File size: 8,259 Bytes
19a3898 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from abc import ABC, abstractmethod
from deepspeed.utils.types import ActivationFuncType, NormType
import torch
from deepspeed.accelerator import get_accelerator
transformer_param_names = (
'attn_qkvw', \
'attn_qkvb', \
'attn_ow' , \
'attn_ob', \
'inter_w', \
'inter_b', \
'output_w', \
'output_b', \
'attn_nw', \
'attn_nb', \
'norm_w', \
'norm_b')
class DSPolicy(ABC):
_orig_layer_class = None
def __init__(self):
self.cuda_graph_supported = False
@abstractmethod
def attention(self):
"""
Returns attention qkv and dense parameters
weight: (3*hidden, hidden) and (hidden, hidden)
bias: (3*hidden) and (hidden)
"""
raise NotImplementedError
class TransformerPolicy(DSPolicy):
# a static class variable containing the HuggingFace model configuration.
# see e.g., transformers.models.opt.configuration_opt.OPTConfig
hf_model_config = None
def __init__(
self,
inference=True,
linear_layer=True,
scale_attention=True,
megatron_v2=False,
use_mup=False,
# the type of activation function used in MLP
mlp_act_func_type=ActivationFuncType.GELU,
# applies layer norm before attention if `pre_attn_norm` is set to True
pre_attn_norm=True,
# this flag shows whether or not using prefix in loading the checkpoint
use_load_prefix=False,
# whether or not the qkv is stored in the split-format
split_qkv=True,
# Type of normalization to perform
norm_type=NormType.LayerNorm):
super().__init__()
self.cuda_graph_supported = False
self.inference = inference
self.linear_layer = linear_layer
self.scale_attention = scale_attention
self.is_megatron_v2 = megatron_v2
self.use_mup = use_mup
self.mlp_act_func_type = mlp_act_func_type
self.pre_attn_norm = pre_attn_norm
self.use_load_prefix = use_load_prefix
self.split_qkv = split_qkv
self.norm_type = norm_type
@abstractmethod
def attention(self):
"""
Returns attention qkv and dense parameters
weight: (3*hidden, hidden) and (hidden, hidden)
bias: (3*hidden) and (hidden)
"""
raise NotImplementedError
@abstractmethod
def get_hidden_heads(self):
"""
return hidden_size and number of heads
"""
raise NotImplementedError
@abstractmethod
def mlp(self):
"""
Returns mlp intermediate and output
weight: (intermediate, hidden) and (hidden, intermediate)
bias: (intermediate) and (hidden)
"""
raise NotImplementedError
@abstractmethod
def layernorm(self):
"""
Returns LayerNorms used in transformer layer
Post-Attention and pre/post layer norm
gamma and beta with shape: (hidden)
"""
raise NotImplementedError
# TODO (lekurile): This function exists in base container as well, consolidate as some point
def transpose(data):
with torch.no_grad():
data = data.contiguous()
data1 = data.transpose(-1, -2).reshape(-1)
data.reshape(-1).copy_(data1)
data1 = None
return data.reshape(data.shape[-1], data.shape[-2])
# TODO (lekurile): This function exists in megatron feature container as well, consolidate as some point
def _transpose(x, heads=1, mp_replace=None):
heads = heads // mp_replace.mp_size # type: ignore
outer_dim = -1
attention_head_size = x.shape[outer_dim] // heads
new_x_shape = x.size()[:outer_dim] + (heads, attention_head_size)
x_1 = x.view(*new_x_shape)
(q, k, v) = torch.split(x_1, (x_1.shape[-1] // 3), dim=-1)
if len(q.shape) > 2:
new_shape = (q.shape[0], ) + (-1, )
return torch.cat((q.reshape(new_shape), k.reshape(new_shape), v.reshape(new_shape)),
dim=outer_dim).reshape(x.shape)
else:
return torch.cat((q.reshape(-1), k.reshape(-1), v.reshape(-1)), dim=-1).reshape(x.shape)
# This checks if the parameter exits in the checkpoint file and maybe copies it into the corresponding destination tensor.
# Note that not all parameters are saved in one checkpoint, that's why we always need to check if they exist!
def maybe_copy(module,
sd,
weight_quantizer,
mp_replace,
dst_name,
src_name,
qkv=False,
megatron_v2=False,
split_qkv=False,
heads=1):
if src_name in sd:
dst = getattr(module, dst_name)
tmp = sd[src_name]
if len(dst.shape) == 1:
if split_qkv:
dst = mp_replace.strided_copy(dst, tmp, num_splits=3)
else:
dst = mp_replace.copy(dst, tmp)
if qkv and megatron_v2:
dst = torch.nn.parameter.Parameter(_transpose(dst, heads=heads, mp_replace=mp_replace).contiguous())
else:
if split_qkv:
dst = mp_replace.strided_copy(dst, weight_quantizer.quantize(tmp if weight_quantizer.q_int8 else \
(transpose(tmp).contiguous())), num_splits=3, int8=weight_quantizer.q_int8)
else:
if qkv and megatron_v2:
tmp = _transpose(transpose(tmp), heads=heads, mp_replace=mp_replace).contiguous()
if weight_quantizer.q_int8:
tmp = transpose(tmp)
dst = mp_replace.copy(dst, weight_quantizer.quantize(tmp if weight_quantizer.q_int8 else \
transpose(tmp)), int8=weight_quantizer.q_int8)
setattr(module, dst_name, dst)
# Extending the maybe_copy function for when the q, k, and v are in separate parameters!
def maybe_copy_qkv(module, sd, weight_quantizer, mp_replace, dst_name, src_names, split_qkv=False):
if src_names[0] in sd:
q = sd[src_names[0]]
k = sd[src_names[1]]
v = sd[src_names[2]]
qkv_data = torch.cat((q, k, v), dim=0)
dst = getattr(module, dst_name)
if len(dst.shape) == 1:
if split_qkv:
dst = mp_replace.strided_copy(dst, qkv_data.contiguous(), num_splits=3)
else:
dst = mp_replace.copy(dst, qkv_data)
else:
if split_qkv:
dst = mp_replace.strided_copy(dst, weight_quantizer.quantize(qkv_data.to(get_accelerator().device_name()) if weight_quantizer.q_int8 else \
((transpose(qkv_data)).contiguous())), num_splits=3, int8=weight_quantizer.q_int8)
else:
dst = mp_replace.copy(dst, weight_quantizer.quantize(qkv_data.to(get_accelerator().device_name()) if weight_quantizer.q_int8 else \
transpose(qkv_data)), int8=weight_quantizer.q_int8)
setattr(module, dst_name, dst)
# Extending the `maybe_copy` function for when mlp1 is in separate parameters for GeGLU
def maybe_copy_geglu(module, sd, weight_quantizer, mp_replace, dst_name, src_names):
if src_names[0] in sd:
reg_proj = sd[src_names[0]]
gate_proj = sd[src_names[1]]
mlp1_data = torch.cat((reg_proj, gate_proj), dim=0)
dst = getattr(module, dst_name)
dst = mp_replace.strided_copy(dst, weight_quantizer.quantize(mlp1_data.to(get_accelerator().device_name()) if weight_quantizer.q_int8 else \
transpose(mlp1_data)), num_splits=2, int8=weight_quantizer.q_int8)
setattr(module, dst_name, dst)
def pack_lora_weights(p):
return [
p.lora_right_weight, \
p.lora_left_weight, \
p.lora_scaling
]
def maybe_get_lora(p):
if hasattr(p, 'lora_right_weight'):
lora_param = pack_lora_weights(p)
else:
lora_param = []
return lora_param
|