File size: 7,978 Bytes
2334d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

from ..config_v2 import RaggedInferenceEngineConfig
from ..inference_utils import NormTypeEnum

from .module_registry import ConfigBundle
from ..modules.configs import (
    DSEmbeddingsConfig,
    DSLinearConfig,
    DSMoEConfig,
    DSNormConfig,
    DSSelfAttentionConfig,
    DSUnembedConfig,
)
from ..modules.interfaces import (
    DSEmbeddingBase,
    DSEmbeddingRegistry,
    DSLinearBase,
    DSLinearRegistry,
    DSMoEBase,
    DSMoERegistry,
    DSPostNormBase,
    DSPostNormRegistry,
    DSPreNormBase,
    DSPreNormRegistry,
    DSSelfAttentionBase,
    DSSelfAttentionRegistry,
    DSUnembedBase,
    DSUnembedRegistry,
)


def instantiate_attention(attention_config: DSSelfAttentionConfig,
                          engine_config: RaggedInferenceEngineConfig) -> DSSelfAttentionBase:
    """
    Choose an appropriate attention implementation based on the given configurations. This
    method is currently a stub, but as more implementations may be developed  we can centralize
    the logic for choosing between them here.

    Arguments:
        attention_config (DSSelfAttentionConfig): Configuration for the attention module.
        engine_config (RaggedInferenceEngineConfig): Configuration for the inference engine.

    Returns:
        An attention module implementing the given configuration.
    """

    # Currently, we only have one implementation, so we just return it.
    config = ConfigBundle(name="dense_blocked_attention", config=attention_config)
    return DSSelfAttentionRegistry.instantiate_config(config)


def instantiate_embed(embed_config: DSEmbeddingsConfig, engine_config: RaggedInferenceEngineConfig) -> DSEmbeddingBase:
    """
    Choose an appropriate embedding implementation based on the given configurations. This
    method is currently a stub, but as more implementations may be developed  we can centralize
    the logic for choosing between them here.

    Arguments:
        embed_config (DSEmbeddingsConfig): Configuration for the embedding module.
        engine_config (RaggedInferenceEngineConfig): Configuration for the inference engine.

    Returns:
        An embedding module implementing the given configuration.
    """

    # Currently, we only have one implementation, so we just return it.
    config = ConfigBundle(name="ragged_embedding", config=embed_config)
    return DSEmbeddingRegistry.instantiate_config(config)


def instantiate_linear(linear_config: DSLinearConfig, engine_config: RaggedInferenceEngineConfig) -> DSLinearBase:
    """
    Choose an appropriate linear implementation based on the given configurations. This
    method is currently a stub, but as more implementations may be developed  we can centralize
    the logic for choosing between them here.

    Arguments:
        linear_config (DSLinearConfig): Configuration for the linear module.
        engine_config (RaggedInferenceEngineConfig): Configuration for the inference engine.

    Returns:
        A linear module implementing the given configuration.
    """

    quantization_mode = engine_config.quantization.quantization_mode
    if quantization_mode is None:
        config = ConfigBundle(name="blas_fp_linear", config=linear_config)
    else:
        # Currently, we only support ``quantized_wf6af16_linear`` on NVIDIA Ampere GPUs.
        if quantization_mode == "wf6af16":
            import torch
            if not torch.cuda.is_available():  #ignore-cuda
                raise ValueError("WF6AF16 quantization is only supported on CUDA")
            else:
                is_rocm_pytorch = hasattr(torch.version, 'hip') and torch.version.hip is not None
                if is_rocm_pytorch:
                    raise ValueError("WF6AF16 quantization is only supported on NVIDIA GPUs")
                elif torch.cuda.get_device_properties(0).major != 8:  #ignore-cuda
                    raise ValueError("WF6AF16 quantization is only supported on Ampere architectures")
            config = ConfigBundle(name="quantized_wf6af16_linear", config=linear_config)
        else:
            raise ValueError(f"Unsupported quantization mode: {quantization_mode}")
    return DSLinearRegistry.instantiate_config(config)


def instantiate_moe(moe_config: DSMoEConfig, engine_config: RaggedInferenceEngineConfig) -> DSMoEBase:
    """
    Choose an appropriate MoE implementation based on the given configurations. This
    method is currently a stub, but as more implementations may be developed  we can centralize
    the logic for choosing between them here.

    Arguments:
        moe_config (DSMoEConfig): Configuration for the MoE module.
        engine_config (RaggedInferenceEngineConfig): Configuration for the inference engine.

    Returns:
        A MoE module implementing the given configuration.
    """

    moe_type = "cutlass_multi_gemm_moe"

    if moe_type == "cutlass_multi_gemm_moe":
        # TODO: Get this off an engine config
        implementation_config = {
            "weight_dtype": moe_config.input_dtype,
        }

    # Currently, we only have one implementation, so we just return it.
    config = ConfigBundle(name="cutlass_multi_gemm_moe",
                          config=moe_config,
                          implementation_config=implementation_config)
    return DSMoERegistry.instantiate_config(config)


def instantiate_post_norm(norm_config: DSNormConfig, engine_config: RaggedInferenceEngineConfig) -> DSPostNormBase:
    """
    Choose an appropriate post-norm implementation based on the given configurations. This
    method is currently a stub, but as more implementations may be developed  we can centralize
    the logic for choosing between them here.

    Arguments:
        norm_config (DSNormConfig): Configuration for the post-norm module.
        engine_config (RaggedInferenceEngineConfig): Configuration for the inference engine.

    Returns:
        A post-norm module implementing the given configuration.
    """

    # Currently, we only have one implementation, so we just return it.
    config = ConfigBundle(name="cuda_post_ln", config=norm_config)
    return DSPostNormRegistry.instantiate_config(config)


def instantiate_pre_norm(norm_config: DSNormConfig, engine_config: RaggedInferenceEngineConfig) -> DSPreNormBase:
    """
    Choose an appropriate pre-norm implementation based on the given configurations. Currently,
    this will select between two CUDA implementations, one for LayerNorm and one for RMSNorm.

    Arguments:
        norm_config (DSNormConfig): Configuration for the pre-norm module.
        engine_config (RaggedInferenceEngineConfig): Configuration for the inference engine.

    Returns:
        A pre-norm module implementing the given configuration.
    """
    if NormTypeEnum(norm_config.type) == NormTypeEnum.LayerNorm:
        module_name = "cuda_pre_ln"
    elif NormTypeEnum(norm_config.type) == NormTypeEnum.RMSNorm:
        module_name = "cuda_pre_rms"

    config = ConfigBundle(name=module_name, config=norm_config)
    return DSPreNormRegistry.instantiate_config(config)


def instantiate_unembed(unembed_config: DSUnembedConfig, engine_config: RaggedInferenceEngineConfig) -> DSUnembedBase:
    """
    Choose an appropriate unembedding implementation based on the given configurations. This
    method is currently a stub, but as more implementations may be developed  we can centralize
    the logic for choosing between them here.

    Arguments:
        unembed_config (DSUnembedConfig): Configuration for the unembed module.
        engine_config (RaggedInferenceEngineConfig): Configuration for the inference engine.

    Returns:
        An unembed module implementing the given configuration.
    """

    # Currently, we only have one implementation, so we just return it.
    config = ConfigBundle(name="ragged_unembed", config=unembed_config)
    return DSUnembedRegistry.instantiate_config(config)