kwargs)

        self.decoder_cuda_graph_created = True

    def decode(self, *inputs, **kwargs):
        if self.enable_cuda_graph:
            if self.decoder_cuda_graph_created:
                outputs = self._graph_replay_decoder(*inputs, **kwargs)
            else:
                self._create_cuda_graph_decoder(*inputs, **kwargs)
                outputs = self._graph_replay_decoder(*inputs, **kwargs)
            return outputs
        else:
            return self._decode(*inputs, **kwargs)

    def _graph_replay_encoder(self, *inputs, **kwargs):
        for i in range(len(inputs)):
            if torch.is_tensor(inputs[i]):
                self.static_encoder_inputs[i].copy_(inputs[i])
        for k in kwargs:
            if torch.is_tensor(kwargs[k]):
                self.static_encoder_kwargs[k].copy_(kwargs[k])
        get_accelerator().replay_graph(self._encoder_cuda_graph)
        return self.static_encoder_output

    def _encode(self, x, return_dict=True):
        return self.vae.encode(x, return_dict=return_dict)

    def _create_cuda_graph_encoder(self, *inputs, **kwargs):
        # warmup to create the workspace and cublas handle
        cuda_stream = torch.cuda.Stream()
        cuda_stream.wait_stream(torch.cuda.current_stream())
        with torch.cuda.stream(cuda_stream):
            for i in range(3):
                ret = self._encode(*inputs, **kwargs)
        torch.cuda.current_stream().wait_stream(cuda_stream)

        # create cuda_graph and assign static_inputs and static_outputs
        self._encoder_cuda_graph = get_accelerator().create_graph()
        self.static_encoder_inputs = inputs
        self.static_encoder_kwargs = kwargs

        with get_accelerator().capture_to_graph(self._encoder_cuda_graph):
            self.static_encoder_output = self._encode(*self.static_encoder_inputs, **self.static_encoder_kwargs)

        self.encoder_cuda_graph_created = True

    def encode(self, *inputs, **kwargs):
        if self.enable_cuda_graph:
            if self.encoder_cuda_graph_created:
                outputs = self._graph_replay_encoder(*inputs, **kwargs)
            else:
                self._create_cuda_graph_encoder(*inputs, **kwargs)
                outputs = self._graph_replay_encoder(*inputs, **kwargs)
            return outputs
        else:
            return self._encode(*inputs, **kwargs)

    def _graph_replay(self, *inputs, **kwargs):
        for i in range(len(inputs)):
            if torch.is_tensor(inputs[i]):
                self.static_inputs[i].copy_(inputs[i])
        for k in kwargs:
            if torch.is_tensor(kwargs[k]):
                self.static_kwargs[k].copy_(kwargs[k])
        get_accelerator().replay_graph(self._all_cuda_graph)
        return self.static_output

    def forward(self, *inputs, **kwargs):
        if self.enable_cuda_graph:
            if self.cuda_graph_created:
                outputs = self._graph_replay(*inputs, **kwargs)
            else:
                self._create_cuda_graph(*inputs, **kwargs)
                outputs = self._graph_replay(*inputs, **kwargs)
            return outputs
        else:
            return self._forward(*inputs, **kwargs)

    def _create_cuda_graph(self, *inputs, **kwargs):
        # warmup to create the workspace and cublas handle
        cuda_stream = torch.cuda.Stream()
        cuda_stream.wait_stream(torch.cuda.current_stream())
        with torch.cuda.stream(cuda_stream):
            for i in range(3):
                ret = self._forward(*inputs, **kwargs)
        torch.cuda.current_stream().wait_stream(cuda_stream)

        # create cuda_graph and assign static_inputs and static_outputs
        self._all_cuda_graph = get_accelerator().create_graph()
        self.static_inputs = inputs
        self.static_kwargs = kwargs

        with get_accelerator().capture_to_graph(self._all_cuda_graph):
            self.static_output = self._forward(*self.static_inputs, **self.static_kwargs)

        self.all_cuda_graph_created = True

    def _forward(self, sample, timestamp, encoder_hidden_states, return_dict=True):
        return self.vae(sample, timestamp, encoder_hidden_states, return_dict)