File size: 10,980 Bytes
ecb8b1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import numpy as np
from numpy.testing import assert_equal, assert_array_equal, assert_allclose
import pytest
from pytest import raises as assert_raises
from scipy.interpolate import (griddata, NearestNDInterpolator,
LinearNDInterpolator,
CloughTocher2DInterpolator)
parametrize_interpolators = pytest.mark.parametrize(
"interpolator", [NearestNDInterpolator, LinearNDInterpolator,
CloughTocher2DInterpolator]
)
class TestGriddata:
def test_fill_value(self):
x = [(0,0), (0,1), (1,0)]
y = [1, 2, 3]
yi = griddata(x, y, [(1,1), (1,2), (0,0)], fill_value=-1)
assert_array_equal(yi, [-1., -1, 1])
yi = griddata(x, y, [(1,1), (1,2), (0,0)])
assert_array_equal(yi, [np.nan, np.nan, 1])
def test_alternative_call(self):
x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
dtype=np.float64)
y = (np.arange(x.shape[0], dtype=np.float64)[:,None]
+ np.array([0,1])[None,:])
for method in ('nearest', 'linear', 'cubic'):
for rescale in (True, False):
msg = repr((method, rescale))
yi = griddata((x[:,0], x[:,1]), y, (x[:,0], x[:,1]), method=method,
rescale=rescale)
assert_allclose(y, yi, atol=1e-14, err_msg=msg)
def test_multivalue_2d(self):
x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
dtype=np.float64)
y = (np.arange(x.shape[0], dtype=np.float64)[:,None]
+ np.array([0,1])[None,:])
for method in ('nearest', 'linear', 'cubic'):
for rescale in (True, False):
msg = repr((method, rescale))
yi = griddata(x, y, x, method=method, rescale=rescale)
assert_allclose(y, yi, atol=1e-14, err_msg=msg)
def test_multipoint_2d(self):
x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
dtype=np.float64)
y = np.arange(x.shape[0], dtype=np.float64)
xi = x[:,None,:] + np.array([0,0,0])[None,:,None]
for method in ('nearest', 'linear', 'cubic'):
for rescale in (True, False):
msg = repr((method, rescale))
yi = griddata(x, y, xi, method=method, rescale=rescale)
assert_equal(yi.shape, (5, 3), err_msg=msg)
assert_allclose(yi, np.tile(y[:,None], (1, 3)),
atol=1e-14, err_msg=msg)
def test_complex_2d(self):
x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
dtype=np.float64)
y = np.arange(x.shape[0], dtype=np.float64)
y = y - 2j*y[::-1]
xi = x[:,None,:] + np.array([0,0,0])[None,:,None]
for method in ('nearest', 'linear', 'cubic'):
for rescale in (True, False):
msg = repr((method, rescale))
yi = griddata(x, y, xi, method=method, rescale=rescale)
assert_equal(yi.shape, (5, 3), err_msg=msg)
assert_allclose(yi, np.tile(y[:,None], (1, 3)),
atol=1e-14, err_msg=msg)
def test_1d(self):
x = np.array([1, 2.5, 3, 4.5, 5, 6])
y = np.array([1, 2, 0, 3.9, 2, 1])
for method in ('nearest', 'linear', 'cubic'):
assert_allclose(griddata(x, y, x, method=method), y,
err_msg=method, atol=1e-14)
assert_allclose(griddata(x.reshape(6, 1), y, x, method=method), y,
err_msg=method, atol=1e-14)
assert_allclose(griddata((x,), y, (x,), method=method), y,
err_msg=method, atol=1e-14)
def test_1d_borders(self):
# Test for nearest neighbor case with xi outside
# the range of the values.
x = np.array([1, 2.5, 3, 4.5, 5, 6])
y = np.array([1, 2, 0, 3.9, 2, 1])
xi = np.array([0.9, 6.5])
yi_should = np.array([1.0, 1.0])
method = 'nearest'
assert_allclose(griddata(x, y, xi,
method=method), yi_should,
err_msg=method,
atol=1e-14)
assert_allclose(griddata(x.reshape(6, 1), y, xi,
method=method), yi_should,
err_msg=method,
atol=1e-14)
assert_allclose(griddata((x, ), y, (xi, ),
method=method), yi_should,
err_msg=method,
atol=1e-14)
def test_1d_unsorted(self):
x = np.array([2.5, 1, 4.5, 5, 6, 3])
y = np.array([1, 2, 0, 3.9, 2, 1])
for method in ('nearest', 'linear', 'cubic'):
assert_allclose(griddata(x, y, x, method=method), y,
err_msg=method, atol=1e-10)
assert_allclose(griddata(x.reshape(6, 1), y, x, method=method), y,
err_msg=method, atol=1e-10)
assert_allclose(griddata((x,), y, (x,), method=method), y,
err_msg=method, atol=1e-10)
def test_square_rescale_manual(self):
points = np.array([(0,0), (0,100), (10,100), (10,0), (1, 5)], dtype=np.float64)
points_rescaled = np.array([(0,0), (0,1), (1,1), (1,0), (0.1, 0.05)],
dtype=np.float64)
values = np.array([1., 2., -3., 5., 9.], dtype=np.float64)
xx, yy = np.broadcast_arrays(np.linspace(0, 10, 14)[:,None],
np.linspace(0, 100, 14)[None,:])
xx = xx.ravel()
yy = yy.ravel()
xi = np.array([xx, yy]).T.copy()
for method in ('nearest', 'linear', 'cubic'):
msg = method
zi = griddata(points_rescaled, values, xi/np.array([10, 100.]),
method=method)
zi_rescaled = griddata(points, values, xi, method=method,
rescale=True)
assert_allclose(zi, zi_rescaled, err_msg=msg,
atol=1e-12)
def test_xi_1d(self):
# Check that 1-D xi is interpreted as a coordinate
x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
dtype=np.float64)
y = np.arange(x.shape[0], dtype=np.float64)
y = y - 2j*y[::-1]
xi = np.array([0.5, 0.5])
for method in ('nearest', 'linear', 'cubic'):
p1 = griddata(x, y, xi, method=method)
p2 = griddata(x, y, xi[None,:], method=method)
assert_allclose(p1, p2, err_msg=method)
xi1 = np.array([0.5])
xi3 = np.array([0.5, 0.5, 0.5])
assert_raises(ValueError, griddata, x, y, xi1,
method=method)
assert_raises(ValueError, griddata, x, y, xi3,
method=method)
class TestNearestNDInterpolator:
def test_nearest_options(self):
# smoke test that NearestNDInterpolator accept cKDTree options
npts, nd = 4, 3
x = np.arange(npts*nd).reshape((npts, nd))
y = np.arange(npts)
nndi = NearestNDInterpolator(x, y)
opts = {'balanced_tree': False, 'compact_nodes': False}
nndi_o = NearestNDInterpolator(x, y, tree_options=opts)
assert_allclose(nndi(x), nndi_o(x), atol=1e-14)
def test_nearest_list_argument(self):
nd = np.array([[0, 0, 0, 0, 1, 0, 1],
[0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 1, 1, 2]])
d = nd[:, 3:]
# z is np.array
NI = NearestNDInterpolator((d[0], d[1]), d[2])
assert_array_equal(NI([0.1, 0.9], [0.1, 0.9]), [0, 2])
# z is list
NI = NearestNDInterpolator((d[0], d[1]), list(d[2]))
assert_array_equal(NI([0.1, 0.9], [0.1, 0.9]), [0, 2])
def test_nearest_query_options(self):
nd = np.array([[0, 0.5, 0, 1],
[0, 0, 0.5, 1],
[0, 1, 1, 2]])
delta = 0.1
query_points = [0 + delta, 1 + delta], [0 + delta, 1 + delta]
# case 1 - query max_dist is smaller than
# the query points' nearest distance to nd.
NI = NearestNDInterpolator((nd[0], nd[1]), nd[2])
distance_upper_bound = np.sqrt(delta ** 2 + delta ** 2) - 1e-7
assert_array_equal(NI(query_points, distance_upper_bound=distance_upper_bound),
[np.nan, np.nan])
# case 2 - query p is inf, will return [0, 2]
distance_upper_bound = np.sqrt(delta ** 2 + delta ** 2) - 1e-7
p = np.inf
assert_array_equal(
NI(query_points, distance_upper_bound=distance_upper_bound, p=p),
[0, 2]
)
# case 3 - query max_dist is larger, so should return non np.nan
distance_upper_bound = np.sqrt(delta ** 2 + delta ** 2) + 1e-7
assert_array_equal(
NI(query_points, distance_upper_bound=distance_upper_bound),
[0, 2]
)
def test_nearest_query_valid_inputs(self):
nd = np.array([[0, 1, 0, 1],
[0, 0, 1, 1],
[0, 1, 1, 2]])
NI = NearestNDInterpolator((nd[0], nd[1]), nd[2])
with assert_raises(TypeError):
NI([0.5, 0.5], query_options="not a dictionary")
class TestNDInterpolators:
@parametrize_interpolators
def test_broadcastable_input(self, interpolator):
# input data
np.random.seed(0)
x = np.random.random(10)
y = np.random.random(10)
z = np.hypot(x, y)
# x-y grid for interpolation
X = np.linspace(min(x), max(x))
Y = np.linspace(min(y), max(y))
X, Y = np.meshgrid(X, Y)
XY = np.vstack((X.ravel(), Y.ravel())).T
interp = interpolator(list(zip(x, y)), z)
# single array input
interp_points0 = interp(XY)
# tuple input
interp_points1 = interp((X, Y))
interp_points2 = interp((X, 0.0))
# broadcastable input
interp_points3 = interp(X, Y)
interp_points4 = interp(X, 0.0)
assert_equal(interp_points0.size ==
interp_points1.size ==
interp_points2.size ==
interp_points3.size ==
interp_points4.size, True)
@parametrize_interpolators
def test_read_only(self, interpolator):
# input data
np.random.seed(0)
xy = np.random.random((10, 2))
x, y = xy[:, 0], xy[:, 1]
z = np.hypot(x, y)
# interpolation points
XY = np.random.random((50, 2))
xy.setflags(write=False)
z.setflags(write=False)
XY.setflags(write=False)
interp = interpolator(xy, z)
interp(XY)
|