File size: 8,259 Bytes
19a3898
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

from abc import ABC, abstractmethod
from deepspeed.utils.types import ActivationFuncType, NormType
import torch
from deepspeed.accelerator import get_accelerator

transformer_param_names = (
        'attn_qkvw', \
        'attn_qkvb', \
        'attn_ow' , \
        'attn_ob', \
        'inter_w', \
        'inter_b', \
        'output_w', \
        'output_b', \
        'attn_nw', \
        'attn_nb', \
        'norm_w', \
        'norm_b')


class DSPolicy(ABC):
    _orig_layer_class = None

    def __init__(self):
        self.cuda_graph_supported = False

    @abstractmethod
    def attention(self):
        """
        Returns attention qkv and dense parameters
        weight: (3*hidden, hidden) and (hidden, hidden)
        bias: (3*hidden) and (hidden)
        """
        raise NotImplementedError


class TransformerPolicy(DSPolicy):
    # a static class variable containing the HuggingFace model configuration.
    # see e.g., transformers.models.opt.configuration_opt.OPTConfig
    hf_model_config = None

    def __init__(
            self,
            inference=True,
            linear_layer=True,
            scale_attention=True,
            megatron_v2=False,
            use_mup=False,
            # the type of activation function used in MLP
            mlp_act_func_type=ActivationFuncType.GELU,
            # applies layer norm before attention if `pre_attn_norm` is set to True
            pre_attn_norm=True,
            # this flag shows whether or not using prefix in loading the checkpoint
            use_load_prefix=False,
            # whether or not the qkv is stored in the split-format
            split_qkv=True,
            # Type of normalization to perform
            norm_type=NormType.LayerNorm):
        super().__init__()
        self.cuda_graph_supported = False
        self.inference = inference
        self.linear_layer = linear_layer
        self.scale_attention = scale_attention
        self.is_megatron_v2 = megatron_v2
        self.use_mup = use_mup
        self.mlp_act_func_type = mlp_act_func_type
        self.pre_attn_norm = pre_attn_norm
        self.use_load_prefix = use_load_prefix
        self.split_qkv = split_qkv
        self.norm_type = norm_type

    @abstractmethod
    def attention(self):
        """
        Returns attention qkv and dense parameters
        weight: (3*hidden, hidden) and (hidden, hidden)
        bias: (3*hidden) and (hidden)
        """
        raise NotImplementedError

    @abstractmethod
    def get_hidden_heads(self):
        """
        return hidden_size and number of heads
        """
        raise NotImplementedError

    @abstractmethod
    def mlp(self):
        """
        Returns mlp intermediate and output
        weight: (intermediate, hidden) and (hidden, intermediate)
        bias: (intermediate) and (hidden)
        """
        raise NotImplementedError

    @abstractmethod
    def layernorm(self):
        """
        Returns LayerNorms used in transformer layer
        Post-Attention and pre/post layer norm
        gamma and beta with shape: (hidden)
        """
        raise NotImplementedError


# TODO (lekurile): This function exists in base container as well, consolidate as some point
def transpose(data):
    with torch.no_grad():
        data = data.contiguous()
        data1 = data.transpose(-1, -2).reshape(-1)
        data.reshape(-1).copy_(data1)
        data1 = None
    return data.reshape(data.shape[-1], data.shape[-2])


# TODO (lekurile): This function exists in megatron feature container as well, consolidate as some point
def _transpose(x, heads=1, mp_replace=None):
    heads = heads // mp_replace.mp_size  # type: ignore
    outer_dim = -1
    attention_head_size = x.shape[outer_dim] // heads
    new_x_shape = x.size()[:outer_dim] + (heads, attention_head_size)
    x_1 = x.view(*new_x_shape)
    (q, k, v) = torch.split(x_1, (x_1.shape[-1] // 3), dim=-1)
    if len(q.shape) > 2:
        new_shape = (q.shape[0], ) + (-1, )
        return torch.cat((q.reshape(new_shape), k.reshape(new_shape), v.reshape(new_shape)),
                         dim=outer_dim).reshape(x.shape)
    else:
        return torch.cat((q.reshape(-1), k.reshape(-1), v.reshape(-1)), dim=-1).reshape(x.shape)


# This checks if the parameter exits in the checkpoint file and maybe copies it into the corresponding destination tensor.
# Note that not all parameters are saved in one checkpoint, that's why we always need to check if they exist!
def maybe_copy(module,
               sd,
               weight_quantizer,
               mp_replace,
               dst_name,
               src_name,
               qkv=False,
               megatron_v2=False,
               split_qkv=False,
               heads=1):
    if src_name in sd:
        dst = getattr(module, dst_name)
        tmp = sd[src_name]
        if len(dst.shape) == 1:
            if split_qkv:
                dst = mp_replace.strided_copy(dst, tmp, num_splits=3)
            else:
                dst = mp_replace.copy(dst, tmp)
            if qkv and megatron_v2:
                dst = torch.nn.parameter.Parameter(_transpose(dst, heads=heads, mp_replace=mp_replace).contiguous())
        else:
            if split_qkv:
                dst = mp_replace.strided_copy(dst, weight_quantizer.quantize(tmp if weight_quantizer.q_int8 else \
                                                (transpose(tmp).contiguous())), num_splits=3, int8=weight_quantizer.q_int8)
            else:
                if qkv and megatron_v2:
                    tmp = _transpose(transpose(tmp), heads=heads, mp_replace=mp_replace).contiguous()
                    if weight_quantizer.q_int8:
                        tmp = transpose(tmp)
                dst = mp_replace.copy(dst, weight_quantizer.quantize(tmp if weight_quantizer.q_int8 else \
                                                transpose(tmp)), int8=weight_quantizer.q_int8)
        setattr(module, dst_name, dst)


# Extending the maybe_copy function for when the q, k, and v are in separate parameters!
def maybe_copy_qkv(module, sd, weight_quantizer, mp_replace, dst_name, src_names, split_qkv=False):
    if src_names[0] in sd:
        q = sd[src_names[0]]
        k = sd[src_names[1]]
        v = sd[src_names[2]]
        qkv_data = torch.cat((q, k, v), dim=0)
        dst = getattr(module, dst_name)
        if len(dst.shape) == 1:
            if split_qkv:
                dst = mp_replace.strided_copy(dst, qkv_data.contiguous(), num_splits=3)
            else:
                dst = mp_replace.copy(dst, qkv_data)
        else:
            if split_qkv:
                dst = mp_replace.strided_copy(dst, weight_quantizer.quantize(qkv_data.to(get_accelerator().device_name()) if weight_quantizer.q_int8 else \
                                                ((transpose(qkv_data)).contiguous())), num_splits=3, int8=weight_quantizer.q_int8)
            else:
                dst = mp_replace.copy(dst, weight_quantizer.quantize(qkv_data.to(get_accelerator().device_name()) if weight_quantizer.q_int8 else \
                                                transpose(qkv_data)), int8=weight_quantizer.q_int8)
        setattr(module, dst_name, dst)


# Extending the `maybe_copy` function for when mlp1 is in separate parameters for GeGLU
def maybe_copy_geglu(module, sd, weight_quantizer, mp_replace, dst_name, src_names):
    if src_names[0] in sd:
        reg_proj = sd[src_names[0]]
        gate_proj = sd[src_names[1]]

        mlp1_data = torch.cat((reg_proj, gate_proj), dim=0)
        dst = getattr(module, dst_name)

        dst = mp_replace.strided_copy(dst, weight_quantizer.quantize(mlp1_data.to(get_accelerator().device_name()) if weight_quantizer.q_int8 else \
                                            transpose(mlp1_data)), num_splits=2, int8=weight_quantizer.q_int8)
        setattr(module, dst_name, dst)


def pack_lora_weights(p):
    return [
        p.lora_right_weight, \
        p.lora_left_weight, \
        p.lora_scaling
    ]


def maybe_get_lora(p):
    if hasattr(p, 'lora_right_weight'):
        lora_param = pack_lora_weights(p)
    else:
        lora_param = []
    return lora_param