File size: 36,500 Bytes
8777447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
# Natural Language Toolkit: Text Trees
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Edward Loper <[email protected]>
#         Steven Bird <[email protected]>
#         Peter Ljunglöf <[email protected]>
#         Nathan Bodenstab <[email protected]> (tree transforms)
#         Eric Kafe <[email protected]> (Tree.fromlist())
#         Mohaned mashaly<[email protected]> (Deprecating methods)
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

"""

Class for representing hierarchical language structures, such as

syntax trees and morphological trees.

"""

import re

from nltk.grammar import Nonterminal, Production
from nltk.internals import deprecated

######################################################################
## Trees
######################################################################


class Tree(list):
    r"""

    A Tree represents a hierarchical grouping of leaves and subtrees.

    For example, each constituent in a syntax tree is represented by a single Tree.



    A tree's children are encoded as a list of leaves and subtrees,

    where a leaf is a basic (non-tree) value; and a subtree is a

    nested Tree.



        >>> from nltk.tree import Tree

        >>> print(Tree(1, [2, Tree(3, [4]), 5]))

        (1 2 (3 4) 5)

        >>> vp = Tree('VP', [Tree('V', ['saw']),

        ...                  Tree('NP', ['him'])])

        >>> s = Tree('S', [Tree('NP', ['I']), vp])

        >>> print(s)

        (S (NP I) (VP (V saw) (NP him)))

        >>> print(s[1])

        (VP (V saw) (NP him))

        >>> print(s[1,1])

        (NP him)

        >>> t = Tree.fromstring("(S (NP I) (VP (V saw) (NP him)))")

        >>> s == t

        True

        >>> t[1][1].set_label('X')

        >>> t[1][1].label()

        'X'

        >>> print(t)

        (S (NP I) (VP (V saw) (X him)))

        >>> t[0], t[1,1] = t[1,1], t[0]

        >>> print(t)

        (S (X him) (VP (V saw) (NP I)))



    The length of a tree is the number of children it has.



        >>> len(t)

        2



    The set_label() and label() methods allow individual constituents

    to be labeled.  For example, syntax trees use this label to specify

    phrase tags, such as "NP" and "VP".



    Several Tree methods use "tree positions" to specify

    children or descendants of a tree.  Tree positions are defined as

    follows:



      - The tree position *i* specifies a Tree's *i*\ th child.

      - The tree position ``()`` specifies the Tree itself.

      - If *p* is the tree position of descendant *d*, then

        *p+i* specifies the *i*\ th child of *d*.



    I.e., every tree position is either a single index *i*,

    specifying ``tree[i]``; or a sequence *i1, i2, ..., iN*,

    specifying ``tree[i1][i2]...[iN]``.



    Construct a new tree.  This constructor can be called in one

    of two ways:



    - ``Tree(label, children)`` constructs a new tree with the

        specified label and list of children.



    - ``Tree.fromstring(s)`` constructs a new tree by parsing the string ``s``.

    """

    def __init__(self, node, children=None):
        if children is None:
            raise TypeError(
                "%s: Expected a node value and child list " % type(self).__name__
            )
        elif isinstance(children, str):
            raise TypeError(
                "%s() argument 2 should be a list, not a "
                "string" % type(self).__name__
            )
        else:
            list.__init__(self, children)
            self._label = node

    # ////////////////////////////////////////////////////////////
    # Comparison operators
    # ////////////////////////////////////////////////////////////

    def __eq__(self, other):
        return self.__class__ is other.__class__ and (self._label, list(self)) == (
            other._label,
            list(other),
        )

    def __lt__(self, other):
        if not isinstance(other, Tree):
            # raise_unorderable_types("<", self, other)
            # Sometimes children can be pure strings,
            # so we need to be able to compare with non-trees:
            return self.__class__.__name__ < other.__class__.__name__
        elif self.__class__ is other.__class__:
            return (self._label, list(self)) < (other._label, list(other))
        else:
            return self.__class__.__name__ < other.__class__.__name__

    # @total_ordering doesn't work here, since the class inherits from a builtin class
    __ne__ = lambda self, other: not self == other
    __gt__ = lambda self, other: not (self < other or self == other)
    __le__ = lambda self, other: self < other or self == other
    __ge__ = lambda self, other: not self < other

    # ////////////////////////////////////////////////////////////
    # Disabled list operations
    # ////////////////////////////////////////////////////////////

    def __mul__(self, v):
        raise TypeError("Tree does not support multiplication")

    def __rmul__(self, v):
        raise TypeError("Tree does not support multiplication")

    def __add__(self, v):
        raise TypeError("Tree does not support addition")

    def __radd__(self, v):
        raise TypeError("Tree does not support addition")

    # ////////////////////////////////////////////////////////////
    # Indexing (with support for tree positions)
    # ////////////////////////////////////////////////////////////

    def __getitem__(self, index):
        if isinstance(index, (int, slice)):
            return list.__getitem__(self, index)
        elif isinstance(index, (list, tuple)):
            if len(index) == 0:
                return self
            elif len(index) == 1:
                return self[index[0]]
            else:
                return self[index[0]][index[1:]]
        else:
            raise TypeError(
                "%s indices must be integers, not %s"
                % (type(self).__name__, type(index).__name__)
            )

    def __setitem__(self, index, value):
        if isinstance(index, (int, slice)):
            return list.__setitem__(self, index, value)
        elif isinstance(index, (list, tuple)):
            if len(index) == 0:
                raise IndexError("The tree position () may not be " "assigned to.")
            elif len(index) == 1:
                self[index[0]] = value
            else:
                self[index[0]][index[1:]] = value
        else:
            raise TypeError(
                "%s indices must be integers, not %s"
                % (type(self).__name__, type(index).__name__)
            )

    def __delitem__(self, index):
        if isinstance(index, (int, slice)):
            return list.__delitem__(self, index)
        elif isinstance(index, (list, tuple)):
            if len(index) == 0:
                raise IndexError("The tree position () may not be deleted.")
            elif len(index) == 1:
                del self[index[0]]
            else:
                del self[index[0]][index[1:]]
        else:
            raise TypeError(
                "%s indices must be integers, not %s"
                % (type(self).__name__, type(index).__name__)
            )

    # ////////////////////////////////////////////////////////////
    # Basic tree operations
    # ////////////////////////////////////////////////////////////
    @deprecated("Use label() instead")
    def _get_node(self):
        """Outdated method to access the node value; use the label() method instead."""

    @deprecated("Use set_label() instead")
    def _set_node(self, value):
        """Outdated method to set the node value; use the set_label() method instead."""

    node = property(_get_node, _set_node)

    def label(self):
        """

        Return the node label of the tree.



            >>> t = Tree.fromstring('(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))')

            >>> t.label()

            'S'



        :return: the node label (typically a string)

        :rtype: any

        """
        return self._label

    def set_label(self, label):
        """

        Set the node label of the tree.



            >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")

            >>> t.set_label("T")

            >>> print(t)

            (T (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))



        :param label: the node label (typically a string)

        :type label: any

        """
        self._label = label

    def leaves(self):
        """

        Return the leaves of the tree.



            >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")

            >>> t.leaves()

            ['the', 'dog', 'chased', 'the', 'cat']



        :return: a list containing this tree's leaves.

            The order reflects the order of the

            leaves in the tree's hierarchical structure.

        :rtype: list

        """
        leaves = []
        for child in self:
            if isinstance(child, Tree):
                leaves.extend(child.leaves())
            else:
                leaves.append(child)
        return leaves

    def flatten(self):
        """

        Return a flat version of the tree, with all non-root non-terminals removed.



            >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")

            >>> print(t.flatten())

            (S the dog chased the cat)



        :return: a tree consisting of this tree's root connected directly to

            its leaves, omitting all intervening non-terminal nodes.

        :rtype: Tree

        """
        return Tree(self.label(), self.leaves())

    def height(self):
        """

        Return the height of the tree.



            >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")

            >>> t.height()

            5

            >>> print(t[0,0])

            (D the)

            >>> t[0,0].height()

            2



        :return: The height of this tree.  The height of a tree

            containing no children is 1; the height of a tree

            containing only leaves is 2; and the height of any other

            tree is one plus the maximum of its children's

            heights.

        :rtype: int

        """
        max_child_height = 0
        for child in self:
            if isinstance(child, Tree):
                max_child_height = max(max_child_height, child.height())
            else:
                max_child_height = max(max_child_height, 1)
        return 1 + max_child_height

    def treepositions(self, order="preorder"):
        """

            >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")

            >>> t.treepositions() # doctest: +ELLIPSIS

            [(), (0,), (0, 0), (0, 0, 0), (0, 1), (0, 1, 0), (1,), (1, 0), (1, 0, 0), ...]

            >>> for pos in t.treepositions('leaves'):

            ...     t[pos] = t[pos][::-1].upper()

            >>> print(t)

            (S (NP (D EHT) (N GOD)) (VP (V DESAHC) (NP (D EHT) (N TAC))))



        :param order: One of: ``preorder``, ``postorder``, ``bothorder``,

            ``leaves``.

        """
        positions = []
        if order in ("preorder", "bothorder"):
            positions.append(())
        for i, child in enumerate(self):
            if isinstance(child, Tree):
                childpos = child.treepositions(order)
                positions.extend((i,) + p for p in childpos)
            else:
                positions.append((i,))
        if order in ("postorder", "bothorder"):
            positions.append(())
        return positions

    def subtrees(self, filter=None):
        """

        Generate all the subtrees of this tree, optionally restricted

        to trees matching the filter function.



            >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")

            >>> for s in t.subtrees(lambda t: t.height() == 2):

            ...     print(s)

            (D the)

            (N dog)

            (V chased)

            (D the)

            (N cat)



        :type filter: function

        :param filter: the function to filter all local trees

        """
        if not filter or filter(self):
            yield self
        for child in self:
            if isinstance(child, Tree):
                yield from child.subtrees(filter)

    def productions(self):
        """

        Generate the productions that correspond to the non-terminal nodes of the tree.

        For each subtree of the form (P: C1 C2 ... Cn) this produces a production of the

        form P -> C1 C2 ... Cn.



            >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")

            >>> t.productions() # doctest: +NORMALIZE_WHITESPACE

            [S -> NP VP, NP -> D N, D -> 'the', N -> 'dog', VP -> V NP, V -> 'chased',

            NP -> D N, D -> 'the', N -> 'cat']



        :rtype: list(Production)

        """

        if not isinstance(self._label, str):
            raise TypeError(
                "Productions can only be generated from trees having node labels that are strings"
            )

        prods = [Production(Nonterminal(self._label), _child_names(self))]
        for child in self:
            if isinstance(child, Tree):
                prods += child.productions()
        return prods

    def pos(self):
        """

        Return a sequence of pos-tagged words extracted from the tree.



            >>> t = Tree.fromstring("(S (NP (D the) (N dog)) (VP (V chased) (NP (D the) (N cat))))")

            >>> t.pos()

            [('the', 'D'), ('dog', 'N'), ('chased', 'V'), ('the', 'D'), ('cat', 'N')]



        :return: a list of tuples containing leaves and pre-terminals (part-of-speech tags).

            The order reflects the order of the leaves in the tree's hierarchical structure.

        :rtype: list(tuple)

        """
        pos = []
        for child in self:
            if isinstance(child, Tree):
                pos.extend(child.pos())
            else:
                pos.append((child, self._label))
        return pos

    def leaf_treeposition(self, index):
        """

        :return: The tree position of the ``index``-th leaf in this

            tree.  I.e., if ``tp=self.leaf_treeposition(i)``, then

            ``self[tp]==self.leaves()[i]``.



        :raise IndexError: If this tree contains fewer than ``index+1``

            leaves, or if ``index<0``.

        """
        if index < 0:
            raise IndexError("index must be non-negative")

        stack = [(self, ())]
        while stack:
            value, treepos = stack.pop()
            if not isinstance(value, Tree):
                if index == 0:
                    return treepos
                else:
                    index -= 1
            else:
                for i in range(len(value) - 1, -1, -1):
                    stack.append((value[i], treepos + (i,)))

        raise IndexError("index must be less than or equal to len(self)")

    def treeposition_spanning_leaves(self, start, end):
        """

        :return: The tree position of the lowest descendant of this

            tree that dominates ``self.leaves()[start:end]``.

        :raise ValueError: if ``end <= start``

        """
        if end <= start:
            raise ValueError("end must be greater than start")
        # Find the tree positions of the start & end leaves, and
        # take the longest common subsequence.
        start_treepos = self.leaf_treeposition(start)
        end_treepos = self.leaf_treeposition(end - 1)
        # Find the first index where they mismatch:
        for i in range(len(start_treepos)):
            if i == len(end_treepos) or start_treepos[i] != end_treepos[i]:
                return start_treepos[:i]
        return start_treepos

    # ////////////////////////////////////////////////////////////
    # Transforms
    # ////////////////////////////////////////////////////////////

    def chomsky_normal_form(

        self,

        factor="right",

        horzMarkov=None,

        vertMarkov=0,

        childChar="|",

        parentChar="^",

    ):
        """

        This method can modify a tree in three ways:



          1. Convert a tree into its Chomsky Normal Form (CNF)

             equivalent -- Every subtree has either two non-terminals

             or one terminal as its children.  This process requires

             the creation of more"artificial" non-terminal nodes.

          2. Markov (vertical) smoothing of children in new artificial

             nodes

          3. Horizontal (parent) annotation of nodes



        :param factor: Right or left factoring method (default = "right")

        :type  factor: str = [left|right]

        :param horzMarkov: Markov order for sibling smoothing in artificial nodes (None (default) = include all siblings)

        :type  horzMarkov: int | None

        :param vertMarkov: Markov order for parent smoothing (0 (default) = no vertical annotation)

        :type  vertMarkov: int | None

        :param childChar: A string used in construction of the artificial nodes, separating the head of the

                          original subtree from the child nodes that have yet to be expanded (default = "|")

        :type  childChar: str

        :param parentChar: A string used to separate the node representation from its vertical annotation

        :type  parentChar: str

        """
        from nltk.tree.transforms import chomsky_normal_form

        chomsky_normal_form(self, factor, horzMarkov, vertMarkov, childChar, parentChar)

    def un_chomsky_normal_form(

        self, expandUnary=True, childChar="|", parentChar="^", unaryChar="+"

    ):
        """

        This method modifies the tree in three ways:



          1. Transforms a tree in Chomsky Normal Form back to its

             original structure (branching greater than two)

          2. Removes any parent annotation (if it exists)

          3. (optional) expands unary subtrees (if previously

             collapsed with collapseUnary(...) )



        :param expandUnary: Flag to expand unary or not (default = True)

        :type  expandUnary: bool

        :param childChar: A string separating the head node from its children in an artificial node (default = "|")

        :type  childChar: str

        :param parentChar: A string separating the node label from its parent annotation (default = "^")

        :type  parentChar: str

        :param unaryChar: A string joining two non-terminals in a unary production (default = "+")

        :type  unaryChar: str

        """
        from nltk.tree.transforms import un_chomsky_normal_form

        un_chomsky_normal_form(self, expandUnary, childChar, parentChar, unaryChar)

    def collapse_unary(self, collapsePOS=False, collapseRoot=False, joinChar="+"):
        """

        Collapse subtrees with a single child (ie. unary productions)

        into a new non-terminal (Tree node) joined by 'joinChar'.

        This is useful when working with algorithms that do not allow

        unary productions, and completely removing the unary productions

        would require loss of useful information.  The Tree is modified

        directly (since it is passed by reference) and no value is returned.



        :param collapsePOS: 'False' (default) will not collapse the parent of leaf nodes (ie.

                            Part-of-Speech tags) since they are always unary productions

        :type  collapsePOS: bool

        :param collapseRoot: 'False' (default) will not modify the root production

                             if it is unary.  For the Penn WSJ treebank corpus, this corresponds

                             to the TOP -> productions.

        :type collapseRoot: bool

        :param joinChar: A string used to connect collapsed node values (default = "+")

        :type  joinChar: str

        """
        from nltk.tree.transforms import collapse_unary

        collapse_unary(self, collapsePOS, collapseRoot, joinChar)

    # ////////////////////////////////////////////////////////////
    # Convert, copy
    # ////////////////////////////////////////////////////////////

    @classmethod
    def convert(cls, tree):
        """

        Convert a tree between different subtypes of Tree.  ``cls`` determines

        which class will be used to encode the new tree.



        :type tree: Tree

        :param tree: The tree that should be converted.

        :return: The new Tree.

        """
        if isinstance(tree, Tree):
            children = [cls.convert(child) for child in tree]
            return cls(tree._label, children)
        else:
            return tree

    def __copy__(self):
        return self.copy()

    def __deepcopy__(self, memo):
        return self.copy(deep=True)

    def copy(self, deep=False):
        if not deep:
            return type(self)(self._label, self)
        else:
            return type(self).convert(self)

    def _frozen_class(self):
        from nltk.tree.immutable import ImmutableTree

        return ImmutableTree

    def freeze(self, leaf_freezer=None):
        frozen_class = self._frozen_class()
        if leaf_freezer is None:
            newcopy = frozen_class.convert(self)
        else:
            newcopy = self.copy(deep=True)
            for pos in newcopy.treepositions("leaves"):
                newcopy[pos] = leaf_freezer(newcopy[pos])
            newcopy = frozen_class.convert(newcopy)
        hash(newcopy)  # Make sure the leaves are hashable.
        return newcopy

    # ////////////////////////////////////////////////////////////
    # Parsing
    # ////////////////////////////////////////////////////////////

    @classmethod
    def fromstring(

        cls,

        s,

        brackets="()",

        read_node=None,

        read_leaf=None,

        node_pattern=None,

        leaf_pattern=None,

        remove_empty_top_bracketing=False,

    ):
        """

        Read a bracketed tree string and return the resulting tree.

        Trees are represented as nested brackettings, such as::



          (S (NP (NNP John)) (VP (V runs)))



        :type s: str

        :param s: The string to read



        :type brackets: str (length=2)

        :param brackets: The bracket characters used to mark the

            beginning and end of trees and subtrees.



        :type read_node: function

        :type read_leaf: function

        :param read_node, read_leaf: If specified, these functions

            are applied to the substrings of ``s`` corresponding to

            nodes and leaves (respectively) to obtain the values for

            those nodes and leaves.  They should have the following

            signature:



               read_node(str) -> value



            For example, these functions could be used to process nodes

            and leaves whose values should be some type other than

            string (such as ``FeatStruct``).

            Note that by default, node strings and leaf strings are

            delimited by whitespace and brackets; to override this

            default, use the ``node_pattern`` and ``leaf_pattern``

            arguments.



        :type node_pattern: str

        :type leaf_pattern: str

        :param node_pattern, leaf_pattern: Regular expression patterns

            used to find node and leaf substrings in ``s``.  By

            default, both nodes patterns are defined to match any

            sequence of non-whitespace non-bracket characters.



        :type remove_empty_top_bracketing: bool

        :param remove_empty_top_bracketing: If the resulting tree has

            an empty node label, and is length one, then return its

            single child instead.  This is useful for treebank trees,

            which sometimes contain an extra level of bracketing.



        :return: A tree corresponding to the string representation ``s``.

            If this class method is called using a subclass of Tree,

            then it will return a tree of that type.

        :rtype: Tree

        """
        if not isinstance(brackets, str) or len(brackets) != 2:
            raise TypeError("brackets must be a length-2 string")
        if re.search(r"\s", brackets):
            raise TypeError("whitespace brackets not allowed")
        # Construct a regexp that will tokenize the string.
        open_b, close_b = brackets
        open_pattern, close_pattern = (re.escape(open_b), re.escape(close_b))
        if node_pattern is None:
            node_pattern = rf"[^\s{open_pattern}{close_pattern}]+"
        if leaf_pattern is None:
            leaf_pattern = rf"[^\s{open_pattern}{close_pattern}]+"
        token_re = re.compile(
            r"%s\s*(%s)?|%s|(%s)"
            % (open_pattern, node_pattern, close_pattern, leaf_pattern)
        )
        # Walk through each token, updating a stack of trees.
        stack = [(None, [])]  # list of (node, children) tuples
        for match in token_re.finditer(s):
            token = match.group()
            # Beginning of a tree/subtree
            if token[0] == open_b:
                if len(stack) == 1 and len(stack[0][1]) > 0:
                    cls._parse_error(s, match, "end-of-string")
                label = token[1:].lstrip()
                if read_node is not None:
                    label = read_node(label)
                stack.append((label, []))
            # End of a tree/subtree
            elif token == close_b:
                if len(stack) == 1:
                    if len(stack[0][1]) == 0:
                        cls._parse_error(s, match, open_b)
                    else:
                        cls._parse_error(s, match, "end-of-string")
                label, children = stack.pop()
                stack[-1][1].append(cls(label, children))
            # Leaf node
            else:
                if len(stack) == 1:
                    cls._parse_error(s, match, open_b)
                if read_leaf is not None:
                    token = read_leaf(token)
                stack[-1][1].append(token)

        # check that we got exactly one complete tree.
        if len(stack) > 1:
            cls._parse_error(s, "end-of-string", close_b)
        elif len(stack[0][1]) == 0:
            cls._parse_error(s, "end-of-string", open_b)
        else:
            assert stack[0][0] is None
            assert len(stack[0][1]) == 1
        tree = stack[0][1][0]

        # If the tree has an extra level with node='', then get rid of
        # it.  E.g.: "((S (NP ...) (VP ...)))"
        if remove_empty_top_bracketing and tree._label == "" and len(tree) == 1:
            tree = tree[0]
        # return the tree.
        return tree

    @classmethod
    def _parse_error(cls, s, match, expecting):
        """

        Display a friendly error message when parsing a tree string fails.

        :param s: The string we're parsing.

        :param match: regexp match of the problem token.

        :param expecting: what we expected to see instead.

        """
        # Construct a basic error message
        if match == "end-of-string":
            pos, token = len(s), "end-of-string"
        else:
            pos, token = match.start(), match.group()
        msg = "%s.read(): expected %r but got %r\n%sat index %d." % (
            cls.__name__,
            expecting,
            token,
            " " * 12,
            pos,
        )
        # Add a display showing the error token itsels:
        s = s.replace("\n", " ").replace("\t", " ")
        offset = pos
        if len(s) > pos + 10:
            s = s[: pos + 10] + "..."
        if pos > 10:
            s = "..." + s[pos - 10 :]
            offset = 13
        msg += '\n{}"{}"\n{}^'.format(" " * 16, s, " " * (17 + offset))
        raise ValueError(msg)

    @classmethod
    def fromlist(cls, l):
        """

        :type l: list

        :param l: a tree represented as nested lists



        :return: A tree corresponding to the list representation ``l``.

        :rtype: Tree



        Convert nested lists to a NLTK Tree

        """
        if type(l) == list and len(l) > 0:
            label = repr(l[0])
            if len(l) > 1:
                return Tree(label, [cls.fromlist(child) for child in l[1:]])
            else:
                return label

    # ////////////////////////////////////////////////////////////
    # Visualization & String Representation
    # ////////////////////////////////////////////////////////////

    def draw(self):
        """

        Open a new window containing a graphical diagram of this tree.

        """
        from nltk.draw.tree import draw_trees

        draw_trees(self)

    def pretty_print(self, sentence=None, highlight=(), stream=None, **kwargs):
        """

        Pretty-print this tree as ASCII or Unicode art.

        For explanation of the arguments, see the documentation for

        `nltk.tree.prettyprinter.TreePrettyPrinter`.

        """
        from nltk.tree.prettyprinter import TreePrettyPrinter

        print(TreePrettyPrinter(self, sentence, highlight).text(**kwargs), file=stream)

    def __repr__(self):
        childstr = ", ".join(repr(c) for c in self)
        return "{}({}, [{}])".format(
            type(self).__name__,
            repr(self._label),
            childstr,
        )

    def _repr_svg_(self):
        from svgling import draw_tree

        return draw_tree(self)._repr_svg_()

    def __str__(self):
        return self.pformat()

    def pprint(self, **kwargs):
        """

        Print a string representation of this Tree to 'stream'

        """

        if "stream" in kwargs:
            stream = kwargs["stream"]
            del kwargs["stream"]
        else:
            stream = None
        print(self.pformat(**kwargs), file=stream)

    def pformat(self, margin=70, indent=0, nodesep="", parens="()", quotes=False):
        """

        :return: A pretty-printed string representation of this tree.

        :rtype: str

        :param margin: The right margin at which to do line-wrapping.

        :type margin: int

        :param indent: The indentation level at which printing

            begins.  This number is used to decide how far to indent

            subsequent lines.

        :type indent: int

        :param nodesep: A string that is used to separate the node

            from the children.  E.g., the default value ``':'`` gives

            trees like ``(S: (NP: I) (VP: (V: saw) (NP: it)))``.

        """

        # Try writing it on one line.
        s = self._pformat_flat(nodesep, parens, quotes)
        if len(s) + indent < margin:
            return s

        # If it doesn't fit on one line, then write it on multi-lines.
        if isinstance(self._label, str):
            s = f"{parens[0]}{self._label}{nodesep}"
        else:
            s = f"{parens[0]}{repr(self._label)}{nodesep}"
        for child in self:
            if isinstance(child, Tree):
                s += (
                    "\n"
                    + " " * (indent + 2)
                    + child.pformat(margin, indent + 2, nodesep, parens, quotes)
                )
            elif isinstance(child, tuple):
                s += "\n" + " " * (indent + 2) + "/".join(child)
            elif isinstance(child, str) and not quotes:
                s += "\n" + " " * (indent + 2) + "%s" % child
            else:
                s += "\n" + " " * (indent + 2) + repr(child)
        return s + parens[1]

    def pformat_latex_qtree(self):
        r"""

        Returns a representation of the tree compatible with the

        LaTeX qtree package. This consists of the string ``\Tree``

        followed by the tree represented in bracketed notation.



        For example, the following result was generated from a parse tree of

        the sentence ``The announcement astounded us``::



          \Tree [.I'' [.N'' [.D The ] [.N' [.N announcement ] ] ]

              [.I' [.V'' [.V' [.V astounded ] [.N'' [.N' [.N us ] ] ] ] ] ] ]



        See https://www.ling.upenn.edu/advice/latex.html for the LaTeX

        style file for the qtree package.



        :return: A latex qtree representation of this tree.

        :rtype: str

        """
        reserved_chars = re.compile(r"([#\$%&~_\{\}])")

        pformat = self.pformat(indent=6, nodesep="", parens=("[.", " ]"))
        return r"\Tree " + re.sub(reserved_chars, r"\\\1", pformat)

    def _pformat_flat(self, nodesep, parens, quotes):
        childstrs = []
        for child in self:
            if isinstance(child, Tree):
                childstrs.append(child._pformat_flat(nodesep, parens, quotes))
            elif isinstance(child, tuple):
                childstrs.append("/".join(child))
            elif isinstance(child, str) and not quotes:
                childstrs.append("%s" % child)
            else:
                childstrs.append(repr(child))
        if isinstance(self._label, str):
            return "{}{}{} {}{}".format(
                parens[0],
                self._label,
                nodesep,
                " ".join(childstrs),
                parens[1],
            )
        else:
            return "{}{}{} {}{}".format(
                parens[0],
                repr(self._label),
                nodesep,
                " ".join(childstrs),
                parens[1],
            )


def _child_names(tree):
    names = []
    for child in tree:
        if isinstance(child, Tree):
            names.append(Nonterminal(child._label))
        else:
            names.append(child)
    return names


######################################################################
## Demonstration
######################################################################


def demo():
    """

    A demonstration showing how Trees and Trees can be

    used.  This demonstration creates a Tree, and loads a

    Tree from the Treebank corpus,

    and shows the results of calling several of their methods.

    """

    from nltk import ProbabilisticTree, Tree

    # Demonstrate tree parsing.
    s = "(S (NP (DT the) (NN cat)) (VP (VBD ate) (NP (DT a) (NN cookie))))"
    t = Tree.fromstring(s)
    print("Convert bracketed string into tree:")
    print(t)
    print(t.__repr__())

    print("Display tree properties:")
    print(t.label())  # tree's constituent type
    print(t[0])  # tree's first child
    print(t[1])  # tree's second child
    print(t.height())
    print(t.leaves())
    print(t[1])
    print(t[1, 1])
    print(t[1, 1, 0])

    # Demonstrate tree modification.
    the_cat = t[0]
    the_cat.insert(1, Tree.fromstring("(JJ big)"))
    print("Tree modification:")
    print(t)
    t[1, 1, 1] = Tree.fromstring("(NN cake)")
    print(t)
    print()

    # Tree transforms
    print("Collapse unary:")
    t.collapse_unary()
    print(t)
    print("Chomsky normal form:")
    t.chomsky_normal_form()
    print(t)
    print()

    # Demonstrate probabilistic trees.
    pt = ProbabilisticTree("x", ["y", "z"], prob=0.5)
    print("Probabilistic Tree:")
    print(pt)
    print()

    # Demonstrate parsing of treebank output format.
    t = Tree.fromstring(t.pformat())
    print("Convert tree to bracketed string and back again:")
    print(t)
    print()

    # Demonstrate LaTeX output
    print("LaTeX output:")
    print(t.pformat_latex_qtree())
    print()

    # Demonstrate Productions
    print("Production output:")
    print(t.productions())
    print()

    # Demonstrate tree nodes containing objects other than strings
    t.set_label(("test", 3))
    print(t)


__all__ = [
    "Tree",
]