File size: 10,130 Bytes
2334d5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
import deepspeed
from deepspeed.pydantic_v1 import Field, validator
from deepspeed.runtime.config_utils import DeepSpeedConfigModel
from deepspeed.runtime.zero.config import DeepSpeedZeroConfig
from typing import Dict, Union
from enum import Enum
class DtypeEnum(Enum):
# The torch dtype must always be the first value (so we return torch.dtype)
fp16 = torch.float16, "torch.float16", "fp16", "float16", "half"
fp32 = torch.float32, "torch.float32", "fp32", "float32", "float"
bf16 = torch.bfloat16, "torch.bfloat16", "bf16", "bfloat16", "bfloat"
int8 = torch.int8, "torch.int8", "int8"
# Copied from https://stackoverflow.com/a/43210118
# Allows us to use multiple values for each Enum index and returns first
# listed value when Enum is called
def __new__(cls, *values):
obj = object.__new__(cls)
# first value is canonical value
obj._value_ = values[0]
for other_value in values[1:]:
cls._value2member_map_[other_value] = obj
obj._all_values = values
return obj
def __repr__(self):
return "<%s.%s: %s>" % (
self.__class__.__name__,
self._name_,
", ".join([repr(v) for v in self._all_values]),
)
class MoETypeEnum(str, Enum):
residual = "residual"
standard = "standard"
class DeepSpeedTPConfig(DeepSpeedConfigModel):
""" Configure tensor parallelism settings """
enabled: bool = True
""" Turn tensor parallelism on/off. """
tp_size: int = 1
""" Number of devices to split the model across using tensor parallelism. """
mpu: object = None
"""
A model parallelism unit object that implements
``get_{model,data}_parallel_{rank,group,world_size}()``.
"""
tp_group: object = None
class DeepSpeedMoEConfig(DeepSpeedConfigModel):
""" Sets parameters for MoE """
enabled: bool = True
ep_size: int = 1
"""
The expert-parallelism size which is used for partitioning the experts
across the GPUs in the expert-parallel group.
"""
moe_experts: list = Field([1], alias="num_experts")
""" The global number of experts used in an MoE layer. """
type: MoETypeEnum = MoETypeEnum.standard
"""
Specify the type of MoE layer. We have two types of MoE layer: 'Standard'
and 'Residual'.
"""
ep_mp_group: object = None
ep_group: object = Field(None, alias="expert_group")
class QuantTypeEnum(str, Enum):
asym = "asymmetric"
sym = "symmetric"
class BaseQuantConfig(DeepSpeedConfigModel):
enabled = True
num_bits = 8
q_type: QuantTypeEnum = QuantTypeEnum.sym
q_groups: int = 1
class WeightQuantConfig(BaseQuantConfig):
enabled = True
quantized_initialization: Dict = {}
post_init_quant: Dict = {}
class ActivationQuantConfig(BaseQuantConfig):
enabled = True
class QKVQuantConfig(DeepSpeedConfigModel):
enabled = True
class QuantizationConfig(DeepSpeedConfigModel):
enabled: bool = True
activation: ActivationQuantConfig = ActivationQuantConfig()
weight: WeightQuantConfig = WeightQuantConfig()
qkv: QKVQuantConfig = QKVQuantConfig()
# todo: brainstorm on how to do ckpt loading for DS inference
class InferenceCheckpointConfig(DeepSpeedConfigModel):
checkpoint_dir: str = None
save_mp_checkpoint_path: str = None
base_dir: str = None
class DeepSpeedInferenceConfig(DeepSpeedConfigModel):
""" Sets parameters for DeepSpeed Inference Engine. """
replace_with_kernel_inject: bool = Field(False, alias="kernel_inject")
"""
Set to true to inject inference kernels for models such as, Bert, GPT2,
GPT-Neo and GPT-J. Otherwise, the injection_dict provides the names of two
linear layers as a tuple:
`(attention_output projection, transformer output projection)`
"""
dtype: DtypeEnum = torch.float16
"""
Desired model data type, will convert model to this type.
Supported target types: `torch.half`, `torch.int8`, `torch.float`
"""
tensor_parallel: DeepSpeedTPConfig = Field({}, alias="tp")
"""
Configuration for tensor parallelism used to split the model across several
GPUs. Expects a dictionary containing values for :any:`DeepSpeedTPConfig`.
"""
enable_cuda_graph: bool = False
"""
Use this flag for capturing the CUDA-Graph of the inference ops, so that it
can run faster using the graph replay method.
"""
use_triton: bool = False
"""
Use this flag to use triton kernels for inference ops.
"""
triton_autotune: bool = False
"""
Use this flag to enable triton autotuning.
Turning it on is better for performance but increase the 1st runtime for
autotuning.
"""
zero: DeepSpeedZeroConfig = {}
"""
ZeRO configuration to use with the Inference Engine. Expects a dictionary
containing values for :any:`DeepSpeedZeroConfig`.
"""
triangular_masking: bool = Field(True, alias="tm")
"""
Controls the type of masking for attention scores in transformer layer.
Note that the masking is application specific.
"""
moe: Union[bool, DeepSpeedMoEConfig] = {}
"""
Specify if the type of Transformer is MoE. Expects a dictionary containing
values for :any:`DeepSpeedMoEConfig`.
"""
quant: QuantizationConfig = {}
"""
NOTE: only works for int8 dtype.
Quantization settings used for quantizing your model using the MoQ. The
setting can be one element or a tuple. If one value is passed in, we
consider it as the number of groups used in quantization. A tuple is passed
in if we want to mention that there is extra-grouping for the MLP part of a
Transformer layer (e.g. (True, 8) shows we quantize the model using 8
groups for all the network except the MLP part that we use 8 extra
grouping). Expects a dictionary containing values for
:any:`QuantizationConfig`.
"""
#todo: refactor the following 3 into the new checkpoint_config
checkpoint: Union[str, Dict] = None
"""
Path to deepspeed compatible checkpoint or path to JSON with load policy.
"""
base_dir: str = ""
"""
This shows the root directory under which all the checkpoint files exists.
This can be passed through the json config too.
"""
set_empty_params: bool = False
"""
specifying whether the inference-module is created with empty or real Tensor
"""
save_mp_checkpoint_path: str = None
"""
The path for which we want to save the loaded model with a checkpoint. This
feature is used for adjusting the parallelism degree to help alleviate the
model loading overhead. It does not save any new checkpoint if no path is
passed.
"""
checkpoint_config: InferenceCheckpointConfig = Field({}, alias="ckpt_config")
"""
TODO: Add docs. Expects a dictionary containing values for
:any:`InferenceCheckpointConfig`.
"""
return_tuple: bool = True
"""
Specify whether or not the transformer layers need to return a tuple or a
Tensor.
"""
training_mp_size: int = 1
"""
If loading a checkpoint this is the mp size that it was trained with, it
may be different than what the mp size that you want to use during
inference.
"""
replace_method: str = Field(
"auto",
deprecated=True,
deprecated_msg="This parameter is no longer needed, please remove from your call to DeepSpeed-inference")
injection_policy: Dict = Field(None, alias="injection_dict")
"""
Dictionary mapping a client nn.Module to its corresponding injection
policy. e.g., `{BertLayer : deepspeed.inference.HFBertLayerPolicy}`
"""
injection_policy_tuple: tuple = None
""" TODO: Add docs """
config: Dict = Field(None, alias="args") # todo: really no need for this field if we can refactor
max_out_tokens: int = Field(1024, alias="max_tokens")
"""
This argument shows the maximum number of tokens inference-engine can work
with, including the input and output tokens. Please consider increasing it
to the required token-length required for your use-case.
"""
min_out_tokens: int = Field(1, alias="min_tokens")
"""
This argument communicates to the runtime the minimum number of tokens you
expect you will need to generate. This will cause the runtime to error
if it unable to provide this and provide context on the memory pressure
rather than seg-faulting or providing corrupted output.
"""
transposed_mode: bool = Field(False, alias="transposed_mode")
mp_size: int = Field(1, deprecated=True, new_param="tensor_parallel.tp_size")
"""
Desired model parallel size, default is 1 meaning no model parallelism.
Deprecated, please use the ``tensor_parallel` config to control model
parallelism.
"""
mpu: object = Field(None, deprecated=True, new_param="tensor_parallel.mpu")
ep_size: int = Field(1, deprecated=True, new_param="moe.ep_size")
ep_group: object = Field(None, alias="expert_group", deprecated=True, new_param="moe.ep_group")
ep_mp_group: object = Field(None, alias="expert_mp_group", deprecated=True, new_param="moe.ep_mp_group")
moe_experts: list = Field([1], deprecated=True, new_param="moe.moe_experts")
moe_type: MoETypeEnum = Field(MoETypeEnum.standard, deprecated=True, new_param="moe.type")
@validator("moe")
def moe_backward_compat(cls, field_value, values):
if isinstance(field_value, bool):
return DeepSpeedMoEConfig(moe=field_value)
return field_value
@validator("use_triton")
def has_triton(cls, field_value, values):
if field_value and not deepspeed.HAS_TRITON:
raise ValueError('Triton needs to be installed to use deepspeed with triton kernels')
return field_value
class Config:
# Get the str representation of the datatype for serialization
json_encoders = {torch.dtype: lambda x: str(x)}
|