File size: 10,980 Bytes
ecb8b1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import numpy as np
from numpy.testing import assert_equal, assert_array_equal, assert_allclose
import pytest
from pytest import raises as assert_raises

from scipy.interpolate import (griddata, NearestNDInterpolator,
                               LinearNDInterpolator,
                               CloughTocher2DInterpolator)


parametrize_interpolators = pytest.mark.parametrize(
    "interpolator", [NearestNDInterpolator, LinearNDInterpolator,
                     CloughTocher2DInterpolator]
)

class TestGriddata:
    def test_fill_value(self):
        x = [(0,0), (0,1), (1,0)]
        y = [1, 2, 3]

        yi = griddata(x, y, [(1,1), (1,2), (0,0)], fill_value=-1)
        assert_array_equal(yi, [-1., -1, 1])

        yi = griddata(x, y, [(1,1), (1,2), (0,0)])
        assert_array_equal(yi, [np.nan, np.nan, 1])

    def test_alternative_call(self):
        x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
                     dtype=np.float64)
        y = (np.arange(x.shape[0], dtype=np.float64)[:,None]
             + np.array([0,1])[None,:])

        for method in ('nearest', 'linear', 'cubic'):
            for rescale in (True, False):
                msg = repr((method, rescale))
                yi = griddata((x[:,0], x[:,1]), y, (x[:,0], x[:,1]), method=method,
                              rescale=rescale)
                assert_allclose(y, yi, atol=1e-14, err_msg=msg)

    def test_multivalue_2d(self):
        x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
                     dtype=np.float64)
        y = (np.arange(x.shape[0], dtype=np.float64)[:,None]
             + np.array([0,1])[None,:])

        for method in ('nearest', 'linear', 'cubic'):
            for rescale in (True, False):
                msg = repr((method, rescale))
                yi = griddata(x, y, x, method=method, rescale=rescale)
                assert_allclose(y, yi, atol=1e-14, err_msg=msg)

    def test_multipoint_2d(self):
        x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
                     dtype=np.float64)
        y = np.arange(x.shape[0], dtype=np.float64)

        xi = x[:,None,:] + np.array([0,0,0])[None,:,None]

        for method in ('nearest', 'linear', 'cubic'):
            for rescale in (True, False):
                msg = repr((method, rescale))
                yi = griddata(x, y, xi, method=method, rescale=rescale)

                assert_equal(yi.shape, (5, 3), err_msg=msg)
                assert_allclose(yi, np.tile(y[:,None], (1, 3)),
                                atol=1e-14, err_msg=msg)

    def test_complex_2d(self):
        x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
                     dtype=np.float64)
        y = np.arange(x.shape[0], dtype=np.float64)
        y = y - 2j*y[::-1]

        xi = x[:,None,:] + np.array([0,0,0])[None,:,None]

        for method in ('nearest', 'linear', 'cubic'):
            for rescale in (True, False):
                msg = repr((method, rescale))
                yi = griddata(x, y, xi, method=method, rescale=rescale)

                assert_equal(yi.shape, (5, 3), err_msg=msg)
                assert_allclose(yi, np.tile(y[:,None], (1, 3)),
                                atol=1e-14, err_msg=msg)

    def test_1d(self):
        x = np.array([1, 2.5, 3, 4.5, 5, 6])
        y = np.array([1, 2, 0, 3.9, 2, 1])

        for method in ('nearest', 'linear', 'cubic'):
            assert_allclose(griddata(x, y, x, method=method), y,
                            err_msg=method, atol=1e-14)
            assert_allclose(griddata(x.reshape(6, 1), y, x, method=method), y,
                            err_msg=method, atol=1e-14)
            assert_allclose(griddata((x,), y, (x,), method=method), y,
                            err_msg=method, atol=1e-14)

    def test_1d_borders(self):
        # Test for nearest neighbor case with xi outside
        # the range of the values.
        x = np.array([1, 2.5, 3, 4.5, 5, 6])
        y = np.array([1, 2, 0, 3.9, 2, 1])
        xi = np.array([0.9, 6.5])
        yi_should = np.array([1.0, 1.0])

        method = 'nearest'
        assert_allclose(griddata(x, y, xi,
                                 method=method), yi_should,
                        err_msg=method,
                        atol=1e-14)
        assert_allclose(griddata(x.reshape(6, 1), y, xi,
                                 method=method), yi_should,
                        err_msg=method,
                        atol=1e-14)
        assert_allclose(griddata((x, ), y, (xi, ),
                                 method=method), yi_should,
                        err_msg=method,
                        atol=1e-14)

    def test_1d_unsorted(self):
        x = np.array([2.5, 1, 4.5, 5, 6, 3])
        y = np.array([1, 2, 0, 3.9, 2, 1])

        for method in ('nearest', 'linear', 'cubic'):
            assert_allclose(griddata(x, y, x, method=method), y,
                            err_msg=method, atol=1e-10)
            assert_allclose(griddata(x.reshape(6, 1), y, x, method=method), y,
                            err_msg=method, atol=1e-10)
            assert_allclose(griddata((x,), y, (x,), method=method), y,
                            err_msg=method, atol=1e-10)

    def test_square_rescale_manual(self):
        points = np.array([(0,0), (0,100), (10,100), (10,0), (1, 5)], dtype=np.float64)
        points_rescaled = np.array([(0,0), (0,1), (1,1), (1,0), (0.1, 0.05)],
                                   dtype=np.float64)
        values = np.array([1., 2., -3., 5., 9.], dtype=np.float64)

        xx, yy = np.broadcast_arrays(np.linspace(0, 10, 14)[:,None],
                                     np.linspace(0, 100, 14)[None,:])
        xx = xx.ravel()
        yy = yy.ravel()
        xi = np.array([xx, yy]).T.copy()

        for method in ('nearest', 'linear', 'cubic'):
            msg = method
            zi = griddata(points_rescaled, values, xi/np.array([10, 100.]),
                          method=method)
            zi_rescaled = griddata(points, values, xi, method=method,
                                   rescale=True)
            assert_allclose(zi, zi_rescaled, err_msg=msg,
                            atol=1e-12)

    def test_xi_1d(self):
        # Check that 1-D xi is interpreted as a coordinate
        x = np.array([(0,0), (-0.5,-0.5), (-0.5,0.5), (0.5, 0.5), (0.25, 0.3)],
                     dtype=np.float64)
        y = np.arange(x.shape[0], dtype=np.float64)
        y = y - 2j*y[::-1]

        xi = np.array([0.5, 0.5])

        for method in ('nearest', 'linear', 'cubic'):
            p1 = griddata(x, y, xi, method=method)
            p2 = griddata(x, y, xi[None,:], method=method)
            assert_allclose(p1, p2, err_msg=method)

            xi1 = np.array([0.5])
            xi3 = np.array([0.5, 0.5, 0.5])
            assert_raises(ValueError, griddata, x, y, xi1,
                          method=method)
            assert_raises(ValueError, griddata, x, y, xi3,
                          method=method)


class TestNearestNDInterpolator:
    def test_nearest_options(self):
        # smoke test that NearestNDInterpolator accept cKDTree options
        npts, nd = 4, 3
        x = np.arange(npts*nd).reshape((npts, nd))
        y = np.arange(npts)
        nndi = NearestNDInterpolator(x, y)

        opts = {'balanced_tree': False, 'compact_nodes': False}
        nndi_o = NearestNDInterpolator(x, y, tree_options=opts)
        assert_allclose(nndi(x), nndi_o(x), atol=1e-14)

    def test_nearest_list_argument(self):
        nd = np.array([[0, 0, 0, 0, 1, 0, 1],
                       [0, 0, 0, 0, 0, 1, 1],
                       [0, 0, 0, 0, 1, 1, 2]])
        d = nd[:, 3:]

        # z is np.array
        NI = NearestNDInterpolator((d[0], d[1]), d[2])
        assert_array_equal(NI([0.1, 0.9], [0.1, 0.9]), [0, 2])

        # z is list
        NI = NearestNDInterpolator((d[0], d[1]), list(d[2]))
        assert_array_equal(NI([0.1, 0.9], [0.1, 0.9]), [0, 2])

    def test_nearest_query_options(self):
        nd = np.array([[0, 0.5, 0, 1],
                       [0, 0, 0.5, 1],
                       [0, 1, 1, 2]])
        delta = 0.1
        query_points = [0 + delta, 1 + delta], [0 + delta, 1 + delta]

        # case 1 - query max_dist is smaller than
        # the query points' nearest distance to nd.
        NI = NearestNDInterpolator((nd[0], nd[1]), nd[2])
        distance_upper_bound = np.sqrt(delta ** 2 + delta ** 2) - 1e-7
        assert_array_equal(NI(query_points, distance_upper_bound=distance_upper_bound),
                           [np.nan, np.nan])

        # case 2 - query p is inf, will return [0, 2]
        distance_upper_bound = np.sqrt(delta ** 2 + delta ** 2) - 1e-7
        p = np.inf
        assert_array_equal(
            NI(query_points, distance_upper_bound=distance_upper_bound, p=p),
            [0, 2]
        )

        # case 3 - query max_dist is larger, so should return non np.nan
        distance_upper_bound = np.sqrt(delta ** 2 + delta ** 2) + 1e-7
        assert_array_equal(
            NI(query_points, distance_upper_bound=distance_upper_bound),
            [0, 2]
        )

    def test_nearest_query_valid_inputs(self):
        nd = np.array([[0, 1, 0, 1],
                       [0, 0, 1, 1],
                       [0, 1, 1, 2]])
        NI = NearestNDInterpolator((nd[0], nd[1]), nd[2])
        with assert_raises(TypeError):
            NI([0.5, 0.5], query_options="not a dictionary")


class TestNDInterpolators:
    @parametrize_interpolators
    def test_broadcastable_input(self, interpolator):
        # input data
        np.random.seed(0)
        x = np.random.random(10)
        y = np.random.random(10)
        z = np.hypot(x, y)

        # x-y grid for interpolation
        X = np.linspace(min(x), max(x))
        Y = np.linspace(min(y), max(y))
        X, Y = np.meshgrid(X, Y)
        XY = np.vstack((X.ravel(), Y.ravel())).T
        interp = interpolator(list(zip(x, y)), z)
        # single array input
        interp_points0 = interp(XY)
        # tuple input
        interp_points1 = interp((X, Y))
        interp_points2 = interp((X, 0.0))
        # broadcastable input
        interp_points3 = interp(X, Y)
        interp_points4 = interp(X, 0.0)

        assert_equal(interp_points0.size ==
                     interp_points1.size ==
                     interp_points2.size ==
                     interp_points3.size ==
                     interp_points4.size, True)

    @parametrize_interpolators
    def test_read_only(self, interpolator):
        # input data
        np.random.seed(0)
        xy = np.random.random((10, 2))
        x, y = xy[:, 0], xy[:, 1]
        z = np.hypot(x, y)

        # interpolation points
        XY = np.random.random((50, 2))

        xy.setflags(write=False)
        z.setflags(write=False)
        XY.setflags(write=False)

        interp = interpolator(xy, z)
        interp(XY)