Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/11.input_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/11.input_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/5.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/scipy/cluster/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/cluster/__pycache__/hierarchy.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/cluster/__pycache__/vq.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/cluster/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/hierarchy_test_data.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/test_disjoint_set.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/test_hierarchy.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/test_vq.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/cluster/tests/test_disjoint_set.py +202 -0
- venv/lib/python3.10/site-packages/scipy/cluster/tests/test_vq.py +421 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__init__.py +201 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_bsplines.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_cubic.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_fitpack2.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_fitpack_impl.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_fitpack_py.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_interpolate.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_ndbspline.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_ndgriddata.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_pade.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_polyint.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_rbf.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_rbfinterp.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_rgi.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/fitpack.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/fitpack2.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/interpolate.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/ndgriddata.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/polyint.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/rbf.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/_bspl.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/_bsplines.py +2215 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/_cubic.py +970 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/_fitpack.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/_fitpack2.py +2362 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/_fitpack_impl.py +805 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/_fitpack_py.py +796 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/_interpolate.py +2473 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/_ndbspline.py +358 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/_ndgriddata.py +332 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/_pade.py +67 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/_polyint.py +938 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/_ppoly.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/_rbf.py +290 -0
- venv/lib/python3.10/site-packages/scipy/interpolate/_rbfinterp.py +550 -0
ckpts/universal/global_step40/zero/11.input_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a322f1416dfe5118ab829ae03b1ae52eff67c1b1047fdadd230dfcde4661b26
|
3 |
+
size 9372
|
ckpts/universal/global_step40/zero/11.input_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbc015ef43b7e35900effc49169eba511c5ed150c7a219254ba6ccde443569d5
|
3 |
+
size 9387
|
ckpts/universal/global_step40/zero/5.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6f6b67a50f3e2aa755f42e43f2799c14c2150c5a818dc1600d9c109135e5787
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/scipy/cluster/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.09 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/cluster/__pycache__/hierarchy.cpython-310.pyc
ADDED
Binary file (131 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/cluster/__pycache__/vq.cpython-310.pyc
ADDED
Binary file (28.2 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/cluster/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (187 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/hierarchy_test_data.cpython-310.pyc
ADDED
Binary file (4.69 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/test_disjoint_set.cpython-310.pyc
ADDED
Binary file (6.21 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/test_hierarchy.cpython-310.pyc
ADDED
Binary file (41.4 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/cluster/tests/__pycache__/test_vq.cpython-310.pyc
ADDED
Binary file (17 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/cluster/tests/test_disjoint_set.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
from pytest import raises as assert_raises
|
3 |
+
import numpy as np
|
4 |
+
from scipy.cluster.hierarchy import DisjointSet
|
5 |
+
import string
|
6 |
+
|
7 |
+
|
8 |
+
def generate_random_token():
|
9 |
+
k = len(string.ascii_letters)
|
10 |
+
tokens = list(np.arange(k, dtype=int))
|
11 |
+
tokens += list(np.arange(k, dtype=float))
|
12 |
+
tokens += list(string.ascii_letters)
|
13 |
+
tokens += [None for i in range(k)]
|
14 |
+
tokens = np.array(tokens, dtype=object)
|
15 |
+
rng = np.random.RandomState(seed=0)
|
16 |
+
|
17 |
+
while 1:
|
18 |
+
size = rng.randint(1, 3)
|
19 |
+
element = rng.choice(tokens, size)
|
20 |
+
if size == 1:
|
21 |
+
yield element[0]
|
22 |
+
else:
|
23 |
+
yield tuple(element)
|
24 |
+
|
25 |
+
|
26 |
+
def get_elements(n):
|
27 |
+
# dict is deterministic without difficulty of comparing numpy ints
|
28 |
+
elements = {}
|
29 |
+
for element in generate_random_token():
|
30 |
+
if element not in elements:
|
31 |
+
elements[element] = len(elements)
|
32 |
+
if len(elements) >= n:
|
33 |
+
break
|
34 |
+
return list(elements.keys())
|
35 |
+
|
36 |
+
|
37 |
+
def test_init():
|
38 |
+
n = 10
|
39 |
+
elements = get_elements(n)
|
40 |
+
dis = DisjointSet(elements)
|
41 |
+
assert dis.n_subsets == n
|
42 |
+
assert list(dis) == elements
|
43 |
+
|
44 |
+
|
45 |
+
def test_len():
|
46 |
+
n = 10
|
47 |
+
elements = get_elements(n)
|
48 |
+
dis = DisjointSet(elements)
|
49 |
+
assert len(dis) == n
|
50 |
+
|
51 |
+
dis.add("dummy")
|
52 |
+
assert len(dis) == n + 1
|
53 |
+
|
54 |
+
|
55 |
+
@pytest.mark.parametrize("n", [10, 100])
|
56 |
+
def test_contains(n):
|
57 |
+
elements = get_elements(n)
|
58 |
+
dis = DisjointSet(elements)
|
59 |
+
for x in elements:
|
60 |
+
assert x in dis
|
61 |
+
|
62 |
+
assert "dummy" not in dis
|
63 |
+
|
64 |
+
|
65 |
+
@pytest.mark.parametrize("n", [10, 100])
|
66 |
+
def test_add(n):
|
67 |
+
elements = get_elements(n)
|
68 |
+
dis1 = DisjointSet(elements)
|
69 |
+
|
70 |
+
dis2 = DisjointSet()
|
71 |
+
for i, x in enumerate(elements):
|
72 |
+
dis2.add(x)
|
73 |
+
assert len(dis2) == i + 1
|
74 |
+
|
75 |
+
# test idempotency by adding element again
|
76 |
+
dis2.add(x)
|
77 |
+
assert len(dis2) == i + 1
|
78 |
+
|
79 |
+
assert list(dis1) == list(dis2)
|
80 |
+
|
81 |
+
|
82 |
+
def test_element_not_present():
|
83 |
+
elements = get_elements(n=10)
|
84 |
+
dis = DisjointSet(elements)
|
85 |
+
|
86 |
+
with assert_raises(KeyError):
|
87 |
+
dis["dummy"]
|
88 |
+
|
89 |
+
with assert_raises(KeyError):
|
90 |
+
dis.merge(elements[0], "dummy")
|
91 |
+
|
92 |
+
with assert_raises(KeyError):
|
93 |
+
dis.connected(elements[0], "dummy")
|
94 |
+
|
95 |
+
|
96 |
+
@pytest.mark.parametrize("direction", ["forwards", "backwards"])
|
97 |
+
@pytest.mark.parametrize("n", [10, 100])
|
98 |
+
def test_linear_union_sequence(n, direction):
|
99 |
+
elements = get_elements(n)
|
100 |
+
dis = DisjointSet(elements)
|
101 |
+
assert elements == list(dis)
|
102 |
+
|
103 |
+
indices = list(range(n - 1))
|
104 |
+
if direction == "backwards":
|
105 |
+
indices = indices[::-1]
|
106 |
+
|
107 |
+
for it, i in enumerate(indices):
|
108 |
+
assert not dis.connected(elements[i], elements[i + 1])
|
109 |
+
assert dis.merge(elements[i], elements[i + 1])
|
110 |
+
assert dis.connected(elements[i], elements[i + 1])
|
111 |
+
assert dis.n_subsets == n - 1 - it
|
112 |
+
|
113 |
+
roots = [dis[i] for i in elements]
|
114 |
+
if direction == "forwards":
|
115 |
+
assert all(elements[0] == r for r in roots)
|
116 |
+
else:
|
117 |
+
assert all(elements[-2] == r for r in roots)
|
118 |
+
assert not dis.merge(elements[0], elements[-1])
|
119 |
+
|
120 |
+
|
121 |
+
@pytest.mark.parametrize("n", [10, 100])
|
122 |
+
def test_self_unions(n):
|
123 |
+
elements = get_elements(n)
|
124 |
+
dis = DisjointSet(elements)
|
125 |
+
|
126 |
+
for x in elements:
|
127 |
+
assert dis.connected(x, x)
|
128 |
+
assert not dis.merge(x, x)
|
129 |
+
assert dis.connected(x, x)
|
130 |
+
assert dis.n_subsets == len(elements)
|
131 |
+
|
132 |
+
assert elements == list(dis)
|
133 |
+
roots = [dis[x] for x in elements]
|
134 |
+
assert elements == roots
|
135 |
+
|
136 |
+
|
137 |
+
@pytest.mark.parametrize("order", ["ab", "ba"])
|
138 |
+
@pytest.mark.parametrize("n", [10, 100])
|
139 |
+
def test_equal_size_ordering(n, order):
|
140 |
+
elements = get_elements(n)
|
141 |
+
dis = DisjointSet(elements)
|
142 |
+
|
143 |
+
rng = np.random.RandomState(seed=0)
|
144 |
+
indices = np.arange(n)
|
145 |
+
rng.shuffle(indices)
|
146 |
+
|
147 |
+
for i in range(0, len(indices), 2):
|
148 |
+
a, b = elements[indices[i]], elements[indices[i + 1]]
|
149 |
+
if order == "ab":
|
150 |
+
assert dis.merge(a, b)
|
151 |
+
else:
|
152 |
+
assert dis.merge(b, a)
|
153 |
+
|
154 |
+
expected = elements[min(indices[i], indices[i + 1])]
|
155 |
+
assert dis[a] == expected
|
156 |
+
assert dis[b] == expected
|
157 |
+
|
158 |
+
|
159 |
+
@pytest.mark.parametrize("kmax", [5, 10])
|
160 |
+
def test_binary_tree(kmax):
|
161 |
+
n = 2**kmax
|
162 |
+
elements = get_elements(n)
|
163 |
+
dis = DisjointSet(elements)
|
164 |
+
rng = np.random.RandomState(seed=0)
|
165 |
+
|
166 |
+
for k in 2**np.arange(kmax):
|
167 |
+
for i in range(0, n, 2 * k):
|
168 |
+
r1, r2 = rng.randint(0, k, size=2)
|
169 |
+
a, b = elements[i + r1], elements[i + k + r2]
|
170 |
+
assert not dis.connected(a, b)
|
171 |
+
assert dis.merge(a, b)
|
172 |
+
assert dis.connected(a, b)
|
173 |
+
|
174 |
+
assert elements == list(dis)
|
175 |
+
roots = [dis[i] for i in elements]
|
176 |
+
expected_indices = np.arange(n) - np.arange(n) % (2 * k)
|
177 |
+
expected = [elements[i] for i in expected_indices]
|
178 |
+
assert roots == expected
|
179 |
+
|
180 |
+
|
181 |
+
@pytest.mark.parametrize("n", [10, 100])
|
182 |
+
def test_subsets(n):
|
183 |
+
elements = get_elements(n)
|
184 |
+
dis = DisjointSet(elements)
|
185 |
+
|
186 |
+
rng = np.random.RandomState(seed=0)
|
187 |
+
for i, j in rng.randint(0, n, (n, 2)):
|
188 |
+
x = elements[i]
|
189 |
+
y = elements[j]
|
190 |
+
|
191 |
+
expected = {element for element in dis if {dis[element]} == {dis[x]}}
|
192 |
+
assert dis.subset_size(x) == len(dis.subset(x))
|
193 |
+
assert expected == dis.subset(x)
|
194 |
+
|
195 |
+
expected = {dis[element]: set() for element in dis}
|
196 |
+
for element in dis:
|
197 |
+
expected[dis[element]].add(element)
|
198 |
+
expected = list(expected.values())
|
199 |
+
assert expected == dis.subsets()
|
200 |
+
|
201 |
+
dis.merge(x, y)
|
202 |
+
assert dis.subset(x) == dis.subset(y)
|
venv/lib/python3.10/site-packages/scipy/cluster/tests/test_vq.py
ADDED
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
import sys
|
3 |
+
from copy import deepcopy
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
from numpy.testing import (
|
7 |
+
assert_array_equal, assert_equal, assert_, suppress_warnings
|
8 |
+
)
|
9 |
+
import pytest
|
10 |
+
from pytest import raises as assert_raises
|
11 |
+
|
12 |
+
from scipy.cluster.vq import (kmeans, kmeans2, py_vq, vq, whiten,
|
13 |
+
ClusterError, _krandinit)
|
14 |
+
from scipy.cluster import _vq
|
15 |
+
from scipy.conftest import array_api_compatible
|
16 |
+
from scipy.sparse._sputils import matrix
|
17 |
+
|
18 |
+
from scipy._lib._array_api import (
|
19 |
+
SCIPY_ARRAY_API, copy, cov, xp_assert_close, xp_assert_equal
|
20 |
+
)
|
21 |
+
|
22 |
+
pytestmark = [array_api_compatible, pytest.mark.usefixtures("skip_if_array_api")]
|
23 |
+
skip_if_array_api = pytest.mark.skip_if_array_api
|
24 |
+
|
25 |
+
TESTDATA_2D = np.array([
|
26 |
+
-2.2, 1.17, -1.63, 1.69, -2.04, 4.38, -3.09, 0.95, -1.7, 4.79, -1.68, 0.68,
|
27 |
+
-2.26, 3.34, -2.29, 2.55, -1.72, -0.72, -1.99, 2.34, -2.75, 3.43, -2.45,
|
28 |
+
2.41, -4.26, 3.65, -1.57, 1.87, -1.96, 4.03, -3.01, 3.86, -2.53, 1.28,
|
29 |
+
-4.0, 3.95, -1.62, 1.25, -3.42, 3.17, -1.17, 0.12, -3.03, -0.27, -2.07,
|
30 |
+
-0.55, -1.17, 1.34, -2.82, 3.08, -2.44, 0.24, -1.71, 2.48, -5.23, 4.29,
|
31 |
+
-2.08, 3.69, -1.89, 3.62, -2.09, 0.26, -0.92, 1.07, -2.25, 0.88, -2.25,
|
32 |
+
2.02, -4.31, 3.86, -2.03, 3.42, -2.76, 0.3, -2.48, -0.29, -3.42, 3.21,
|
33 |
+
-2.3, 1.73, -2.84, 0.69, -1.81, 2.48, -5.24, 4.52, -2.8, 1.31, -1.67,
|
34 |
+
-2.34, -1.18, 2.17, -2.17, 2.82, -1.85, 2.25, -2.45, 1.86, -6.79, 3.94,
|
35 |
+
-2.33, 1.89, -1.55, 2.08, -1.36, 0.93, -2.51, 2.74, -2.39, 3.92, -3.33,
|
36 |
+
2.99, -2.06, -0.9, -2.83, 3.35, -2.59, 3.05, -2.36, 1.85, -1.69, 1.8,
|
37 |
+
-1.39, 0.66, -2.06, 0.38, -1.47, 0.44, -4.68, 3.77, -5.58, 3.44, -2.29,
|
38 |
+
2.24, -1.04, -0.38, -1.85, 4.23, -2.88, 0.73, -2.59, 1.39, -1.34, 1.75,
|
39 |
+
-1.95, 1.3, -2.45, 3.09, -1.99, 3.41, -5.55, 5.21, -1.73, 2.52, -2.17,
|
40 |
+
0.85, -2.06, 0.49, -2.54, 2.07, -2.03, 1.3, -3.23, 3.09, -1.55, 1.44,
|
41 |
+
-0.81, 1.1, -2.99, 2.92, -1.59, 2.18, -2.45, -0.73, -3.12, -1.3, -2.83,
|
42 |
+
0.2, -2.77, 3.24, -1.98, 1.6, -4.59, 3.39, -4.85, 3.75, -2.25, 1.71, -3.28,
|
43 |
+
3.38, -1.74, 0.88, -2.41, 1.92, -2.24, 1.19, -2.48, 1.06, -1.68, -0.62,
|
44 |
+
-1.3, 0.39, -1.78, 2.35, -3.54, 2.44, -1.32, 0.66, -2.38, 2.76, -2.35,
|
45 |
+
3.95, -1.86, 4.32, -2.01, -1.23, -1.79, 2.76, -2.13, -0.13, -5.25, 3.84,
|
46 |
+
-2.24, 1.59, -4.85, 2.96, -2.41, 0.01, -0.43, 0.13, -3.92, 2.91, -1.75,
|
47 |
+
-0.53, -1.69, 1.69, -1.09, 0.15, -2.11, 2.17, -1.53, 1.22, -2.1, -0.86,
|
48 |
+
-2.56, 2.28, -3.02, 3.33, -1.12, 3.86, -2.18, -1.19, -3.03, 0.79, -0.83,
|
49 |
+
0.97, -3.19, 1.45, -1.34, 1.28, -2.52, 4.22, -4.53, 3.22, -1.97, 1.75,
|
50 |
+
-2.36, 3.19, -0.83, 1.53, -1.59, 1.86, -2.17, 2.3, -1.63, 2.71, -2.03,
|
51 |
+
3.75, -2.57, -0.6, -1.47, 1.33, -1.95, 0.7, -1.65, 1.27, -1.42, 1.09, -3.0,
|
52 |
+
3.87, -2.51, 3.06, -2.6, 0.74, -1.08, -0.03, -2.44, 1.31, -2.65, 2.99,
|
53 |
+
-1.84, 1.65, -4.76, 3.75, -2.07, 3.98, -2.4, 2.67, -2.21, 1.49, -1.21,
|
54 |
+
1.22, -5.29, 2.38, -2.85, 2.28, -5.6, 3.78, -2.7, 0.8, -1.81, 3.5, -3.75,
|
55 |
+
4.17, -1.29, 2.99, -5.92, 3.43, -1.83, 1.23, -1.24, -1.04, -2.56, 2.37,
|
56 |
+
-3.26, 0.39, -4.63, 2.51, -4.52, 3.04, -1.7, 0.36, -1.41, 0.04, -2.1, 1.0,
|
57 |
+
-1.87, 3.78, -4.32, 3.59, -2.24, 1.38, -1.99, -0.22, -1.87, 1.95, -0.84,
|
58 |
+
2.17, -5.38, 3.56, -1.27, 2.9, -1.79, 3.31, -5.47, 3.85, -1.44, 3.69,
|
59 |
+
-2.02, 0.37, -1.29, 0.33, -2.34, 2.56, -1.74, -1.27, -1.97, 1.22, -2.51,
|
60 |
+
-0.16, -1.64, -0.96, -2.99, 1.4, -1.53, 3.31, -2.24, 0.45, -2.46, 1.71,
|
61 |
+
-2.88, 1.56, -1.63, 1.46, -1.41, 0.68, -1.96, 2.76, -1.61,
|
62 |
+
2.11]).reshape((200, 2))
|
63 |
+
|
64 |
+
|
65 |
+
# Global data
|
66 |
+
X = np.array([[3.0, 3], [4, 3], [4, 2],
|
67 |
+
[9, 2], [5, 1], [6, 2], [9, 4],
|
68 |
+
[5, 2], [5, 4], [7, 4], [6, 5]])
|
69 |
+
|
70 |
+
CODET1 = np.array([[3.0000, 3.0000],
|
71 |
+
[6.2000, 4.0000],
|
72 |
+
[5.8000, 1.8000]])
|
73 |
+
|
74 |
+
CODET2 = np.array([[11.0/3, 8.0/3],
|
75 |
+
[6.7500, 4.2500],
|
76 |
+
[6.2500, 1.7500]])
|
77 |
+
|
78 |
+
LABEL1 = np.array([0, 1, 2, 2, 2, 2, 1, 2, 1, 1, 1])
|
79 |
+
|
80 |
+
|
81 |
+
class TestWhiten:
|
82 |
+
|
83 |
+
def test_whiten(self, xp):
|
84 |
+
desired = xp.asarray([[5.08738849, 2.97091878],
|
85 |
+
[3.19909255, 0.69660580],
|
86 |
+
[4.51041982, 0.02640918],
|
87 |
+
[4.38567074, 0.95120889],
|
88 |
+
[2.32191480, 1.63195503]])
|
89 |
+
|
90 |
+
obs = xp.asarray([[0.98744510, 0.82766775],
|
91 |
+
[0.62093317, 0.19406729],
|
92 |
+
[0.87545741, 0.00735733],
|
93 |
+
[0.85124403, 0.26499712],
|
94 |
+
[0.45067590, 0.45464607]])
|
95 |
+
xp_assert_close(whiten(obs), desired, rtol=1e-5)
|
96 |
+
|
97 |
+
def test_whiten_zero_std(self, xp):
|
98 |
+
desired = xp.asarray([[0., 1.0, 2.86666544],
|
99 |
+
[0., 1.0, 1.32460034],
|
100 |
+
[0., 1.0, 3.74382172]])
|
101 |
+
|
102 |
+
obs = xp.asarray([[0., 1., 0.74109533],
|
103 |
+
[0., 1., 0.34243798],
|
104 |
+
[0., 1., 0.96785929]])
|
105 |
+
with warnings.catch_warnings(record=True) as w:
|
106 |
+
warnings.simplefilter('always')
|
107 |
+
|
108 |
+
xp_assert_close(whiten(obs), desired, rtol=1e-5)
|
109 |
+
|
110 |
+
assert_equal(len(w), 1)
|
111 |
+
assert_(issubclass(w[-1].category, RuntimeWarning))
|
112 |
+
|
113 |
+
def test_whiten_not_finite(self, xp):
|
114 |
+
for bad_value in xp.nan, xp.inf, -xp.inf:
|
115 |
+
obs = xp.asarray([[0.98744510, bad_value],
|
116 |
+
[0.62093317, 0.19406729],
|
117 |
+
[0.87545741, 0.00735733],
|
118 |
+
[0.85124403, 0.26499712],
|
119 |
+
[0.45067590, 0.45464607]])
|
120 |
+
assert_raises(ValueError, whiten, obs)
|
121 |
+
|
122 |
+
@pytest.mark.skipif(SCIPY_ARRAY_API,
|
123 |
+
reason='`np.matrix` unsupported in array API mode')
|
124 |
+
def test_whiten_not_finite_matrix(self, xp):
|
125 |
+
for bad_value in np.nan, np.inf, -np.inf:
|
126 |
+
obs = matrix([[0.98744510, bad_value],
|
127 |
+
[0.62093317, 0.19406729],
|
128 |
+
[0.87545741, 0.00735733],
|
129 |
+
[0.85124403, 0.26499712],
|
130 |
+
[0.45067590, 0.45464607]])
|
131 |
+
assert_raises(ValueError, whiten, obs)
|
132 |
+
|
133 |
+
|
134 |
+
class TestVq:
|
135 |
+
|
136 |
+
@skip_if_array_api(cpu_only=True)
|
137 |
+
def test_py_vq(self, xp):
|
138 |
+
initc = np.concatenate([[X[0]], [X[1]], [X[2]]])
|
139 |
+
# label1.dtype varies between int32 and int64 over platforms
|
140 |
+
label1 = py_vq(xp.asarray(X), xp.asarray(initc))[0]
|
141 |
+
xp_assert_equal(label1, xp.asarray(LABEL1, dtype=xp.int64),
|
142 |
+
check_dtype=False)
|
143 |
+
|
144 |
+
@pytest.mark.skipif(SCIPY_ARRAY_API,
|
145 |
+
reason='`np.matrix` unsupported in array API mode')
|
146 |
+
def test_py_vq_matrix(self, xp):
|
147 |
+
initc = np.concatenate([[X[0]], [X[1]], [X[2]]])
|
148 |
+
# label1.dtype varies between int32 and int64 over platforms
|
149 |
+
label1 = py_vq(matrix(X), matrix(initc))[0]
|
150 |
+
assert_array_equal(label1, LABEL1)
|
151 |
+
|
152 |
+
@skip_if_array_api(np_only=True, reasons=['`_vq` only supports NumPy backend'])
|
153 |
+
def test_vq(self, xp):
|
154 |
+
initc = np.concatenate([[X[0]], [X[1]], [X[2]]])
|
155 |
+
label1, _ = _vq.vq(xp.asarray(X), xp.asarray(initc))
|
156 |
+
assert_array_equal(label1, LABEL1)
|
157 |
+
_, _ = vq(xp.asarray(X), xp.asarray(initc))
|
158 |
+
|
159 |
+
@pytest.mark.skipif(SCIPY_ARRAY_API,
|
160 |
+
reason='`np.matrix` unsupported in array API mode')
|
161 |
+
def test_vq_matrix(self, xp):
|
162 |
+
initc = np.concatenate([[X[0]], [X[1]], [X[2]]])
|
163 |
+
label1, _ = _vq.vq(matrix(X), matrix(initc))
|
164 |
+
assert_array_equal(label1, LABEL1)
|
165 |
+
_, _ = vq(matrix(X), matrix(initc))
|
166 |
+
|
167 |
+
@skip_if_array_api(cpu_only=True)
|
168 |
+
def test_vq_1d(self, xp):
|
169 |
+
# Test special rank 1 vq algo, python implementation.
|
170 |
+
data = X[:, 0]
|
171 |
+
initc = data[:3]
|
172 |
+
a, b = _vq.vq(data, initc)
|
173 |
+
data = xp.asarray(data)
|
174 |
+
initc = xp.asarray(initc)
|
175 |
+
ta, tb = py_vq(data[:, np.newaxis], initc[:, np.newaxis])
|
176 |
+
# ta.dtype varies between int32 and int64 over platforms
|
177 |
+
xp_assert_equal(ta, xp.asarray(a, dtype=xp.int64), check_dtype=False)
|
178 |
+
xp_assert_equal(tb, xp.asarray(b))
|
179 |
+
|
180 |
+
@skip_if_array_api(np_only=True, reasons=['`_vq` only supports NumPy backend'])
|
181 |
+
def test__vq_sametype(self, xp):
|
182 |
+
a = xp.asarray([1.0, 2.0], dtype=xp.float64)
|
183 |
+
b = a.astype(xp.float32)
|
184 |
+
assert_raises(TypeError, _vq.vq, a, b)
|
185 |
+
|
186 |
+
@skip_if_array_api(np_only=True, reasons=['`_vq` only supports NumPy backend'])
|
187 |
+
def test__vq_invalid_type(self, xp):
|
188 |
+
a = xp.asarray([1, 2], dtype=int)
|
189 |
+
assert_raises(TypeError, _vq.vq, a, a)
|
190 |
+
|
191 |
+
@skip_if_array_api(cpu_only=True)
|
192 |
+
def test_vq_large_nfeat(self, xp):
|
193 |
+
X = np.random.rand(20, 20)
|
194 |
+
code_book = np.random.rand(3, 20)
|
195 |
+
|
196 |
+
codes0, dis0 = _vq.vq(X, code_book)
|
197 |
+
codes1, dis1 = py_vq(
|
198 |
+
xp.asarray(X), xp.asarray(code_book)
|
199 |
+
)
|
200 |
+
xp_assert_close(dis1, xp.asarray(dis0), rtol=1e-5)
|
201 |
+
# codes1.dtype varies between int32 and int64 over platforms
|
202 |
+
xp_assert_equal(codes1, xp.asarray(codes0, dtype=xp.int64), check_dtype=False)
|
203 |
+
|
204 |
+
X = X.astype(np.float32)
|
205 |
+
code_book = code_book.astype(np.float32)
|
206 |
+
|
207 |
+
codes0, dis0 = _vq.vq(X, code_book)
|
208 |
+
codes1, dis1 = py_vq(
|
209 |
+
xp.asarray(X), xp.asarray(code_book)
|
210 |
+
)
|
211 |
+
xp_assert_close(dis1, xp.asarray(dis0, dtype=xp.float64), rtol=1e-5)
|
212 |
+
# codes1.dtype varies between int32 and int64 over platforms
|
213 |
+
xp_assert_equal(codes1, xp.asarray(codes0, dtype=xp.int64), check_dtype=False)
|
214 |
+
|
215 |
+
@skip_if_array_api(cpu_only=True)
|
216 |
+
def test_vq_large_features(self, xp):
|
217 |
+
X = np.random.rand(10, 5) * 1000000
|
218 |
+
code_book = np.random.rand(2, 5) * 1000000
|
219 |
+
|
220 |
+
codes0, dis0 = _vq.vq(X, code_book)
|
221 |
+
codes1, dis1 = py_vq(
|
222 |
+
xp.asarray(X), xp.asarray(code_book)
|
223 |
+
)
|
224 |
+
xp_assert_close(dis1, xp.asarray(dis0), rtol=1e-5)
|
225 |
+
# codes1.dtype varies between int32 and int64 over platforms
|
226 |
+
xp_assert_equal(codes1, xp.asarray(codes0, dtype=xp.int64), check_dtype=False)
|
227 |
+
|
228 |
+
|
229 |
+
# Whole class skipped on GPU for now;
|
230 |
+
# once pdist/cdist are hooked up for CuPy, more tests will work
|
231 |
+
@skip_if_array_api(cpu_only=True)
|
232 |
+
class TestKMean:
|
233 |
+
|
234 |
+
def test_large_features(self, xp):
|
235 |
+
# Generate a data set with large values, and run kmeans on it to
|
236 |
+
# (regression for 1077).
|
237 |
+
d = 300
|
238 |
+
n = 100
|
239 |
+
|
240 |
+
m1 = np.random.randn(d)
|
241 |
+
m2 = np.random.randn(d)
|
242 |
+
x = 10000 * np.random.randn(n, d) - 20000 * m1
|
243 |
+
y = 10000 * np.random.randn(n, d) + 20000 * m2
|
244 |
+
|
245 |
+
data = np.empty((x.shape[0] + y.shape[0], d), np.float64)
|
246 |
+
data[:x.shape[0]] = x
|
247 |
+
data[x.shape[0]:] = y
|
248 |
+
|
249 |
+
kmeans(xp.asarray(data), 2)
|
250 |
+
|
251 |
+
def test_kmeans_simple(self, xp):
|
252 |
+
np.random.seed(54321)
|
253 |
+
initc = np.concatenate([[X[0]], [X[1]], [X[2]]])
|
254 |
+
code1 = kmeans(xp.asarray(X), xp.asarray(initc), iter=1)[0]
|
255 |
+
xp_assert_close(code1, xp.asarray(CODET2))
|
256 |
+
|
257 |
+
@pytest.mark.skipif(SCIPY_ARRAY_API,
|
258 |
+
reason='`np.matrix` unsupported in array API mode')
|
259 |
+
def test_kmeans_simple_matrix(self, xp):
|
260 |
+
np.random.seed(54321)
|
261 |
+
initc = np.concatenate([[X[0]], [X[1]], [X[2]]])
|
262 |
+
code1 = kmeans(matrix(X), matrix(initc), iter=1)[0]
|
263 |
+
xp_assert_close(code1, CODET2)
|
264 |
+
|
265 |
+
def test_kmeans_lost_cluster(self, xp):
|
266 |
+
# This will cause kmeans to have a cluster with no points.
|
267 |
+
data = xp.asarray(TESTDATA_2D)
|
268 |
+
initk = xp.asarray([[-1.8127404, -0.67128041],
|
269 |
+
[2.04621601, 0.07401111],
|
270 |
+
[-2.31149087, -0.05160469]])
|
271 |
+
|
272 |
+
kmeans(data, initk)
|
273 |
+
with suppress_warnings() as sup:
|
274 |
+
sup.filter(UserWarning,
|
275 |
+
"One of the clusters is empty. Re-run kmeans with a "
|
276 |
+
"different initialization")
|
277 |
+
kmeans2(data, initk, missing='warn')
|
278 |
+
|
279 |
+
assert_raises(ClusterError, kmeans2, data, initk, missing='raise')
|
280 |
+
|
281 |
+
def test_kmeans2_simple(self, xp):
|
282 |
+
np.random.seed(12345678)
|
283 |
+
initc = xp.asarray(np.concatenate([[X[0]], [X[1]], [X[2]]]))
|
284 |
+
arrays = [xp.asarray] if SCIPY_ARRAY_API else [np.asarray, matrix]
|
285 |
+
for tp in arrays:
|
286 |
+
code1 = kmeans2(tp(X), tp(initc), iter=1)[0]
|
287 |
+
code2 = kmeans2(tp(X), tp(initc), iter=2)[0]
|
288 |
+
|
289 |
+
xp_assert_close(code1, xp.asarray(CODET1))
|
290 |
+
xp_assert_close(code2, xp.asarray(CODET2))
|
291 |
+
|
292 |
+
@pytest.mark.skipif(SCIPY_ARRAY_API,
|
293 |
+
reason='`np.matrix` unsupported in array API mode')
|
294 |
+
def test_kmeans2_simple_matrix(self, xp):
|
295 |
+
np.random.seed(12345678)
|
296 |
+
initc = xp.asarray(np.concatenate([[X[0]], [X[1]], [X[2]]]))
|
297 |
+
code1 = kmeans2(matrix(X), matrix(initc), iter=1)[0]
|
298 |
+
code2 = kmeans2(matrix(X), matrix(initc), iter=2)[0]
|
299 |
+
|
300 |
+
xp_assert_close(code1, CODET1)
|
301 |
+
xp_assert_close(code2, CODET2)
|
302 |
+
|
303 |
+
def test_kmeans2_rank1(self, xp):
|
304 |
+
data = xp.asarray(TESTDATA_2D)
|
305 |
+
data1 = data[:, 0]
|
306 |
+
|
307 |
+
initc = data1[:3]
|
308 |
+
code = copy(initc, xp=xp)
|
309 |
+
kmeans2(data1, code, iter=1)[0]
|
310 |
+
kmeans2(data1, code, iter=2)[0]
|
311 |
+
|
312 |
+
def test_kmeans2_rank1_2(self, xp):
|
313 |
+
data = xp.asarray(TESTDATA_2D)
|
314 |
+
data1 = data[:, 0]
|
315 |
+
kmeans2(data1, 2, iter=1)
|
316 |
+
|
317 |
+
def test_kmeans2_high_dim(self, xp):
|
318 |
+
# test kmeans2 when the number of dimensions exceeds the number
|
319 |
+
# of input points
|
320 |
+
data = xp.asarray(TESTDATA_2D)
|
321 |
+
data = xp.reshape(data, (20, 20))[:10, :]
|
322 |
+
kmeans2(data, 2)
|
323 |
+
|
324 |
+
def test_kmeans2_init(self, xp):
|
325 |
+
np.random.seed(12345)
|
326 |
+
data = xp.asarray(TESTDATA_2D)
|
327 |
+
k = 3
|
328 |
+
|
329 |
+
kmeans2(data, k, minit='points')
|
330 |
+
kmeans2(data[:, 1], k, minit='points') # special case (1-D)
|
331 |
+
|
332 |
+
kmeans2(data, k, minit='++')
|
333 |
+
kmeans2(data[:, 1], k, minit='++') # special case (1-D)
|
334 |
+
|
335 |
+
# minit='random' can give warnings, filter those
|
336 |
+
with suppress_warnings() as sup:
|
337 |
+
sup.filter(message="One of the clusters is empty. Re-run.")
|
338 |
+
kmeans2(data, k, minit='random')
|
339 |
+
kmeans2(data[:, 1], k, minit='random') # special case (1-D)
|
340 |
+
|
341 |
+
@pytest.mark.skipif(sys.platform == 'win32',
|
342 |
+
reason='Fails with MemoryError in Wine.')
|
343 |
+
def test_krandinit(self, xp):
|
344 |
+
data = xp.asarray(TESTDATA_2D)
|
345 |
+
datas = [xp.reshape(data, (200, 2)),
|
346 |
+
xp.reshape(data, (20, 20))[:10, :]]
|
347 |
+
k = int(1e6)
|
348 |
+
for data in datas:
|
349 |
+
rng = np.random.default_rng(1234)
|
350 |
+
init = _krandinit(data, k, rng, xp)
|
351 |
+
orig_cov = cov(data.T)
|
352 |
+
init_cov = cov(init.T)
|
353 |
+
xp_assert_close(orig_cov, init_cov, atol=1e-2)
|
354 |
+
|
355 |
+
def test_kmeans2_empty(self, xp):
|
356 |
+
# Regression test for gh-1032.
|
357 |
+
assert_raises(ValueError, kmeans2, xp.asarray([]), 2)
|
358 |
+
|
359 |
+
def test_kmeans_0k(self, xp):
|
360 |
+
# Regression test for gh-1073: fail when k arg is 0.
|
361 |
+
assert_raises(ValueError, kmeans, xp.asarray(X), 0)
|
362 |
+
assert_raises(ValueError, kmeans2, xp.asarray(X), 0)
|
363 |
+
assert_raises(ValueError, kmeans2, xp.asarray(X), xp.asarray([]))
|
364 |
+
|
365 |
+
def test_kmeans_large_thres(self, xp):
|
366 |
+
# Regression test for gh-1774
|
367 |
+
x = xp.asarray([1, 2, 3, 4, 10], dtype=xp.float64)
|
368 |
+
res = kmeans(x, 1, thresh=1e16)
|
369 |
+
xp_assert_close(res[0], xp.asarray([4.], dtype=xp.float64))
|
370 |
+
xp_assert_close(res[1], xp.asarray(2.3999999999999999, dtype=xp.float64)[()])
|
371 |
+
|
372 |
+
def test_kmeans2_kpp_low_dim(self, xp):
|
373 |
+
# Regression test for gh-11462
|
374 |
+
prev_res = xp.asarray([[-1.95266667, 0.898],
|
375 |
+
[-3.153375, 3.3945]], dtype=xp.float64)
|
376 |
+
np.random.seed(42)
|
377 |
+
res, _ = kmeans2(xp.asarray(TESTDATA_2D), 2, minit='++')
|
378 |
+
xp_assert_close(res, prev_res)
|
379 |
+
|
380 |
+
def test_kmeans2_kpp_high_dim(self, xp):
|
381 |
+
# Regression test for gh-11462
|
382 |
+
n_dim = 100
|
383 |
+
size = 10
|
384 |
+
centers = np.vstack([5 * np.ones(n_dim),
|
385 |
+
-5 * np.ones(n_dim)])
|
386 |
+
np.random.seed(42)
|
387 |
+
data = np.vstack([
|
388 |
+
np.random.multivariate_normal(centers[0], np.eye(n_dim), size=size),
|
389 |
+
np.random.multivariate_normal(centers[1], np.eye(n_dim), size=size)
|
390 |
+
])
|
391 |
+
|
392 |
+
data = xp.asarray(data)
|
393 |
+
res, _ = kmeans2(data, 2, minit='++')
|
394 |
+
xp_assert_equal(xp.sign(res), xp.sign(xp.asarray(centers)))
|
395 |
+
|
396 |
+
def test_kmeans_diff_convergence(self, xp):
|
397 |
+
# Regression test for gh-8727
|
398 |
+
obs = xp.asarray([-3, -1, 0, 1, 1, 8], dtype=xp.float64)
|
399 |
+
res = kmeans(obs, xp.asarray([-3., 0.99]))
|
400 |
+
xp_assert_close(res[0], xp.asarray([-0.4, 8.], dtype=xp.float64))
|
401 |
+
xp_assert_close(res[1], xp.asarray(1.0666666666666667, dtype=xp.float64)[()])
|
402 |
+
|
403 |
+
def test_kmeans_and_kmeans2_random_seed(self, xp):
|
404 |
+
|
405 |
+
seed_list = [
|
406 |
+
1234, np.random.RandomState(1234), np.random.default_rng(1234)
|
407 |
+
]
|
408 |
+
|
409 |
+
for seed in seed_list:
|
410 |
+
seed1 = deepcopy(seed)
|
411 |
+
seed2 = deepcopy(seed)
|
412 |
+
data = xp.asarray(TESTDATA_2D)
|
413 |
+
# test for kmeans
|
414 |
+
res1, _ = kmeans(data, 2, seed=seed1)
|
415 |
+
res2, _ = kmeans(data, 2, seed=seed2)
|
416 |
+
xp_assert_close(res1, res2, xp=xp) # should be same results
|
417 |
+
# test for kmeans2
|
418 |
+
for minit in ["random", "points", "++"]:
|
419 |
+
res1, _ = kmeans2(data, 2, minit=minit, seed=seed1)
|
420 |
+
res2, _ = kmeans2(data, 2, minit=minit, seed=seed2)
|
421 |
+
xp_assert_close(res1, res2, xp=xp) # should be same results
|
venv/lib/python3.10/site-packages/scipy/interpolate/__init__.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
========================================
|
3 |
+
Interpolation (:mod:`scipy.interpolate`)
|
4 |
+
========================================
|
5 |
+
|
6 |
+
.. currentmodule:: scipy.interpolate
|
7 |
+
|
8 |
+
Sub-package for objects used in interpolation.
|
9 |
+
|
10 |
+
As listed below, this sub-package contains spline functions and classes,
|
11 |
+
1-D and multidimensional (univariate and multivariate)
|
12 |
+
interpolation classes, Lagrange and Taylor polynomial interpolators, and
|
13 |
+
wrappers for `FITPACK <http://www.netlib.org/dierckx/>`__
|
14 |
+
and DFITPACK functions.
|
15 |
+
|
16 |
+
Univariate interpolation
|
17 |
+
========================
|
18 |
+
|
19 |
+
.. autosummary::
|
20 |
+
:toctree: generated/
|
21 |
+
|
22 |
+
interp1d
|
23 |
+
BarycentricInterpolator
|
24 |
+
KroghInterpolator
|
25 |
+
barycentric_interpolate
|
26 |
+
krogh_interpolate
|
27 |
+
pchip_interpolate
|
28 |
+
CubicHermiteSpline
|
29 |
+
PchipInterpolator
|
30 |
+
Akima1DInterpolator
|
31 |
+
CubicSpline
|
32 |
+
PPoly
|
33 |
+
BPoly
|
34 |
+
|
35 |
+
|
36 |
+
Multivariate interpolation
|
37 |
+
==========================
|
38 |
+
|
39 |
+
Unstructured data:
|
40 |
+
|
41 |
+
.. autosummary::
|
42 |
+
:toctree: generated/
|
43 |
+
|
44 |
+
griddata
|
45 |
+
LinearNDInterpolator
|
46 |
+
NearestNDInterpolator
|
47 |
+
CloughTocher2DInterpolator
|
48 |
+
RBFInterpolator
|
49 |
+
Rbf
|
50 |
+
interp2d
|
51 |
+
|
52 |
+
For data on a grid:
|
53 |
+
|
54 |
+
.. autosummary::
|
55 |
+
:toctree: generated/
|
56 |
+
|
57 |
+
interpn
|
58 |
+
RegularGridInterpolator
|
59 |
+
RectBivariateSpline
|
60 |
+
|
61 |
+
.. seealso::
|
62 |
+
|
63 |
+
`scipy.ndimage.map_coordinates`
|
64 |
+
|
65 |
+
Tensor product polynomials:
|
66 |
+
|
67 |
+
.. autosummary::
|
68 |
+
:toctree: generated/
|
69 |
+
|
70 |
+
NdPPoly
|
71 |
+
NdBSpline
|
72 |
+
|
73 |
+
1-D Splines
|
74 |
+
===========
|
75 |
+
|
76 |
+
.. autosummary::
|
77 |
+
:toctree: generated/
|
78 |
+
|
79 |
+
BSpline
|
80 |
+
make_interp_spline
|
81 |
+
make_lsq_spline
|
82 |
+
make_smoothing_spline
|
83 |
+
|
84 |
+
Functional interface to FITPACK routines:
|
85 |
+
|
86 |
+
.. autosummary::
|
87 |
+
:toctree: generated/
|
88 |
+
|
89 |
+
splrep
|
90 |
+
splprep
|
91 |
+
splev
|
92 |
+
splint
|
93 |
+
sproot
|
94 |
+
spalde
|
95 |
+
splder
|
96 |
+
splantider
|
97 |
+
insert
|
98 |
+
|
99 |
+
Object-oriented FITPACK interface:
|
100 |
+
|
101 |
+
.. autosummary::
|
102 |
+
:toctree: generated/
|
103 |
+
|
104 |
+
UnivariateSpline
|
105 |
+
InterpolatedUnivariateSpline
|
106 |
+
LSQUnivariateSpline
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
2-D Splines
|
111 |
+
===========
|
112 |
+
|
113 |
+
For data on a grid:
|
114 |
+
|
115 |
+
.. autosummary::
|
116 |
+
:toctree: generated/
|
117 |
+
|
118 |
+
RectBivariateSpline
|
119 |
+
RectSphereBivariateSpline
|
120 |
+
|
121 |
+
For unstructured data:
|
122 |
+
|
123 |
+
.. autosummary::
|
124 |
+
:toctree: generated/
|
125 |
+
|
126 |
+
BivariateSpline
|
127 |
+
SmoothBivariateSpline
|
128 |
+
SmoothSphereBivariateSpline
|
129 |
+
LSQBivariateSpline
|
130 |
+
LSQSphereBivariateSpline
|
131 |
+
|
132 |
+
Low-level interface to FITPACK functions:
|
133 |
+
|
134 |
+
.. autosummary::
|
135 |
+
:toctree: generated/
|
136 |
+
|
137 |
+
bisplrep
|
138 |
+
bisplev
|
139 |
+
|
140 |
+
Additional tools
|
141 |
+
================
|
142 |
+
|
143 |
+
.. autosummary::
|
144 |
+
:toctree: generated/
|
145 |
+
|
146 |
+
lagrange
|
147 |
+
approximate_taylor_polynomial
|
148 |
+
pade
|
149 |
+
|
150 |
+
.. seealso::
|
151 |
+
|
152 |
+
`scipy.ndimage.map_coordinates`,
|
153 |
+
`scipy.ndimage.spline_filter`,
|
154 |
+
`scipy.signal.resample`,
|
155 |
+
`scipy.signal.bspline`,
|
156 |
+
`scipy.signal.gauss_spline`,
|
157 |
+
`scipy.signal.qspline1d`,
|
158 |
+
`scipy.signal.cspline1d`,
|
159 |
+
`scipy.signal.qspline1d_eval`,
|
160 |
+
`scipy.signal.cspline1d_eval`,
|
161 |
+
`scipy.signal.qspline2d`,
|
162 |
+
`scipy.signal.cspline2d`.
|
163 |
+
|
164 |
+
``pchip`` is an alias of `PchipInterpolator` for backward compatibility
|
165 |
+
(should not be used in new code).
|
166 |
+
"""
|
167 |
+
from ._interpolate import *
|
168 |
+
from ._fitpack_py import *
|
169 |
+
|
170 |
+
# New interface to fitpack library:
|
171 |
+
from ._fitpack2 import *
|
172 |
+
|
173 |
+
from ._rbf import Rbf
|
174 |
+
|
175 |
+
from ._rbfinterp import *
|
176 |
+
|
177 |
+
from ._polyint import *
|
178 |
+
|
179 |
+
from ._cubic import *
|
180 |
+
|
181 |
+
from ._ndgriddata import *
|
182 |
+
|
183 |
+
from ._bsplines import *
|
184 |
+
|
185 |
+
from ._pade import *
|
186 |
+
|
187 |
+
from ._rgi import *
|
188 |
+
|
189 |
+
from ._ndbspline import NdBSpline
|
190 |
+
|
191 |
+
# Deprecated namespaces, to be removed in v2.0.0
|
192 |
+
from . import fitpack, fitpack2, interpolate, ndgriddata, polyint, rbf
|
193 |
+
|
194 |
+
__all__ = [s for s in dir() if not s.startswith('_')]
|
195 |
+
|
196 |
+
from scipy._lib._testutils import PytestTester
|
197 |
+
test = PytestTester(__name__)
|
198 |
+
del PytestTester
|
199 |
+
|
200 |
+
# Backward compatibility
|
201 |
+
pchip = PchipInterpolator
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (3.76 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_bsplines.cpython-310.pyc
ADDED
Binary file (63.9 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_cubic.cpython-310.pyc
ADDED
Binary file (30.8 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_fitpack2.cpython-310.pyc
ADDED
Binary file (82.6 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_fitpack_impl.cpython-310.pyc
ADDED
Binary file (22.6 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_fitpack_py.cpython-310.pyc
ADDED
Binary file (27.6 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_interpolate.cpython-310.pyc
ADDED
Binary file (71.2 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_ndbspline.cpython-310.pyc
ADDED
Binary file (11.2 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_ndgriddata.cpython-310.pyc
ADDED
Binary file (9.68 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_pade.cpython-310.pyc
ADDED
Binary file (2.09 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_polyint.cpython-310.pyc
ADDED
Binary file (32.1 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_rbf.cpython-310.pyc
ADDED
Binary file (11.1 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_rbfinterp.cpython-310.pyc
ADDED
Binary file (14.6 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/_rgi.cpython-310.pyc
ADDED
Binary file (25.3 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/fitpack.cpython-310.pyc
ADDED
Binary file (720 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/fitpack2.cpython-310.pyc
ADDED
Binary file (933 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/interpolate.cpython-310.pyc
ADDED
Binary file (886 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/ndgriddata.cpython-310.pyc
ADDED
Binary file (726 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/polyint.cpython-310.pyc
ADDED
Binary file (752 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/__pycache__/rbf.cpython-310.pyc
ADDED
Binary file (639 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/_bspl.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (617 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/_bsplines.py
ADDED
@@ -0,0 +1,2215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
from math import prod
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
from scipy._lib._util import normalize_axis_index
|
6 |
+
from scipy.linalg import (get_lapack_funcs, LinAlgError,
|
7 |
+
cholesky_banded, cho_solve_banded,
|
8 |
+
solve, solve_banded)
|
9 |
+
from scipy.optimize import minimize_scalar
|
10 |
+
from . import _bspl
|
11 |
+
from . import _fitpack_impl
|
12 |
+
from scipy.sparse import csr_array
|
13 |
+
from scipy.special import poch
|
14 |
+
from itertools import combinations
|
15 |
+
|
16 |
+
__all__ = ["BSpline", "make_interp_spline", "make_lsq_spline",
|
17 |
+
"make_smoothing_spline"]
|
18 |
+
|
19 |
+
|
20 |
+
def _get_dtype(dtype):
|
21 |
+
"""Return np.complex128 for complex dtypes, np.float64 otherwise."""
|
22 |
+
if np.issubdtype(dtype, np.complexfloating):
|
23 |
+
return np.complex128
|
24 |
+
else:
|
25 |
+
return np.float64
|
26 |
+
|
27 |
+
|
28 |
+
def _as_float_array(x, check_finite=False):
|
29 |
+
"""Convert the input into a C contiguous float array.
|
30 |
+
|
31 |
+
NB: Upcasts half- and single-precision floats to double precision.
|
32 |
+
"""
|
33 |
+
x = np.ascontiguousarray(x)
|
34 |
+
dtyp = _get_dtype(x.dtype)
|
35 |
+
x = x.astype(dtyp, copy=False)
|
36 |
+
if check_finite and not np.isfinite(x).all():
|
37 |
+
raise ValueError("Array must not contain infs or nans.")
|
38 |
+
return x
|
39 |
+
|
40 |
+
|
41 |
+
def _dual_poly(j, k, t, y):
|
42 |
+
"""
|
43 |
+
Dual polynomial of the B-spline B_{j,k,t} -
|
44 |
+
polynomial which is associated with B_{j,k,t}:
|
45 |
+
$p_{j,k}(y) = (y - t_{j+1})(y - t_{j+2})...(y - t_{j+k})$
|
46 |
+
"""
|
47 |
+
if k == 0:
|
48 |
+
return 1
|
49 |
+
return np.prod([(y - t[j + i]) for i in range(1, k + 1)])
|
50 |
+
|
51 |
+
|
52 |
+
def _diff_dual_poly(j, k, y, d, t):
|
53 |
+
"""
|
54 |
+
d-th derivative of the dual polynomial $p_{j,k}(y)$
|
55 |
+
"""
|
56 |
+
if d == 0:
|
57 |
+
return _dual_poly(j, k, t, y)
|
58 |
+
if d == k:
|
59 |
+
return poch(1, k)
|
60 |
+
comb = list(combinations(range(j + 1, j + k + 1), d))
|
61 |
+
res = 0
|
62 |
+
for i in range(len(comb) * len(comb[0])):
|
63 |
+
res += np.prod([(y - t[j + p]) for p in range(1, k + 1)
|
64 |
+
if (j + p) not in comb[i//d]])
|
65 |
+
return res
|
66 |
+
|
67 |
+
|
68 |
+
class BSpline:
|
69 |
+
r"""Univariate spline in the B-spline basis.
|
70 |
+
|
71 |
+
.. math::
|
72 |
+
|
73 |
+
S(x) = \sum_{j=0}^{n-1} c_j B_{j, k; t}(x)
|
74 |
+
|
75 |
+
where :math:`B_{j, k; t}` are B-spline basis functions of degree `k`
|
76 |
+
and knots `t`.
|
77 |
+
|
78 |
+
Parameters
|
79 |
+
----------
|
80 |
+
t : ndarray, shape (n+k+1,)
|
81 |
+
knots
|
82 |
+
c : ndarray, shape (>=n, ...)
|
83 |
+
spline coefficients
|
84 |
+
k : int
|
85 |
+
B-spline degree
|
86 |
+
extrapolate : bool or 'periodic', optional
|
87 |
+
whether to extrapolate beyond the base interval, ``t[k] .. t[n]``,
|
88 |
+
or to return nans.
|
89 |
+
If True, extrapolates the first and last polynomial pieces of b-spline
|
90 |
+
functions active on the base interval.
|
91 |
+
If 'periodic', periodic extrapolation is used.
|
92 |
+
Default is True.
|
93 |
+
axis : int, optional
|
94 |
+
Interpolation axis. Default is zero.
|
95 |
+
|
96 |
+
Attributes
|
97 |
+
----------
|
98 |
+
t : ndarray
|
99 |
+
knot vector
|
100 |
+
c : ndarray
|
101 |
+
spline coefficients
|
102 |
+
k : int
|
103 |
+
spline degree
|
104 |
+
extrapolate : bool
|
105 |
+
If True, extrapolates the first and last polynomial pieces of b-spline
|
106 |
+
functions active on the base interval.
|
107 |
+
axis : int
|
108 |
+
Interpolation axis.
|
109 |
+
tck : tuple
|
110 |
+
A read-only equivalent of ``(self.t, self.c, self.k)``
|
111 |
+
|
112 |
+
Methods
|
113 |
+
-------
|
114 |
+
__call__
|
115 |
+
basis_element
|
116 |
+
derivative
|
117 |
+
antiderivative
|
118 |
+
integrate
|
119 |
+
insert_knot
|
120 |
+
construct_fast
|
121 |
+
design_matrix
|
122 |
+
from_power_basis
|
123 |
+
|
124 |
+
Notes
|
125 |
+
-----
|
126 |
+
B-spline basis elements are defined via
|
127 |
+
|
128 |
+
.. math::
|
129 |
+
|
130 |
+
B_{i, 0}(x) = 1, \textrm{if $t_i \le x < t_{i+1}$, otherwise $0$,}
|
131 |
+
|
132 |
+
B_{i, k}(x) = \frac{x - t_i}{t_{i+k} - t_i} B_{i, k-1}(x)
|
133 |
+
+ \frac{t_{i+k+1} - x}{t_{i+k+1} - t_{i+1}} B_{i+1, k-1}(x)
|
134 |
+
|
135 |
+
**Implementation details**
|
136 |
+
|
137 |
+
- At least ``k+1`` coefficients are required for a spline of degree `k`,
|
138 |
+
so that ``n >= k+1``. Additional coefficients, ``c[j]`` with
|
139 |
+
``j > n``, are ignored.
|
140 |
+
|
141 |
+
- B-spline basis elements of degree `k` form a partition of unity on the
|
142 |
+
*base interval*, ``t[k] <= x <= t[n]``.
|
143 |
+
|
144 |
+
|
145 |
+
Examples
|
146 |
+
--------
|
147 |
+
|
148 |
+
Translating the recursive definition of B-splines into Python code, we have:
|
149 |
+
|
150 |
+
>>> def B(x, k, i, t):
|
151 |
+
... if k == 0:
|
152 |
+
... return 1.0 if t[i] <= x < t[i+1] else 0.0
|
153 |
+
... if t[i+k] == t[i]:
|
154 |
+
... c1 = 0.0
|
155 |
+
... else:
|
156 |
+
... c1 = (x - t[i])/(t[i+k] - t[i]) * B(x, k-1, i, t)
|
157 |
+
... if t[i+k+1] == t[i+1]:
|
158 |
+
... c2 = 0.0
|
159 |
+
... else:
|
160 |
+
... c2 = (t[i+k+1] - x)/(t[i+k+1] - t[i+1]) * B(x, k-1, i+1, t)
|
161 |
+
... return c1 + c2
|
162 |
+
|
163 |
+
>>> def bspline(x, t, c, k):
|
164 |
+
... n = len(t) - k - 1
|
165 |
+
... assert (n >= k+1) and (len(c) >= n)
|
166 |
+
... return sum(c[i] * B(x, k, i, t) for i in range(n))
|
167 |
+
|
168 |
+
Note that this is an inefficient (if straightforward) way to
|
169 |
+
evaluate B-splines --- this spline class does it in an equivalent,
|
170 |
+
but much more efficient way.
|
171 |
+
|
172 |
+
Here we construct a quadratic spline function on the base interval
|
173 |
+
``2 <= x <= 4`` and compare with the naive way of evaluating the spline:
|
174 |
+
|
175 |
+
>>> from scipy.interpolate import BSpline
|
176 |
+
>>> k = 2
|
177 |
+
>>> t = [0, 1, 2, 3, 4, 5, 6]
|
178 |
+
>>> c = [-1, 2, 0, -1]
|
179 |
+
>>> spl = BSpline(t, c, k)
|
180 |
+
>>> spl(2.5)
|
181 |
+
array(1.375)
|
182 |
+
>>> bspline(2.5, t, c, k)
|
183 |
+
1.375
|
184 |
+
|
185 |
+
Note that outside of the base interval results differ. This is because
|
186 |
+
`BSpline` extrapolates the first and last polynomial pieces of B-spline
|
187 |
+
functions active on the base interval.
|
188 |
+
|
189 |
+
>>> import matplotlib.pyplot as plt
|
190 |
+
>>> import numpy as np
|
191 |
+
>>> fig, ax = plt.subplots()
|
192 |
+
>>> xx = np.linspace(1.5, 4.5, 50)
|
193 |
+
>>> ax.plot(xx, [bspline(x, t, c ,k) for x in xx], 'r-', lw=3, label='naive')
|
194 |
+
>>> ax.plot(xx, spl(xx), 'b-', lw=4, alpha=0.7, label='BSpline')
|
195 |
+
>>> ax.grid(True)
|
196 |
+
>>> ax.legend(loc='best')
|
197 |
+
>>> plt.show()
|
198 |
+
|
199 |
+
|
200 |
+
References
|
201 |
+
----------
|
202 |
+
.. [1] Tom Lyche and Knut Morken, Spline methods,
|
203 |
+
http://www.uio.no/studier/emner/matnat/ifi/INF-MAT5340/v05/undervisningsmateriale/
|
204 |
+
.. [2] Carl de Boor, A practical guide to splines, Springer, 2001.
|
205 |
+
|
206 |
+
"""
|
207 |
+
|
208 |
+
def __init__(self, t, c, k, extrapolate=True, axis=0):
|
209 |
+
super().__init__()
|
210 |
+
|
211 |
+
self.k = operator.index(k)
|
212 |
+
self.c = np.asarray(c)
|
213 |
+
self.t = np.ascontiguousarray(t, dtype=np.float64)
|
214 |
+
|
215 |
+
if extrapolate == 'periodic':
|
216 |
+
self.extrapolate = extrapolate
|
217 |
+
else:
|
218 |
+
self.extrapolate = bool(extrapolate)
|
219 |
+
|
220 |
+
n = self.t.shape[0] - self.k - 1
|
221 |
+
|
222 |
+
axis = normalize_axis_index(axis, self.c.ndim)
|
223 |
+
|
224 |
+
# Note that the normalized axis is stored in the object.
|
225 |
+
self.axis = axis
|
226 |
+
if axis != 0:
|
227 |
+
# roll the interpolation axis to be the first one in self.c
|
228 |
+
# More specifically, the target shape for self.c is (n, ...),
|
229 |
+
# and axis !=0 means that we have c.shape (..., n, ...)
|
230 |
+
# ^
|
231 |
+
# axis
|
232 |
+
self.c = np.moveaxis(self.c, axis, 0)
|
233 |
+
|
234 |
+
if k < 0:
|
235 |
+
raise ValueError("Spline order cannot be negative.")
|
236 |
+
if self.t.ndim != 1:
|
237 |
+
raise ValueError("Knot vector must be one-dimensional.")
|
238 |
+
if n < self.k + 1:
|
239 |
+
raise ValueError("Need at least %d knots for degree %d" %
|
240 |
+
(2*k + 2, k))
|
241 |
+
if (np.diff(self.t) < 0).any():
|
242 |
+
raise ValueError("Knots must be in a non-decreasing order.")
|
243 |
+
if len(np.unique(self.t[k:n+1])) < 2:
|
244 |
+
raise ValueError("Need at least two internal knots.")
|
245 |
+
if not np.isfinite(self.t).all():
|
246 |
+
raise ValueError("Knots should not have nans or infs.")
|
247 |
+
if self.c.ndim < 1:
|
248 |
+
raise ValueError("Coefficients must be at least 1-dimensional.")
|
249 |
+
if self.c.shape[0] < n:
|
250 |
+
raise ValueError("Knots, coefficients and degree are inconsistent.")
|
251 |
+
|
252 |
+
dt = _get_dtype(self.c.dtype)
|
253 |
+
self.c = np.ascontiguousarray(self.c, dtype=dt)
|
254 |
+
|
255 |
+
@classmethod
|
256 |
+
def construct_fast(cls, t, c, k, extrapolate=True, axis=0):
|
257 |
+
"""Construct a spline without making checks.
|
258 |
+
|
259 |
+
Accepts same parameters as the regular constructor. Input arrays
|
260 |
+
`t` and `c` must of correct shape and dtype.
|
261 |
+
"""
|
262 |
+
self = object.__new__(cls)
|
263 |
+
self.t, self.c, self.k = t, c, k
|
264 |
+
self.extrapolate = extrapolate
|
265 |
+
self.axis = axis
|
266 |
+
return self
|
267 |
+
|
268 |
+
@property
|
269 |
+
def tck(self):
|
270 |
+
"""Equivalent to ``(self.t, self.c, self.k)`` (read-only).
|
271 |
+
"""
|
272 |
+
return self.t, self.c, self.k
|
273 |
+
|
274 |
+
@classmethod
|
275 |
+
def basis_element(cls, t, extrapolate=True):
|
276 |
+
"""Return a B-spline basis element ``B(x | t[0], ..., t[k+1])``.
|
277 |
+
|
278 |
+
Parameters
|
279 |
+
----------
|
280 |
+
t : ndarray, shape (k+2,)
|
281 |
+
internal knots
|
282 |
+
extrapolate : bool or 'periodic', optional
|
283 |
+
whether to extrapolate beyond the base interval, ``t[0] .. t[k+1]``,
|
284 |
+
or to return nans.
|
285 |
+
If 'periodic', periodic extrapolation is used.
|
286 |
+
Default is True.
|
287 |
+
|
288 |
+
Returns
|
289 |
+
-------
|
290 |
+
basis_element : callable
|
291 |
+
A callable representing a B-spline basis element for the knot
|
292 |
+
vector `t`.
|
293 |
+
|
294 |
+
Notes
|
295 |
+
-----
|
296 |
+
The degree of the B-spline, `k`, is inferred from the length of `t` as
|
297 |
+
``len(t)-2``. The knot vector is constructed by appending and prepending
|
298 |
+
``k+1`` elements to internal knots `t`.
|
299 |
+
|
300 |
+
Examples
|
301 |
+
--------
|
302 |
+
|
303 |
+
Construct a cubic B-spline:
|
304 |
+
|
305 |
+
>>> import numpy as np
|
306 |
+
>>> from scipy.interpolate import BSpline
|
307 |
+
>>> b = BSpline.basis_element([0, 1, 2, 3, 4])
|
308 |
+
>>> k = b.k
|
309 |
+
>>> b.t[k:-k]
|
310 |
+
array([ 0., 1., 2., 3., 4.])
|
311 |
+
>>> k
|
312 |
+
3
|
313 |
+
|
314 |
+
Construct a quadratic B-spline on ``[0, 1, 1, 2]``, and compare
|
315 |
+
to its explicit form:
|
316 |
+
|
317 |
+
>>> t = [0, 1, 1, 2]
|
318 |
+
>>> b = BSpline.basis_element(t)
|
319 |
+
>>> def f(x):
|
320 |
+
... return np.where(x < 1, x*x, (2. - x)**2)
|
321 |
+
|
322 |
+
>>> import matplotlib.pyplot as plt
|
323 |
+
>>> fig, ax = plt.subplots()
|
324 |
+
>>> x = np.linspace(0, 2, 51)
|
325 |
+
>>> ax.plot(x, b(x), 'g', lw=3)
|
326 |
+
>>> ax.plot(x, f(x), 'r', lw=8, alpha=0.4)
|
327 |
+
>>> ax.grid(True)
|
328 |
+
>>> plt.show()
|
329 |
+
|
330 |
+
"""
|
331 |
+
k = len(t) - 2
|
332 |
+
t = _as_float_array(t)
|
333 |
+
t = np.r_[(t[0]-1,) * k, t, (t[-1]+1,) * k]
|
334 |
+
c = np.zeros_like(t)
|
335 |
+
c[k] = 1.
|
336 |
+
return cls.construct_fast(t, c, k, extrapolate)
|
337 |
+
|
338 |
+
@classmethod
|
339 |
+
def design_matrix(cls, x, t, k, extrapolate=False):
|
340 |
+
"""
|
341 |
+
Returns a design matrix as a CSR format sparse array.
|
342 |
+
|
343 |
+
Parameters
|
344 |
+
----------
|
345 |
+
x : array_like, shape (n,)
|
346 |
+
Points to evaluate the spline at.
|
347 |
+
t : array_like, shape (nt,)
|
348 |
+
Sorted 1D array of knots.
|
349 |
+
k : int
|
350 |
+
B-spline degree.
|
351 |
+
extrapolate : bool or 'periodic', optional
|
352 |
+
Whether to extrapolate based on the first and last intervals
|
353 |
+
or raise an error. If 'periodic', periodic extrapolation is used.
|
354 |
+
Default is False.
|
355 |
+
|
356 |
+
.. versionadded:: 1.10.0
|
357 |
+
|
358 |
+
Returns
|
359 |
+
-------
|
360 |
+
design_matrix : `csr_array` object
|
361 |
+
Sparse matrix in CSR format where each row contains all the basis
|
362 |
+
elements of the input row (first row = basis elements of x[0],
|
363 |
+
..., last row = basis elements x[-1]).
|
364 |
+
|
365 |
+
Examples
|
366 |
+
--------
|
367 |
+
Construct a design matrix for a B-spline
|
368 |
+
|
369 |
+
>>> from scipy.interpolate import make_interp_spline, BSpline
|
370 |
+
>>> import numpy as np
|
371 |
+
>>> x = np.linspace(0, np.pi * 2, 4)
|
372 |
+
>>> y = np.sin(x)
|
373 |
+
>>> k = 3
|
374 |
+
>>> bspl = make_interp_spline(x, y, k=k)
|
375 |
+
>>> design_matrix = bspl.design_matrix(x, bspl.t, k)
|
376 |
+
>>> design_matrix.toarray()
|
377 |
+
[[1. , 0. , 0. , 0. ],
|
378 |
+
[0.2962963 , 0.44444444, 0.22222222, 0.03703704],
|
379 |
+
[0.03703704, 0.22222222, 0.44444444, 0.2962963 ],
|
380 |
+
[0. , 0. , 0. , 1. ]]
|
381 |
+
|
382 |
+
Construct a design matrix for some vector of knots
|
383 |
+
|
384 |
+
>>> k = 2
|
385 |
+
>>> t = [-1, 0, 1, 2, 3, 4, 5, 6]
|
386 |
+
>>> x = [1, 2, 3, 4]
|
387 |
+
>>> design_matrix = BSpline.design_matrix(x, t, k).toarray()
|
388 |
+
>>> design_matrix
|
389 |
+
[[0.5, 0.5, 0. , 0. , 0. ],
|
390 |
+
[0. , 0.5, 0.5, 0. , 0. ],
|
391 |
+
[0. , 0. , 0.5, 0.5, 0. ],
|
392 |
+
[0. , 0. , 0. , 0.5, 0.5]]
|
393 |
+
|
394 |
+
This result is equivalent to the one created in the sparse format
|
395 |
+
|
396 |
+
>>> c = np.eye(len(t) - k - 1)
|
397 |
+
>>> design_matrix_gh = BSpline(t, c, k)(x)
|
398 |
+
>>> np.allclose(design_matrix, design_matrix_gh, atol=1e-14)
|
399 |
+
True
|
400 |
+
|
401 |
+
Notes
|
402 |
+
-----
|
403 |
+
.. versionadded:: 1.8.0
|
404 |
+
|
405 |
+
In each row of the design matrix all the basis elements are evaluated
|
406 |
+
at the certain point (first row - x[0], ..., last row - x[-1]).
|
407 |
+
|
408 |
+
`nt` is a length of the vector of knots: as far as there are
|
409 |
+
`nt - k - 1` basis elements, `nt` should be not less than `2 * k + 2`
|
410 |
+
to have at least `k + 1` basis element.
|
411 |
+
|
412 |
+
Out of bounds `x` raises a ValueError.
|
413 |
+
"""
|
414 |
+
x = _as_float_array(x, True)
|
415 |
+
t = _as_float_array(t, True)
|
416 |
+
|
417 |
+
if extrapolate != 'periodic':
|
418 |
+
extrapolate = bool(extrapolate)
|
419 |
+
|
420 |
+
if k < 0:
|
421 |
+
raise ValueError("Spline order cannot be negative.")
|
422 |
+
if t.ndim != 1 or np.any(t[1:] < t[:-1]):
|
423 |
+
raise ValueError(f"Expect t to be a 1-D sorted array_like, but "
|
424 |
+
f"got t={t}.")
|
425 |
+
# There are `nt - k - 1` basis elements in a BSpline built on the
|
426 |
+
# vector of knots with length `nt`, so to have at least `k + 1` basis
|
427 |
+
# elements we need to have at least `2 * k + 2` elements in the vector
|
428 |
+
# of knots.
|
429 |
+
if len(t) < 2 * k + 2:
|
430 |
+
raise ValueError(f"Length t is not enough for k={k}.")
|
431 |
+
|
432 |
+
if extrapolate == 'periodic':
|
433 |
+
# With periodic extrapolation we map x to the segment
|
434 |
+
# [t[k], t[n]].
|
435 |
+
n = t.size - k - 1
|
436 |
+
x = t[k] + (x - t[k]) % (t[n] - t[k])
|
437 |
+
extrapolate = False
|
438 |
+
elif not extrapolate and (
|
439 |
+
(min(x) < t[k]) or (max(x) > t[t.shape[0] - k - 1])
|
440 |
+
):
|
441 |
+
# Checks from `find_interval` function
|
442 |
+
raise ValueError(f'Out of bounds w/ x = {x}.')
|
443 |
+
|
444 |
+
# Compute number of non-zeros of final CSR array in order to determine
|
445 |
+
# the dtype of indices and indptr of the CSR array.
|
446 |
+
n = x.shape[0]
|
447 |
+
nnz = n * (k + 1)
|
448 |
+
if nnz < np.iinfo(np.int32).max:
|
449 |
+
int_dtype = np.int32
|
450 |
+
else:
|
451 |
+
int_dtype = np.int64
|
452 |
+
# Preallocate indptr and indices
|
453 |
+
indices = np.empty(n * (k + 1), dtype=int_dtype)
|
454 |
+
indptr = np.arange(0, (n + 1) * (k + 1), k + 1, dtype=int_dtype)
|
455 |
+
|
456 |
+
# indptr is not passed to Cython as it is already fully computed
|
457 |
+
data, indices = _bspl._make_design_matrix(
|
458 |
+
x, t, k, extrapolate, indices
|
459 |
+
)
|
460 |
+
return csr_array(
|
461 |
+
(data, indices, indptr),
|
462 |
+
shape=(x.shape[0], t.shape[0] - k - 1)
|
463 |
+
)
|
464 |
+
|
465 |
+
def __call__(self, x, nu=0, extrapolate=None):
|
466 |
+
"""
|
467 |
+
Evaluate a spline function.
|
468 |
+
|
469 |
+
Parameters
|
470 |
+
----------
|
471 |
+
x : array_like
|
472 |
+
points to evaluate the spline at.
|
473 |
+
nu : int, optional
|
474 |
+
derivative to evaluate (default is 0).
|
475 |
+
extrapolate : bool or 'periodic', optional
|
476 |
+
whether to extrapolate based on the first and last intervals
|
477 |
+
or return nans. If 'periodic', periodic extrapolation is used.
|
478 |
+
Default is `self.extrapolate`.
|
479 |
+
|
480 |
+
Returns
|
481 |
+
-------
|
482 |
+
y : array_like
|
483 |
+
Shape is determined by replacing the interpolation axis
|
484 |
+
in the coefficient array with the shape of `x`.
|
485 |
+
|
486 |
+
"""
|
487 |
+
if extrapolate is None:
|
488 |
+
extrapolate = self.extrapolate
|
489 |
+
x = np.asarray(x)
|
490 |
+
x_shape, x_ndim = x.shape, x.ndim
|
491 |
+
x = np.ascontiguousarray(x.ravel(), dtype=np.float64)
|
492 |
+
|
493 |
+
# With periodic extrapolation we map x to the segment
|
494 |
+
# [self.t[k], self.t[n]].
|
495 |
+
if extrapolate == 'periodic':
|
496 |
+
n = self.t.size - self.k - 1
|
497 |
+
x = self.t[self.k] + (x - self.t[self.k]) % (self.t[n] -
|
498 |
+
self.t[self.k])
|
499 |
+
extrapolate = False
|
500 |
+
|
501 |
+
out = np.empty((len(x), prod(self.c.shape[1:])), dtype=self.c.dtype)
|
502 |
+
self._ensure_c_contiguous()
|
503 |
+
self._evaluate(x, nu, extrapolate, out)
|
504 |
+
out = out.reshape(x_shape + self.c.shape[1:])
|
505 |
+
if self.axis != 0:
|
506 |
+
# transpose to move the calculated values to the interpolation axis
|
507 |
+
l = list(range(out.ndim))
|
508 |
+
l = l[x_ndim:x_ndim+self.axis] + l[:x_ndim] + l[x_ndim+self.axis:]
|
509 |
+
out = out.transpose(l)
|
510 |
+
return out
|
511 |
+
|
512 |
+
def _evaluate(self, xp, nu, extrapolate, out):
|
513 |
+
_bspl.evaluate_spline(self.t, self.c.reshape(self.c.shape[0], -1),
|
514 |
+
self.k, xp, nu, extrapolate, out)
|
515 |
+
|
516 |
+
def _ensure_c_contiguous(self):
|
517 |
+
"""
|
518 |
+
c and t may be modified by the user. The Cython code expects
|
519 |
+
that they are C contiguous.
|
520 |
+
|
521 |
+
"""
|
522 |
+
if not self.t.flags.c_contiguous:
|
523 |
+
self.t = self.t.copy()
|
524 |
+
if not self.c.flags.c_contiguous:
|
525 |
+
self.c = self.c.copy()
|
526 |
+
|
527 |
+
def derivative(self, nu=1):
|
528 |
+
"""Return a B-spline representing the derivative.
|
529 |
+
|
530 |
+
Parameters
|
531 |
+
----------
|
532 |
+
nu : int, optional
|
533 |
+
Derivative order.
|
534 |
+
Default is 1.
|
535 |
+
|
536 |
+
Returns
|
537 |
+
-------
|
538 |
+
b : BSpline object
|
539 |
+
A new instance representing the derivative.
|
540 |
+
|
541 |
+
See Also
|
542 |
+
--------
|
543 |
+
splder, splantider
|
544 |
+
|
545 |
+
"""
|
546 |
+
c = self.c
|
547 |
+
# pad the c array if needed
|
548 |
+
ct = len(self.t) - len(c)
|
549 |
+
if ct > 0:
|
550 |
+
c = np.r_[c, np.zeros((ct,) + c.shape[1:])]
|
551 |
+
tck = _fitpack_impl.splder((self.t, c, self.k), nu)
|
552 |
+
return self.construct_fast(*tck, extrapolate=self.extrapolate,
|
553 |
+
axis=self.axis)
|
554 |
+
|
555 |
+
def antiderivative(self, nu=1):
|
556 |
+
"""Return a B-spline representing the antiderivative.
|
557 |
+
|
558 |
+
Parameters
|
559 |
+
----------
|
560 |
+
nu : int, optional
|
561 |
+
Antiderivative order. Default is 1.
|
562 |
+
|
563 |
+
Returns
|
564 |
+
-------
|
565 |
+
b : BSpline object
|
566 |
+
A new instance representing the antiderivative.
|
567 |
+
|
568 |
+
Notes
|
569 |
+
-----
|
570 |
+
If antiderivative is computed and ``self.extrapolate='periodic'``,
|
571 |
+
it will be set to False for the returned instance. This is done because
|
572 |
+
the antiderivative is no longer periodic and its correct evaluation
|
573 |
+
outside of the initially given x interval is difficult.
|
574 |
+
|
575 |
+
See Also
|
576 |
+
--------
|
577 |
+
splder, splantider
|
578 |
+
|
579 |
+
"""
|
580 |
+
c = self.c
|
581 |
+
# pad the c array if needed
|
582 |
+
ct = len(self.t) - len(c)
|
583 |
+
if ct > 0:
|
584 |
+
c = np.r_[c, np.zeros((ct,) + c.shape[1:])]
|
585 |
+
tck = _fitpack_impl.splantider((self.t, c, self.k), nu)
|
586 |
+
|
587 |
+
if self.extrapolate == 'periodic':
|
588 |
+
extrapolate = False
|
589 |
+
else:
|
590 |
+
extrapolate = self.extrapolate
|
591 |
+
|
592 |
+
return self.construct_fast(*tck, extrapolate=extrapolate,
|
593 |
+
axis=self.axis)
|
594 |
+
|
595 |
+
def integrate(self, a, b, extrapolate=None):
|
596 |
+
"""Compute a definite integral of the spline.
|
597 |
+
|
598 |
+
Parameters
|
599 |
+
----------
|
600 |
+
a : float
|
601 |
+
Lower limit of integration.
|
602 |
+
b : float
|
603 |
+
Upper limit of integration.
|
604 |
+
extrapolate : bool or 'periodic', optional
|
605 |
+
whether to extrapolate beyond the base interval,
|
606 |
+
``t[k] .. t[-k-1]``, or take the spline to be zero outside of the
|
607 |
+
base interval. If 'periodic', periodic extrapolation is used.
|
608 |
+
If None (default), use `self.extrapolate`.
|
609 |
+
|
610 |
+
Returns
|
611 |
+
-------
|
612 |
+
I : array_like
|
613 |
+
Definite integral of the spline over the interval ``[a, b]``.
|
614 |
+
|
615 |
+
Examples
|
616 |
+
--------
|
617 |
+
Construct the linear spline ``x if x < 1 else 2 - x`` on the base
|
618 |
+
interval :math:`[0, 2]`, and integrate it
|
619 |
+
|
620 |
+
>>> from scipy.interpolate import BSpline
|
621 |
+
>>> b = BSpline.basis_element([0, 1, 2])
|
622 |
+
>>> b.integrate(0, 1)
|
623 |
+
array(0.5)
|
624 |
+
|
625 |
+
If the integration limits are outside of the base interval, the result
|
626 |
+
is controlled by the `extrapolate` parameter
|
627 |
+
|
628 |
+
>>> b.integrate(-1, 1)
|
629 |
+
array(0.0)
|
630 |
+
>>> b.integrate(-1, 1, extrapolate=False)
|
631 |
+
array(0.5)
|
632 |
+
|
633 |
+
>>> import matplotlib.pyplot as plt
|
634 |
+
>>> fig, ax = plt.subplots()
|
635 |
+
>>> ax.grid(True)
|
636 |
+
>>> ax.axvline(0, c='r', lw=5, alpha=0.5) # base interval
|
637 |
+
>>> ax.axvline(2, c='r', lw=5, alpha=0.5)
|
638 |
+
>>> xx = [-1, 1, 2]
|
639 |
+
>>> ax.plot(xx, b(xx))
|
640 |
+
>>> plt.show()
|
641 |
+
|
642 |
+
"""
|
643 |
+
if extrapolate is None:
|
644 |
+
extrapolate = self.extrapolate
|
645 |
+
|
646 |
+
# Prepare self.t and self.c.
|
647 |
+
self._ensure_c_contiguous()
|
648 |
+
|
649 |
+
# Swap integration bounds if needed.
|
650 |
+
sign = 1
|
651 |
+
if b < a:
|
652 |
+
a, b = b, a
|
653 |
+
sign = -1
|
654 |
+
n = self.t.size - self.k - 1
|
655 |
+
|
656 |
+
if extrapolate != "periodic" and not extrapolate:
|
657 |
+
# Shrink the integration interval, if needed.
|
658 |
+
a = max(a, self.t[self.k])
|
659 |
+
b = min(b, self.t[n])
|
660 |
+
|
661 |
+
if self.c.ndim == 1:
|
662 |
+
# Fast path: use FITPACK's routine
|
663 |
+
# (cf _fitpack_impl.splint).
|
664 |
+
integral = _fitpack_impl.splint(a, b, self.tck)
|
665 |
+
return integral * sign
|
666 |
+
|
667 |
+
out = np.empty((2, prod(self.c.shape[1:])), dtype=self.c.dtype)
|
668 |
+
|
669 |
+
# Compute the antiderivative.
|
670 |
+
c = self.c
|
671 |
+
ct = len(self.t) - len(c)
|
672 |
+
if ct > 0:
|
673 |
+
c = np.r_[c, np.zeros((ct,) + c.shape[1:])]
|
674 |
+
ta, ca, ka = _fitpack_impl.splantider((self.t, c, self.k), 1)
|
675 |
+
|
676 |
+
if extrapolate == 'periodic':
|
677 |
+
# Split the integral into the part over period (can be several
|
678 |
+
# of them) and the remaining part.
|
679 |
+
|
680 |
+
ts, te = self.t[self.k], self.t[n]
|
681 |
+
period = te - ts
|
682 |
+
interval = b - a
|
683 |
+
n_periods, left = divmod(interval, period)
|
684 |
+
|
685 |
+
if n_periods > 0:
|
686 |
+
# Evaluate the difference of antiderivatives.
|
687 |
+
x = np.asarray([ts, te], dtype=np.float64)
|
688 |
+
_bspl.evaluate_spline(ta, ca.reshape(ca.shape[0], -1),
|
689 |
+
ka, x, 0, False, out)
|
690 |
+
integral = out[1] - out[0]
|
691 |
+
integral *= n_periods
|
692 |
+
else:
|
693 |
+
integral = np.zeros((1, prod(self.c.shape[1:])),
|
694 |
+
dtype=self.c.dtype)
|
695 |
+
|
696 |
+
# Map a to [ts, te], b is always a + left.
|
697 |
+
a = ts + (a - ts) % period
|
698 |
+
b = a + left
|
699 |
+
|
700 |
+
# If b <= te then we need to integrate over [a, b], otherwise
|
701 |
+
# over [a, te] and from xs to what is remained.
|
702 |
+
if b <= te:
|
703 |
+
x = np.asarray([a, b], dtype=np.float64)
|
704 |
+
_bspl.evaluate_spline(ta, ca.reshape(ca.shape[0], -1),
|
705 |
+
ka, x, 0, False, out)
|
706 |
+
integral += out[1] - out[0]
|
707 |
+
else:
|
708 |
+
x = np.asarray([a, te], dtype=np.float64)
|
709 |
+
_bspl.evaluate_spline(ta, ca.reshape(ca.shape[0], -1),
|
710 |
+
ka, x, 0, False, out)
|
711 |
+
integral += out[1] - out[0]
|
712 |
+
|
713 |
+
x = np.asarray([ts, ts + b - te], dtype=np.float64)
|
714 |
+
_bspl.evaluate_spline(ta, ca.reshape(ca.shape[0], -1),
|
715 |
+
ka, x, 0, False, out)
|
716 |
+
integral += out[1] - out[0]
|
717 |
+
else:
|
718 |
+
# Evaluate the difference of antiderivatives.
|
719 |
+
x = np.asarray([a, b], dtype=np.float64)
|
720 |
+
_bspl.evaluate_spline(ta, ca.reshape(ca.shape[0], -1),
|
721 |
+
ka, x, 0, extrapolate, out)
|
722 |
+
integral = out[1] - out[0]
|
723 |
+
|
724 |
+
integral *= sign
|
725 |
+
return integral.reshape(ca.shape[1:])
|
726 |
+
|
727 |
+
@classmethod
|
728 |
+
def from_power_basis(cls, pp, bc_type='not-a-knot'):
|
729 |
+
r"""
|
730 |
+
Construct a polynomial in the B-spline basis
|
731 |
+
from a piecewise polynomial in the power basis.
|
732 |
+
|
733 |
+
For now, accepts ``CubicSpline`` instances only.
|
734 |
+
|
735 |
+
Parameters
|
736 |
+
----------
|
737 |
+
pp : CubicSpline
|
738 |
+
A piecewise polynomial in the power basis, as created
|
739 |
+
by ``CubicSpline``
|
740 |
+
bc_type : string, optional
|
741 |
+
Boundary condition type as in ``CubicSpline``: one of the
|
742 |
+
``not-a-knot``, ``natural``, ``clamped``, or ``periodic``.
|
743 |
+
Necessary for construction an instance of ``BSpline`` class.
|
744 |
+
Default is ``not-a-knot``.
|
745 |
+
|
746 |
+
Returns
|
747 |
+
-------
|
748 |
+
b : BSpline object
|
749 |
+
A new instance representing the initial polynomial
|
750 |
+
in the B-spline basis.
|
751 |
+
|
752 |
+
Notes
|
753 |
+
-----
|
754 |
+
.. versionadded:: 1.8.0
|
755 |
+
|
756 |
+
Accepts only ``CubicSpline`` instances for now.
|
757 |
+
|
758 |
+
The algorithm follows from differentiation
|
759 |
+
the Marsden's identity [1]: each of coefficients of spline
|
760 |
+
interpolation function in the B-spline basis is computed as follows:
|
761 |
+
|
762 |
+
.. math::
|
763 |
+
|
764 |
+
c_j = \sum_{m=0}^{k} \frac{(k-m)!}{k!}
|
765 |
+
c_{m,i} (-1)^{k-m} D^m p_{j,k}(x_i)
|
766 |
+
|
767 |
+
:math:`c_{m, i}` - a coefficient of CubicSpline,
|
768 |
+
:math:`D^m p_{j, k}(x_i)` - an m-th defivative of a dual polynomial
|
769 |
+
in :math:`x_i`.
|
770 |
+
|
771 |
+
``k`` always equals 3 for now.
|
772 |
+
|
773 |
+
First ``n - 2`` coefficients are computed in :math:`x_i = x_j`, e.g.
|
774 |
+
|
775 |
+
.. math::
|
776 |
+
|
777 |
+
c_1 = \sum_{m=0}^{k} \frac{(k-1)!}{k!} c_{m,1} D^m p_{j,3}(x_1)
|
778 |
+
|
779 |
+
Last ``nod + 2`` coefficients are computed in ``x[-2]``,
|
780 |
+
``nod`` - number of derivatives at the ends.
|
781 |
+
|
782 |
+
For example, consider :math:`x = [0, 1, 2, 3, 4]`,
|
783 |
+
:math:`y = [1, 1, 1, 1, 1]` and bc_type = ``natural``
|
784 |
+
|
785 |
+
The coefficients of CubicSpline in the power basis:
|
786 |
+
|
787 |
+
:math:`[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0],
|
788 |
+
[0, 0, 0, 0, 0], [1, 1, 1, 1, 1]]`
|
789 |
+
|
790 |
+
The knot vector: :math:`t = [0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4]`
|
791 |
+
|
792 |
+
In this case
|
793 |
+
|
794 |
+
.. math::
|
795 |
+
|
796 |
+
c_j = \frac{0!}{k!} c_{3, i} k! = c_{3, i} = 1,~j = 0, ..., 6
|
797 |
+
|
798 |
+
References
|
799 |
+
----------
|
800 |
+
.. [1] Tom Lyche and Knut Morken, Spline Methods, 2005, Section 3.1.2
|
801 |
+
|
802 |
+
"""
|
803 |
+
from ._cubic import CubicSpline
|
804 |
+
if not isinstance(pp, CubicSpline):
|
805 |
+
raise NotImplementedError("Only CubicSpline objects are accepted"
|
806 |
+
"for now. Got %s instead." % type(pp))
|
807 |
+
x = pp.x
|
808 |
+
coef = pp.c
|
809 |
+
k = pp.c.shape[0] - 1
|
810 |
+
n = x.shape[0]
|
811 |
+
|
812 |
+
if bc_type == 'not-a-knot':
|
813 |
+
t = _not_a_knot(x, k)
|
814 |
+
elif bc_type == 'natural' or bc_type == 'clamped':
|
815 |
+
t = _augknt(x, k)
|
816 |
+
elif bc_type == 'periodic':
|
817 |
+
t = _periodic_knots(x, k)
|
818 |
+
else:
|
819 |
+
raise TypeError('Unknown boundary condition: %s' % bc_type)
|
820 |
+
|
821 |
+
nod = t.shape[0] - (n + k + 1) # number of derivatives at the ends
|
822 |
+
c = np.zeros(n + nod, dtype=pp.c.dtype)
|
823 |
+
for m in range(k + 1):
|
824 |
+
for i in range(n - 2):
|
825 |
+
c[i] += poch(k + 1, -m) * coef[m, i]\
|
826 |
+
* np.power(-1, k - m)\
|
827 |
+
* _diff_dual_poly(i, k, x[i], m, t)
|
828 |
+
for j in range(n - 2, n + nod):
|
829 |
+
c[j] += poch(k + 1, -m) * coef[m, n - 2]\
|
830 |
+
* np.power(-1, k - m)\
|
831 |
+
* _diff_dual_poly(j, k, x[n - 2], m, t)
|
832 |
+
return cls.construct_fast(t, c, k, pp.extrapolate, pp.axis)
|
833 |
+
|
834 |
+
def insert_knot(self, x, m=1):
|
835 |
+
"""Insert a new knot at `x` of multiplicity `m`.
|
836 |
+
|
837 |
+
Given the knots and coefficients of a B-spline representation, create a
|
838 |
+
new B-spline with a knot inserted `m` times at point `x`.
|
839 |
+
|
840 |
+
Parameters
|
841 |
+
----------
|
842 |
+
x : float
|
843 |
+
The position of the new knot
|
844 |
+
m : int, optional
|
845 |
+
The number of times to insert the given knot (its multiplicity).
|
846 |
+
Default is 1.
|
847 |
+
|
848 |
+
Returns
|
849 |
+
-------
|
850 |
+
spl : BSpline object
|
851 |
+
A new BSpline object with the new knot inserted.
|
852 |
+
|
853 |
+
Notes
|
854 |
+
-----
|
855 |
+
Based on algorithms from [1]_ and [2]_.
|
856 |
+
|
857 |
+
In case of a periodic spline (``self.extrapolate == "periodic"``)
|
858 |
+
there must be either at least k interior knots t(j) satisfying
|
859 |
+
``t(k+1)<t(j)<=x`` or at least k interior knots t(j) satisfying
|
860 |
+
``x<=t(j)<t(n-k)``.
|
861 |
+
|
862 |
+
This routine is functionally equivalent to `scipy.interpolate.insert`.
|
863 |
+
|
864 |
+
.. versionadded:: 1.13
|
865 |
+
|
866 |
+
References
|
867 |
+
----------
|
868 |
+
.. [1] W. Boehm, "Inserting new knots into b-spline curves.",
|
869 |
+
Computer Aided Design, 12, p.199-201, 1980.
|
870 |
+
:doi:`10.1016/0010-4485(80)90154-2`.
|
871 |
+
.. [2] P. Dierckx, "Curve and surface fitting with splines, Monographs on
|
872 |
+
Numerical Analysis", Oxford University Press, 1993.
|
873 |
+
|
874 |
+
See Also
|
875 |
+
--------
|
876 |
+
scipy.interpolate.insert
|
877 |
+
|
878 |
+
Examples
|
879 |
+
--------
|
880 |
+
You can insert knots into a B-spline:
|
881 |
+
|
882 |
+
>>> import numpy as np
|
883 |
+
>>> from scipy.interpolate import BSpline, make_interp_spline
|
884 |
+
>>> x = np.linspace(0, 10, 5)
|
885 |
+
>>> y = np.sin(x)
|
886 |
+
>>> spl = make_interp_spline(x, y, k=3)
|
887 |
+
>>> spl.t
|
888 |
+
array([ 0., 0., 0., 0., 5., 10., 10., 10., 10.])
|
889 |
+
|
890 |
+
Insert a single knot
|
891 |
+
|
892 |
+
>>> spl_1 = spl.insert_knot(3)
|
893 |
+
>>> spl_1.t
|
894 |
+
array([ 0., 0., 0., 0., 3., 5., 10., 10., 10., 10.])
|
895 |
+
|
896 |
+
Insert a multiple knot
|
897 |
+
|
898 |
+
>>> spl_2 = spl.insert_knot(8, m=3)
|
899 |
+
>>> spl_2.t
|
900 |
+
array([ 0., 0., 0., 0., 5., 8., 8., 8., 10., 10., 10., 10.])
|
901 |
+
|
902 |
+
"""
|
903 |
+
if x < self.t[self.k] or x > self.t[-self.k-1]:
|
904 |
+
raise ValueError(f"Cannot insert a knot at {x}.")
|
905 |
+
if m <= 0:
|
906 |
+
raise ValueError(f"`m` must be positive, got {m = }.")
|
907 |
+
|
908 |
+
extradim = self.c.shape[1:]
|
909 |
+
num_extra = prod(extradim)
|
910 |
+
|
911 |
+
tt = self.t.copy()
|
912 |
+
cc = self.c.copy()
|
913 |
+
cc = cc.reshape(-1, num_extra)
|
914 |
+
|
915 |
+
for _ in range(m):
|
916 |
+
tt, cc = _bspl.insert(x, tt, cc, self.k, self.extrapolate == "periodic")
|
917 |
+
|
918 |
+
return self.construct_fast(
|
919 |
+
tt, cc.reshape((-1,) + extradim), self.k, self.extrapolate, self.axis
|
920 |
+
)
|
921 |
+
|
922 |
+
|
923 |
+
#################################
|
924 |
+
# Interpolating spline helpers #
|
925 |
+
#################################
|
926 |
+
|
927 |
+
def _not_a_knot(x, k):
|
928 |
+
"""Given data x, construct the knot vector w/ not-a-knot BC.
|
929 |
+
cf de Boor, XIII(12)."""
|
930 |
+
x = np.asarray(x)
|
931 |
+
if k % 2 != 1:
|
932 |
+
raise ValueError("Odd degree for now only. Got %s." % k)
|
933 |
+
|
934 |
+
m = (k - 1) // 2
|
935 |
+
t = x[m+1:-m-1]
|
936 |
+
t = np.r_[(x[0],)*(k+1), t, (x[-1],)*(k+1)]
|
937 |
+
return t
|
938 |
+
|
939 |
+
|
940 |
+
def _augknt(x, k):
|
941 |
+
"""Construct a knot vector appropriate for the order-k interpolation."""
|
942 |
+
return np.r_[(x[0],)*k, x, (x[-1],)*k]
|
943 |
+
|
944 |
+
|
945 |
+
def _convert_string_aliases(deriv, target_shape):
|
946 |
+
if isinstance(deriv, str):
|
947 |
+
if deriv == "clamped":
|
948 |
+
deriv = [(1, np.zeros(target_shape))]
|
949 |
+
elif deriv == "natural":
|
950 |
+
deriv = [(2, np.zeros(target_shape))]
|
951 |
+
else:
|
952 |
+
raise ValueError("Unknown boundary condition : %s" % deriv)
|
953 |
+
return deriv
|
954 |
+
|
955 |
+
|
956 |
+
def _process_deriv_spec(deriv):
|
957 |
+
if deriv is not None:
|
958 |
+
try:
|
959 |
+
ords, vals = zip(*deriv)
|
960 |
+
except TypeError as e:
|
961 |
+
msg = ("Derivatives, `bc_type`, should be specified as a pair of "
|
962 |
+
"iterables of pairs of (order, value).")
|
963 |
+
raise ValueError(msg) from e
|
964 |
+
else:
|
965 |
+
ords, vals = [], []
|
966 |
+
return np.atleast_1d(ords, vals)
|
967 |
+
|
968 |
+
|
969 |
+
def _woodbury_algorithm(A, ur, ll, b, k):
|
970 |
+
'''
|
971 |
+
Solve a cyclic banded linear system with upper right
|
972 |
+
and lower blocks of size ``(k-1) / 2`` using
|
973 |
+
the Woodbury formula
|
974 |
+
|
975 |
+
Parameters
|
976 |
+
----------
|
977 |
+
A : 2-D array, shape(k, n)
|
978 |
+
Matrix of diagonals of original matrix (see
|
979 |
+
``solve_banded`` documentation).
|
980 |
+
ur : 2-D array, shape(bs, bs)
|
981 |
+
Upper right block matrix.
|
982 |
+
ll : 2-D array, shape(bs, bs)
|
983 |
+
Lower left block matrix.
|
984 |
+
b : 1-D array, shape(n,)
|
985 |
+
Vector of constant terms of the system of linear equations.
|
986 |
+
k : int
|
987 |
+
B-spline degree.
|
988 |
+
|
989 |
+
Returns
|
990 |
+
-------
|
991 |
+
c : 1-D array, shape(n,)
|
992 |
+
Solution of the original system of linear equations.
|
993 |
+
|
994 |
+
Notes
|
995 |
+
-----
|
996 |
+
This algorithm works only for systems with banded matrix A plus
|
997 |
+
a correction term U @ V.T, where the matrix U @ V.T gives upper right
|
998 |
+
and lower left block of A
|
999 |
+
The system is solved with the following steps:
|
1000 |
+
1. New systems of linear equations are constructed:
|
1001 |
+
A @ z_i = u_i,
|
1002 |
+
u_i - column vector of U,
|
1003 |
+
i = 1, ..., k - 1
|
1004 |
+
2. Matrix Z is formed from vectors z_i:
|
1005 |
+
Z = [ z_1 | z_2 | ... | z_{k - 1} ]
|
1006 |
+
3. Matrix H = (1 + V.T @ Z)^{-1}
|
1007 |
+
4. The system A' @ y = b is solved
|
1008 |
+
5. x = y - Z @ (H @ V.T @ y)
|
1009 |
+
Also, ``n`` should be greater than ``k``, otherwise corner block
|
1010 |
+
elements will intersect with diagonals.
|
1011 |
+
|
1012 |
+
Examples
|
1013 |
+
--------
|
1014 |
+
Consider the case of n = 8, k = 5 (size of blocks - 2 x 2).
|
1015 |
+
The matrix of a system: U: V:
|
1016 |
+
x x x * * a b a b 0 0 0 0 1 0
|
1017 |
+
x x x x * * c 0 c 0 0 0 0 0 1
|
1018 |
+
x x x x x * * 0 0 0 0 0 0 0 0
|
1019 |
+
* x x x x x * 0 0 0 0 0 0 0 0
|
1020 |
+
* * x x x x x 0 0 0 0 0 0 0 0
|
1021 |
+
d * * x x x x 0 0 d 0 1 0 0 0
|
1022 |
+
e f * * x x x 0 0 e f 0 1 0 0
|
1023 |
+
|
1024 |
+
References
|
1025 |
+
----------
|
1026 |
+
.. [1] William H. Press, Saul A. Teukolsky, William T. Vetterling
|
1027 |
+
and Brian P. Flannery, Numerical Recipes, 2007, Section 2.7.3
|
1028 |
+
|
1029 |
+
'''
|
1030 |
+
k_mod = k - k % 2
|
1031 |
+
bs = int((k - 1) / 2) + (k + 1) % 2
|
1032 |
+
|
1033 |
+
n = A.shape[1] + 1
|
1034 |
+
U = np.zeros((n - 1, k_mod))
|
1035 |
+
VT = np.zeros((k_mod, n - 1)) # V transpose
|
1036 |
+
|
1037 |
+
# upper right block
|
1038 |
+
U[:bs, :bs] = ur
|
1039 |
+
VT[np.arange(bs), np.arange(bs) - bs] = 1
|
1040 |
+
|
1041 |
+
# lower left block
|
1042 |
+
U[-bs:, -bs:] = ll
|
1043 |
+
VT[np.arange(bs) - bs, np.arange(bs)] = 1
|
1044 |
+
|
1045 |
+
Z = solve_banded((bs, bs), A, U)
|
1046 |
+
|
1047 |
+
H = solve(np.identity(k_mod) + VT @ Z, np.identity(k_mod))
|
1048 |
+
|
1049 |
+
y = solve_banded((bs, bs), A, b)
|
1050 |
+
c = y - Z @ (H @ (VT @ y))
|
1051 |
+
|
1052 |
+
return c
|
1053 |
+
|
1054 |
+
|
1055 |
+
def _periodic_knots(x, k):
|
1056 |
+
'''
|
1057 |
+
returns vector of nodes on circle
|
1058 |
+
'''
|
1059 |
+
xc = np.copy(x)
|
1060 |
+
n = len(xc)
|
1061 |
+
if k % 2 == 0:
|
1062 |
+
dx = np.diff(xc)
|
1063 |
+
xc[1: -1] -= dx[:-1] / 2
|
1064 |
+
dx = np.diff(xc)
|
1065 |
+
t = np.zeros(n + 2 * k)
|
1066 |
+
t[k: -k] = xc
|
1067 |
+
for i in range(0, k):
|
1068 |
+
# filling first `k` elements in descending order
|
1069 |
+
t[k - i - 1] = t[k - i] - dx[-(i % (n - 1)) - 1]
|
1070 |
+
# filling last `k` elements in ascending order
|
1071 |
+
t[-k + i] = t[-k + i - 1] + dx[i % (n - 1)]
|
1072 |
+
return t
|
1073 |
+
|
1074 |
+
|
1075 |
+
def _make_interp_per_full_matr(x, y, t, k):
|
1076 |
+
'''
|
1077 |
+
Returns a solution of a system for B-spline interpolation with periodic
|
1078 |
+
boundary conditions. First ``k - 1`` rows of matrix are conditions of
|
1079 |
+
periodicity (continuity of ``k - 1`` derivatives at the boundary points).
|
1080 |
+
Last ``n`` rows are interpolation conditions.
|
1081 |
+
RHS is ``k - 1`` zeros and ``n`` ordinates in this case.
|
1082 |
+
|
1083 |
+
Parameters
|
1084 |
+
----------
|
1085 |
+
x : 1-D array, shape (n,)
|
1086 |
+
Values of x - coordinate of a given set of points.
|
1087 |
+
y : 1-D array, shape (n,)
|
1088 |
+
Values of y - coordinate of a given set of points.
|
1089 |
+
t : 1-D array, shape(n+2*k,)
|
1090 |
+
Vector of knots.
|
1091 |
+
k : int
|
1092 |
+
The maximum degree of spline
|
1093 |
+
|
1094 |
+
Returns
|
1095 |
+
-------
|
1096 |
+
c : 1-D array, shape (n+k-1,)
|
1097 |
+
B-spline coefficients
|
1098 |
+
|
1099 |
+
Notes
|
1100 |
+
-----
|
1101 |
+
``t`` is supposed to be taken on circle.
|
1102 |
+
|
1103 |
+
'''
|
1104 |
+
|
1105 |
+
x, y, t = map(np.asarray, (x, y, t))
|
1106 |
+
|
1107 |
+
n = x.size
|
1108 |
+
# LHS: the collocation matrix + derivatives at edges
|
1109 |
+
matr = np.zeros((n + k - 1, n + k - 1))
|
1110 |
+
|
1111 |
+
# derivatives at x[0] and x[-1]:
|
1112 |
+
for i in range(k - 1):
|
1113 |
+
bb = _bspl.evaluate_all_bspl(t, k, x[0], k, nu=i + 1)
|
1114 |
+
matr[i, : k + 1] += bb
|
1115 |
+
bb = _bspl.evaluate_all_bspl(t, k, x[-1], n + k - 1, nu=i + 1)[:-1]
|
1116 |
+
matr[i, -k:] -= bb
|
1117 |
+
|
1118 |
+
# collocation matrix
|
1119 |
+
for i in range(n):
|
1120 |
+
xval = x[i]
|
1121 |
+
# find interval
|
1122 |
+
if xval == t[k]:
|
1123 |
+
left = k
|
1124 |
+
else:
|
1125 |
+
left = np.searchsorted(t, xval) - 1
|
1126 |
+
|
1127 |
+
# fill a row
|
1128 |
+
bb = _bspl.evaluate_all_bspl(t, k, xval, left)
|
1129 |
+
matr[i + k - 1, left-k:left+1] = bb
|
1130 |
+
|
1131 |
+
# RHS
|
1132 |
+
b = np.r_[[0] * (k - 1), y]
|
1133 |
+
|
1134 |
+
c = solve(matr, b)
|
1135 |
+
return c
|
1136 |
+
|
1137 |
+
|
1138 |
+
def _make_periodic_spline(x, y, t, k, axis):
|
1139 |
+
'''
|
1140 |
+
Compute the (coefficients of) interpolating B-spline with periodic
|
1141 |
+
boundary conditions.
|
1142 |
+
|
1143 |
+
Parameters
|
1144 |
+
----------
|
1145 |
+
x : array_like, shape (n,)
|
1146 |
+
Abscissas.
|
1147 |
+
y : array_like, shape (n,)
|
1148 |
+
Ordinates.
|
1149 |
+
k : int
|
1150 |
+
B-spline degree.
|
1151 |
+
t : array_like, shape (n + 2 * k,).
|
1152 |
+
Knots taken on a circle, ``k`` on the left and ``k`` on the right
|
1153 |
+
of the vector ``x``.
|
1154 |
+
|
1155 |
+
Returns
|
1156 |
+
-------
|
1157 |
+
b : a BSpline object of the degree ``k`` and with knots ``t``.
|
1158 |
+
|
1159 |
+
Notes
|
1160 |
+
-----
|
1161 |
+
The original system is formed by ``n + k - 1`` equations where the first
|
1162 |
+
``k - 1`` of them stand for the ``k - 1`` derivatives continuity on the
|
1163 |
+
edges while the other equations correspond to an interpolating case
|
1164 |
+
(matching all the input points). Due to a special form of knot vector, it
|
1165 |
+
can be proved that in the original system the first and last ``k``
|
1166 |
+
coefficients of a spline function are the same, respectively. It follows
|
1167 |
+
from the fact that all ``k - 1`` derivatives are equal term by term at ends
|
1168 |
+
and that the matrix of the original system of linear equations is
|
1169 |
+
non-degenerate. So, we can reduce the number of equations to ``n - 1``
|
1170 |
+
(first ``k - 1`` equations could be reduced). Another trick of this
|
1171 |
+
implementation is cyclic shift of values of B-splines due to equality of
|
1172 |
+
``k`` unknown coefficients. With this we can receive matrix of the system
|
1173 |
+
with upper right and lower left blocks, and ``k`` diagonals. It allows
|
1174 |
+
to use Woodbury formula to optimize the computations.
|
1175 |
+
|
1176 |
+
'''
|
1177 |
+
n = y.shape[0]
|
1178 |
+
|
1179 |
+
extradim = prod(y.shape[1:])
|
1180 |
+
y_new = y.reshape(n, extradim)
|
1181 |
+
c = np.zeros((n + k - 1, extradim))
|
1182 |
+
|
1183 |
+
# n <= k case is solved with full matrix
|
1184 |
+
if n <= k:
|
1185 |
+
for i in range(extradim):
|
1186 |
+
c[:, i] = _make_interp_per_full_matr(x, y_new[:, i], t, k)
|
1187 |
+
c = np.ascontiguousarray(c.reshape((n + k - 1,) + y.shape[1:]))
|
1188 |
+
return BSpline.construct_fast(t, c, k, extrapolate='periodic', axis=axis)
|
1189 |
+
|
1190 |
+
nt = len(t) - k - 1
|
1191 |
+
|
1192 |
+
# size of block elements
|
1193 |
+
kul = int(k / 2)
|
1194 |
+
|
1195 |
+
# kl = ku = k
|
1196 |
+
ab = np.zeros((3 * k + 1, nt), dtype=np.float64, order='F')
|
1197 |
+
|
1198 |
+
# upper right and lower left blocks
|
1199 |
+
ur = np.zeros((kul, kul))
|
1200 |
+
ll = np.zeros_like(ur)
|
1201 |
+
|
1202 |
+
# `offset` is made to shift all the non-zero elements to the end of the
|
1203 |
+
# matrix
|
1204 |
+
_bspl._colloc(x, t, k, ab, offset=k)
|
1205 |
+
|
1206 |
+
# remove zeros before the matrix
|
1207 |
+
ab = ab[-k - (k + 1) % 2:, :]
|
1208 |
+
|
1209 |
+
# The least elements in rows (except repetitions) are diagonals
|
1210 |
+
# of block matrices. Upper right matrix is an upper triangular
|
1211 |
+
# matrix while lower left is a lower triangular one.
|
1212 |
+
for i in range(kul):
|
1213 |
+
ur += np.diag(ab[-i - 1, i: kul], k=i)
|
1214 |
+
ll += np.diag(ab[i, -kul - (k % 2): n - 1 + 2 * kul - i], k=-i)
|
1215 |
+
|
1216 |
+
# remove elements that occur in the last point
|
1217 |
+
# (first and last points are equivalent)
|
1218 |
+
A = ab[:, kul: -k + kul]
|
1219 |
+
|
1220 |
+
for i in range(extradim):
|
1221 |
+
cc = _woodbury_algorithm(A, ur, ll, y_new[:, i][:-1], k)
|
1222 |
+
c[:, i] = np.concatenate((cc[-kul:], cc, cc[:kul + k % 2]))
|
1223 |
+
c = np.ascontiguousarray(c.reshape((n + k - 1,) + y.shape[1:]))
|
1224 |
+
return BSpline.construct_fast(t, c, k, extrapolate='periodic', axis=axis)
|
1225 |
+
|
1226 |
+
|
1227 |
+
def make_interp_spline(x, y, k=3, t=None, bc_type=None, axis=0,
|
1228 |
+
check_finite=True):
|
1229 |
+
"""Compute the (coefficients of) interpolating B-spline.
|
1230 |
+
|
1231 |
+
Parameters
|
1232 |
+
----------
|
1233 |
+
x : array_like, shape (n,)
|
1234 |
+
Abscissas.
|
1235 |
+
y : array_like, shape (n, ...)
|
1236 |
+
Ordinates.
|
1237 |
+
k : int, optional
|
1238 |
+
B-spline degree. Default is cubic, ``k = 3``.
|
1239 |
+
t : array_like, shape (nt + k + 1,), optional.
|
1240 |
+
Knots.
|
1241 |
+
The number of knots needs to agree with the number of data points and
|
1242 |
+
the number of derivatives at the edges. Specifically, ``nt - n`` must
|
1243 |
+
equal ``len(deriv_l) + len(deriv_r)``.
|
1244 |
+
bc_type : 2-tuple or None
|
1245 |
+
Boundary conditions.
|
1246 |
+
Default is None, which means choosing the boundary conditions
|
1247 |
+
automatically. Otherwise, it must be a length-two tuple where the first
|
1248 |
+
element (``deriv_l``) sets the boundary conditions at ``x[0]`` and
|
1249 |
+
the second element (``deriv_r``) sets the boundary conditions at
|
1250 |
+
``x[-1]``. Each of these must be an iterable of pairs
|
1251 |
+
``(order, value)`` which gives the values of derivatives of specified
|
1252 |
+
orders at the given edge of the interpolation interval.
|
1253 |
+
Alternatively, the following string aliases are recognized:
|
1254 |
+
|
1255 |
+
* ``"clamped"``: The first derivatives at the ends are zero. This is
|
1256 |
+
equivalent to ``bc_type=([(1, 0.0)], [(1, 0.0)])``.
|
1257 |
+
* ``"natural"``: The second derivatives at ends are zero. This is
|
1258 |
+
equivalent to ``bc_type=([(2, 0.0)], [(2, 0.0)])``.
|
1259 |
+
* ``"not-a-knot"`` (default): The first and second segments are the
|
1260 |
+
same polynomial. This is equivalent to having ``bc_type=None``.
|
1261 |
+
* ``"periodic"``: The values and the first ``k-1`` derivatives at the
|
1262 |
+
ends are equivalent.
|
1263 |
+
|
1264 |
+
axis : int, optional
|
1265 |
+
Interpolation axis. Default is 0.
|
1266 |
+
check_finite : bool, optional
|
1267 |
+
Whether to check that the input arrays contain only finite numbers.
|
1268 |
+
Disabling may give a performance gain, but may result in problems
|
1269 |
+
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
1270 |
+
Default is True.
|
1271 |
+
|
1272 |
+
Returns
|
1273 |
+
-------
|
1274 |
+
b : a BSpline object of the degree ``k`` and with knots ``t``.
|
1275 |
+
|
1276 |
+
See Also
|
1277 |
+
--------
|
1278 |
+
BSpline : base class representing the B-spline objects
|
1279 |
+
CubicSpline : a cubic spline in the polynomial basis
|
1280 |
+
make_lsq_spline : a similar factory function for spline fitting
|
1281 |
+
UnivariateSpline : a wrapper over FITPACK spline fitting routines
|
1282 |
+
splrep : a wrapper over FITPACK spline fitting routines
|
1283 |
+
|
1284 |
+
Examples
|
1285 |
+
--------
|
1286 |
+
|
1287 |
+
Use cubic interpolation on Chebyshev nodes:
|
1288 |
+
|
1289 |
+
>>> import numpy as np
|
1290 |
+
>>> import matplotlib.pyplot as plt
|
1291 |
+
>>> def cheb_nodes(N):
|
1292 |
+
... jj = 2.*np.arange(N) + 1
|
1293 |
+
... x = np.cos(np.pi * jj / 2 / N)[::-1]
|
1294 |
+
... return x
|
1295 |
+
|
1296 |
+
>>> x = cheb_nodes(20)
|
1297 |
+
>>> y = np.sqrt(1 - x**2)
|
1298 |
+
|
1299 |
+
>>> from scipy.interpolate import BSpline, make_interp_spline
|
1300 |
+
>>> b = make_interp_spline(x, y)
|
1301 |
+
>>> np.allclose(b(x), y)
|
1302 |
+
True
|
1303 |
+
|
1304 |
+
Note that the default is a cubic spline with a not-a-knot boundary condition
|
1305 |
+
|
1306 |
+
>>> b.k
|
1307 |
+
3
|
1308 |
+
|
1309 |
+
Here we use a 'natural' spline, with zero 2nd derivatives at edges:
|
1310 |
+
|
1311 |
+
>>> l, r = [(2, 0.0)], [(2, 0.0)]
|
1312 |
+
>>> b_n = make_interp_spline(x, y, bc_type=(l, r)) # or, bc_type="natural"
|
1313 |
+
>>> np.allclose(b_n(x), y)
|
1314 |
+
True
|
1315 |
+
>>> x0, x1 = x[0], x[-1]
|
1316 |
+
>>> np.allclose([b_n(x0, 2), b_n(x1, 2)], [0, 0])
|
1317 |
+
True
|
1318 |
+
|
1319 |
+
Interpolation of parametric curves is also supported. As an example, we
|
1320 |
+
compute a discretization of a snail curve in polar coordinates
|
1321 |
+
|
1322 |
+
>>> phi = np.linspace(0, 2.*np.pi, 40)
|
1323 |
+
>>> r = 0.3 + np.cos(phi)
|
1324 |
+
>>> x, y = r*np.cos(phi), r*np.sin(phi) # convert to Cartesian coordinates
|
1325 |
+
|
1326 |
+
Build an interpolating curve, parameterizing it by the angle
|
1327 |
+
|
1328 |
+
>>> spl = make_interp_spline(phi, np.c_[x, y])
|
1329 |
+
|
1330 |
+
Evaluate the interpolant on a finer grid (note that we transpose the result
|
1331 |
+
to unpack it into a pair of x- and y-arrays)
|
1332 |
+
|
1333 |
+
>>> phi_new = np.linspace(0, 2.*np.pi, 100)
|
1334 |
+
>>> x_new, y_new = spl(phi_new).T
|
1335 |
+
|
1336 |
+
Plot the result
|
1337 |
+
|
1338 |
+
>>> plt.plot(x, y, 'o')
|
1339 |
+
>>> plt.plot(x_new, y_new, '-')
|
1340 |
+
>>> plt.show()
|
1341 |
+
|
1342 |
+
Build a B-spline curve with 2 dimensional y
|
1343 |
+
|
1344 |
+
>>> x = np.linspace(0, 2*np.pi, 10)
|
1345 |
+
>>> y = np.array([np.sin(x), np.cos(x)])
|
1346 |
+
|
1347 |
+
Periodic condition is satisfied because y coordinates of points on the ends
|
1348 |
+
are equivalent
|
1349 |
+
|
1350 |
+
>>> ax = plt.axes(projection='3d')
|
1351 |
+
>>> xx = np.linspace(0, 2*np.pi, 100)
|
1352 |
+
>>> bspl = make_interp_spline(x, y, k=5, bc_type='periodic', axis=1)
|
1353 |
+
>>> ax.plot3D(xx, *bspl(xx))
|
1354 |
+
>>> ax.scatter3D(x, *y, color='red')
|
1355 |
+
>>> plt.show()
|
1356 |
+
|
1357 |
+
"""
|
1358 |
+
# convert string aliases for the boundary conditions
|
1359 |
+
if bc_type is None or bc_type == 'not-a-knot' or bc_type == 'periodic':
|
1360 |
+
deriv_l, deriv_r = None, None
|
1361 |
+
elif isinstance(bc_type, str):
|
1362 |
+
deriv_l, deriv_r = bc_type, bc_type
|
1363 |
+
else:
|
1364 |
+
try:
|
1365 |
+
deriv_l, deriv_r = bc_type
|
1366 |
+
except TypeError as e:
|
1367 |
+
raise ValueError("Unknown boundary condition: %s" % bc_type) from e
|
1368 |
+
|
1369 |
+
y = np.asarray(y)
|
1370 |
+
|
1371 |
+
axis = normalize_axis_index(axis, y.ndim)
|
1372 |
+
|
1373 |
+
x = _as_float_array(x, check_finite)
|
1374 |
+
y = _as_float_array(y, check_finite)
|
1375 |
+
|
1376 |
+
y = np.moveaxis(y, axis, 0) # now internally interp axis is zero
|
1377 |
+
|
1378 |
+
# sanity check the input
|
1379 |
+
if bc_type == 'periodic' and not np.allclose(y[0], y[-1], atol=1e-15):
|
1380 |
+
raise ValueError("First and last points does not match while "
|
1381 |
+
"periodic case expected")
|
1382 |
+
if x.size != y.shape[0]:
|
1383 |
+
raise ValueError(f'Shapes of x {x.shape} and y {y.shape} are incompatible')
|
1384 |
+
if np.any(x[1:] == x[:-1]):
|
1385 |
+
raise ValueError("Expect x to not have duplicates")
|
1386 |
+
if x.ndim != 1 or np.any(x[1:] < x[:-1]):
|
1387 |
+
raise ValueError("Expect x to be a 1D strictly increasing sequence.")
|
1388 |
+
|
1389 |
+
# special-case k=0 right away
|
1390 |
+
if k == 0:
|
1391 |
+
if any(_ is not None for _ in (t, deriv_l, deriv_r)):
|
1392 |
+
raise ValueError("Too much info for k=0: t and bc_type can only "
|
1393 |
+
"be None.")
|
1394 |
+
t = np.r_[x, x[-1]]
|
1395 |
+
c = np.asarray(y)
|
1396 |
+
c = np.ascontiguousarray(c, dtype=_get_dtype(c.dtype))
|
1397 |
+
return BSpline.construct_fast(t, c, k, axis=axis)
|
1398 |
+
|
1399 |
+
# special-case k=1 (e.g., Lyche and Morken, Eq.(2.16))
|
1400 |
+
if k == 1 and t is None:
|
1401 |
+
if not (deriv_l is None and deriv_r is None):
|
1402 |
+
raise ValueError("Too much info for k=1: bc_type can only be None.")
|
1403 |
+
t = np.r_[x[0], x, x[-1]]
|
1404 |
+
c = np.asarray(y)
|
1405 |
+
c = np.ascontiguousarray(c, dtype=_get_dtype(c.dtype))
|
1406 |
+
return BSpline.construct_fast(t, c, k, axis=axis)
|
1407 |
+
|
1408 |
+
k = operator.index(k)
|
1409 |
+
|
1410 |
+
if bc_type == 'periodic' and t is not None:
|
1411 |
+
raise NotImplementedError("For periodic case t is constructed "
|
1412 |
+
"automatically and can not be passed "
|
1413 |
+
"manually")
|
1414 |
+
|
1415 |
+
# come up with a sensible knot vector, if needed
|
1416 |
+
if t is None:
|
1417 |
+
if deriv_l is None and deriv_r is None:
|
1418 |
+
if bc_type == 'periodic':
|
1419 |
+
t = _periodic_knots(x, k)
|
1420 |
+
elif k == 2:
|
1421 |
+
# OK, it's a bit ad hoc: Greville sites + omit
|
1422 |
+
# 2nd and 2nd-to-last points, a la not-a-knot
|
1423 |
+
t = (x[1:] + x[:-1]) / 2.
|
1424 |
+
t = np.r_[(x[0],)*(k+1),
|
1425 |
+
t[1:-1],
|
1426 |
+
(x[-1],)*(k+1)]
|
1427 |
+
else:
|
1428 |
+
t = _not_a_knot(x, k)
|
1429 |
+
else:
|
1430 |
+
t = _augknt(x, k)
|
1431 |
+
|
1432 |
+
t = _as_float_array(t, check_finite)
|
1433 |
+
|
1434 |
+
if k < 0:
|
1435 |
+
raise ValueError("Expect non-negative k.")
|
1436 |
+
if t.ndim != 1 or np.any(t[1:] < t[:-1]):
|
1437 |
+
raise ValueError("Expect t to be a 1-D sorted array_like.")
|
1438 |
+
if t.size < x.size + k + 1:
|
1439 |
+
raise ValueError('Got %d knots, need at least %d.' %
|
1440 |
+
(t.size, x.size + k + 1))
|
1441 |
+
if (x[0] < t[k]) or (x[-1] > t[-k]):
|
1442 |
+
raise ValueError('Out of bounds w/ x = %s.' % x)
|
1443 |
+
|
1444 |
+
if bc_type == 'periodic':
|
1445 |
+
return _make_periodic_spline(x, y, t, k, axis)
|
1446 |
+
|
1447 |
+
# Here : deriv_l, r = [(nu, value), ...]
|
1448 |
+
deriv_l = _convert_string_aliases(deriv_l, y.shape[1:])
|
1449 |
+
deriv_l_ords, deriv_l_vals = _process_deriv_spec(deriv_l)
|
1450 |
+
nleft = deriv_l_ords.shape[0]
|
1451 |
+
|
1452 |
+
deriv_r = _convert_string_aliases(deriv_r, y.shape[1:])
|
1453 |
+
deriv_r_ords, deriv_r_vals = _process_deriv_spec(deriv_r)
|
1454 |
+
nright = deriv_r_ords.shape[0]
|
1455 |
+
|
1456 |
+
# have `n` conditions for `nt` coefficients; need nt-n derivatives
|
1457 |
+
n = x.size
|
1458 |
+
nt = t.size - k - 1
|
1459 |
+
|
1460 |
+
if nt - n != nleft + nright:
|
1461 |
+
raise ValueError("The number of derivatives at boundaries does not "
|
1462 |
+
f"match: expected {nt-n}, got {nleft}+{nright}")
|
1463 |
+
|
1464 |
+
# bail out if the `y` array is zero-sized
|
1465 |
+
if y.size == 0:
|
1466 |
+
c = np.zeros((nt,) + y.shape[1:], dtype=float)
|
1467 |
+
return BSpline.construct_fast(t, c, k, axis=axis)
|
1468 |
+
|
1469 |
+
# set up the LHS: the collocation matrix + derivatives at boundaries
|
1470 |
+
kl = ku = k
|
1471 |
+
ab = np.zeros((2*kl + ku + 1, nt), dtype=np.float64, order='F')
|
1472 |
+
_bspl._colloc(x, t, k, ab, offset=nleft)
|
1473 |
+
if nleft > 0:
|
1474 |
+
_bspl._handle_lhs_derivatives(t, k, x[0], ab, kl, ku,
|
1475 |
+
deriv_l_ords.astype(np.dtype("long")))
|
1476 |
+
if nright > 0:
|
1477 |
+
_bspl._handle_lhs_derivatives(t, k, x[-1], ab, kl, ku,
|
1478 |
+
deriv_r_ords.astype(np.dtype("long")),
|
1479 |
+
offset=nt-nright)
|
1480 |
+
|
1481 |
+
# set up the RHS: values to interpolate (+ derivative values, if any)
|
1482 |
+
extradim = prod(y.shape[1:])
|
1483 |
+
rhs = np.empty((nt, extradim), dtype=y.dtype)
|
1484 |
+
if nleft > 0:
|
1485 |
+
rhs[:nleft] = deriv_l_vals.reshape(-1, extradim)
|
1486 |
+
rhs[nleft:nt - nright] = y.reshape(-1, extradim)
|
1487 |
+
if nright > 0:
|
1488 |
+
rhs[nt - nright:] = deriv_r_vals.reshape(-1, extradim)
|
1489 |
+
|
1490 |
+
# solve Ab @ x = rhs; this is the relevant part of linalg.solve_banded
|
1491 |
+
if check_finite:
|
1492 |
+
ab, rhs = map(np.asarray_chkfinite, (ab, rhs))
|
1493 |
+
gbsv, = get_lapack_funcs(('gbsv',), (ab, rhs))
|
1494 |
+
lu, piv, c, info = gbsv(kl, ku, ab, rhs,
|
1495 |
+
overwrite_ab=True, overwrite_b=True)
|
1496 |
+
|
1497 |
+
if info > 0:
|
1498 |
+
raise LinAlgError("Collocation matrix is singular.")
|
1499 |
+
elif info < 0:
|
1500 |
+
raise ValueError('illegal value in %d-th argument of internal gbsv' % -info)
|
1501 |
+
|
1502 |
+
c = np.ascontiguousarray(c.reshape((nt,) + y.shape[1:]))
|
1503 |
+
return BSpline.construct_fast(t, c, k, axis=axis)
|
1504 |
+
|
1505 |
+
|
1506 |
+
def make_lsq_spline(x, y, t, k=3, w=None, axis=0, check_finite=True):
|
1507 |
+
r"""Compute the (coefficients of) an LSQ (Least SQuared) based
|
1508 |
+
fitting B-spline.
|
1509 |
+
|
1510 |
+
The result is a linear combination
|
1511 |
+
|
1512 |
+
.. math::
|
1513 |
+
|
1514 |
+
S(x) = \sum_j c_j B_j(x; t)
|
1515 |
+
|
1516 |
+
of the B-spline basis elements, :math:`B_j(x; t)`, which minimizes
|
1517 |
+
|
1518 |
+
.. math::
|
1519 |
+
|
1520 |
+
\sum_{j} \left( w_j \times (S(x_j) - y_j) \right)^2
|
1521 |
+
|
1522 |
+
Parameters
|
1523 |
+
----------
|
1524 |
+
x : array_like, shape (m,)
|
1525 |
+
Abscissas.
|
1526 |
+
y : array_like, shape (m, ...)
|
1527 |
+
Ordinates.
|
1528 |
+
t : array_like, shape (n + k + 1,).
|
1529 |
+
Knots.
|
1530 |
+
Knots and data points must satisfy Schoenberg-Whitney conditions.
|
1531 |
+
k : int, optional
|
1532 |
+
B-spline degree. Default is cubic, ``k = 3``.
|
1533 |
+
w : array_like, shape (m,), optional
|
1534 |
+
Weights for spline fitting. Must be positive. If ``None``,
|
1535 |
+
then weights are all equal.
|
1536 |
+
Default is ``None``.
|
1537 |
+
axis : int, optional
|
1538 |
+
Interpolation axis. Default is zero.
|
1539 |
+
check_finite : bool, optional
|
1540 |
+
Whether to check that the input arrays contain only finite numbers.
|
1541 |
+
Disabling may give a performance gain, but may result in problems
|
1542 |
+
(crashes, non-termination) if the inputs do contain infinities or NaNs.
|
1543 |
+
Default is True.
|
1544 |
+
|
1545 |
+
Returns
|
1546 |
+
-------
|
1547 |
+
b : a BSpline object of the degree ``k`` with knots ``t``.
|
1548 |
+
|
1549 |
+
See Also
|
1550 |
+
--------
|
1551 |
+
BSpline : base class representing the B-spline objects
|
1552 |
+
make_interp_spline : a similar factory function for interpolating splines
|
1553 |
+
LSQUnivariateSpline : a FITPACK-based spline fitting routine
|
1554 |
+
splrep : a FITPACK-based fitting routine
|
1555 |
+
|
1556 |
+
Notes
|
1557 |
+
-----
|
1558 |
+
The number of data points must be larger than the spline degree ``k``.
|
1559 |
+
|
1560 |
+
Knots ``t`` must satisfy the Schoenberg-Whitney conditions,
|
1561 |
+
i.e., there must be a subset of data points ``x[j]`` such that
|
1562 |
+
``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``.
|
1563 |
+
|
1564 |
+
Examples
|
1565 |
+
--------
|
1566 |
+
Generate some noisy data:
|
1567 |
+
|
1568 |
+
>>> import numpy as np
|
1569 |
+
>>> import matplotlib.pyplot as plt
|
1570 |
+
>>> rng = np.random.default_rng()
|
1571 |
+
>>> x = np.linspace(-3, 3, 50)
|
1572 |
+
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)
|
1573 |
+
|
1574 |
+
Now fit a smoothing cubic spline with a pre-defined internal knots.
|
1575 |
+
Here we make the knot vector (k+1)-regular by adding boundary knots:
|
1576 |
+
|
1577 |
+
>>> from scipy.interpolate import make_lsq_spline, BSpline
|
1578 |
+
>>> t = [-1, 0, 1]
|
1579 |
+
>>> k = 3
|
1580 |
+
>>> t = np.r_[(x[0],)*(k+1),
|
1581 |
+
... t,
|
1582 |
+
... (x[-1],)*(k+1)]
|
1583 |
+
>>> spl = make_lsq_spline(x, y, t, k)
|
1584 |
+
|
1585 |
+
For comparison, we also construct an interpolating spline for the same
|
1586 |
+
set of data:
|
1587 |
+
|
1588 |
+
>>> from scipy.interpolate import make_interp_spline
|
1589 |
+
>>> spl_i = make_interp_spline(x, y)
|
1590 |
+
|
1591 |
+
Plot both:
|
1592 |
+
|
1593 |
+
>>> xs = np.linspace(-3, 3, 100)
|
1594 |
+
>>> plt.plot(x, y, 'ro', ms=5)
|
1595 |
+
>>> plt.plot(xs, spl(xs), 'g-', lw=3, label='LSQ spline')
|
1596 |
+
>>> plt.plot(xs, spl_i(xs), 'b-', lw=3, alpha=0.7, label='interp spline')
|
1597 |
+
>>> plt.legend(loc='best')
|
1598 |
+
>>> plt.show()
|
1599 |
+
|
1600 |
+
**NaN handling**: If the input arrays contain ``nan`` values, the result is
|
1601 |
+
not useful since the underlying spline fitting routines cannot deal with
|
1602 |
+
``nan``. A workaround is to use zero weights for not-a-number data points:
|
1603 |
+
|
1604 |
+
>>> y[8] = np.nan
|
1605 |
+
>>> w = np.isnan(y)
|
1606 |
+
>>> y[w] = 0.
|
1607 |
+
>>> tck = make_lsq_spline(x, y, t, w=~w)
|
1608 |
+
|
1609 |
+
Notice the need to replace a ``nan`` by a numerical value (precise value
|
1610 |
+
does not matter as long as the corresponding weight is zero.)
|
1611 |
+
|
1612 |
+
"""
|
1613 |
+
x = _as_float_array(x, check_finite)
|
1614 |
+
y = _as_float_array(y, check_finite)
|
1615 |
+
t = _as_float_array(t, check_finite)
|
1616 |
+
if w is not None:
|
1617 |
+
w = _as_float_array(w, check_finite)
|
1618 |
+
else:
|
1619 |
+
w = np.ones_like(x)
|
1620 |
+
k = operator.index(k)
|
1621 |
+
|
1622 |
+
axis = normalize_axis_index(axis, y.ndim)
|
1623 |
+
|
1624 |
+
y = np.moveaxis(y, axis, 0) # now internally interp axis is zero
|
1625 |
+
|
1626 |
+
if x.ndim != 1 or np.any(x[1:] - x[:-1] <= 0):
|
1627 |
+
raise ValueError("Expect x to be a 1-D sorted array_like.")
|
1628 |
+
if x.shape[0] < k+1:
|
1629 |
+
raise ValueError("Need more x points.")
|
1630 |
+
if k < 0:
|
1631 |
+
raise ValueError("Expect non-negative k.")
|
1632 |
+
if t.ndim != 1 or np.any(t[1:] - t[:-1] < 0):
|
1633 |
+
raise ValueError("Expect t to be a 1-D sorted array_like.")
|
1634 |
+
if x.size != y.shape[0]:
|
1635 |
+
raise ValueError(f'Shapes of x {x.shape} and y {y.shape} are incompatible')
|
1636 |
+
if k > 0 and np.any((x < t[k]) | (x > t[-k])):
|
1637 |
+
raise ValueError('Out of bounds w/ x = %s.' % x)
|
1638 |
+
if x.size != w.size:
|
1639 |
+
raise ValueError(f'Shapes of x {x.shape} and w {w.shape} are incompatible')
|
1640 |
+
|
1641 |
+
# number of coefficients
|
1642 |
+
n = t.size - k - 1
|
1643 |
+
|
1644 |
+
# construct A.T @ A and rhs with A the collocation matrix, and
|
1645 |
+
# rhs = A.T @ y for solving the LSQ problem ``A.T @ A @ c = A.T @ y``
|
1646 |
+
lower = True
|
1647 |
+
extradim = prod(y.shape[1:])
|
1648 |
+
ab = np.zeros((k+1, n), dtype=np.float64, order='F')
|
1649 |
+
rhs = np.zeros((n, extradim), dtype=y.dtype, order='F')
|
1650 |
+
_bspl._norm_eq_lsq(x, t, k,
|
1651 |
+
y.reshape(-1, extradim),
|
1652 |
+
w,
|
1653 |
+
ab, rhs)
|
1654 |
+
rhs = rhs.reshape((n,) + y.shape[1:])
|
1655 |
+
|
1656 |
+
# have observation matrix & rhs, can solve the LSQ problem
|
1657 |
+
cho_decomp = cholesky_banded(ab, overwrite_ab=True, lower=lower,
|
1658 |
+
check_finite=check_finite)
|
1659 |
+
c = cho_solve_banded((cho_decomp, lower), rhs, overwrite_b=True,
|
1660 |
+
check_finite=check_finite)
|
1661 |
+
|
1662 |
+
c = np.ascontiguousarray(c)
|
1663 |
+
return BSpline.construct_fast(t, c, k, axis=axis)
|
1664 |
+
|
1665 |
+
|
1666 |
+
#############################
|
1667 |
+
# Smoothing spline helpers #
|
1668 |
+
#############################
|
1669 |
+
|
1670 |
+
def _compute_optimal_gcv_parameter(X, wE, y, w):
|
1671 |
+
"""
|
1672 |
+
Returns an optimal regularization parameter from the GCV criteria [1].
|
1673 |
+
|
1674 |
+
Parameters
|
1675 |
+
----------
|
1676 |
+
X : array, shape (5, n)
|
1677 |
+
5 bands of the design matrix ``X`` stored in LAPACK banded storage.
|
1678 |
+
wE : array, shape (5, n)
|
1679 |
+
5 bands of the penalty matrix :math:`W^{-1} E` stored in LAPACK banded
|
1680 |
+
storage.
|
1681 |
+
y : array, shape (n,)
|
1682 |
+
Ordinates.
|
1683 |
+
w : array, shape (n,)
|
1684 |
+
Vector of weights.
|
1685 |
+
|
1686 |
+
Returns
|
1687 |
+
-------
|
1688 |
+
lam : float
|
1689 |
+
An optimal from the GCV criteria point of view regularization
|
1690 |
+
parameter.
|
1691 |
+
|
1692 |
+
Notes
|
1693 |
+
-----
|
1694 |
+
No checks are performed.
|
1695 |
+
|
1696 |
+
References
|
1697 |
+
----------
|
1698 |
+
.. [1] G. Wahba, "Estimating the smoothing parameter" in Spline models
|
1699 |
+
for observational data, Philadelphia, Pennsylvania: Society for
|
1700 |
+
Industrial and Applied Mathematics, 1990, pp. 45-65.
|
1701 |
+
:doi:`10.1137/1.9781611970128`
|
1702 |
+
|
1703 |
+
"""
|
1704 |
+
|
1705 |
+
def compute_banded_symmetric_XT_W_Y(X, w, Y):
|
1706 |
+
"""
|
1707 |
+
Assuming that the product :math:`X^T W Y` is symmetric and both ``X``
|
1708 |
+
and ``Y`` are 5-banded, compute the unique bands of the product.
|
1709 |
+
|
1710 |
+
Parameters
|
1711 |
+
----------
|
1712 |
+
X : array, shape (5, n)
|
1713 |
+
5 bands of the matrix ``X`` stored in LAPACK banded storage.
|
1714 |
+
w : array, shape (n,)
|
1715 |
+
Array of weights
|
1716 |
+
Y : array, shape (5, n)
|
1717 |
+
5 bands of the matrix ``Y`` stored in LAPACK banded storage.
|
1718 |
+
|
1719 |
+
Returns
|
1720 |
+
-------
|
1721 |
+
res : array, shape (4, n)
|
1722 |
+
The result of the product :math:`X^T Y` stored in the banded way.
|
1723 |
+
|
1724 |
+
Notes
|
1725 |
+
-----
|
1726 |
+
As far as the matrices ``X`` and ``Y`` are 5-banded, their product
|
1727 |
+
:math:`X^T W Y` is 7-banded. It is also symmetric, so we can store only
|
1728 |
+
unique diagonals.
|
1729 |
+
|
1730 |
+
"""
|
1731 |
+
# compute W Y
|
1732 |
+
W_Y = np.copy(Y)
|
1733 |
+
|
1734 |
+
W_Y[2] *= w
|
1735 |
+
for i in range(2):
|
1736 |
+
W_Y[i, 2 - i:] *= w[:-2 + i]
|
1737 |
+
W_Y[3 + i, :-1 - i] *= w[1 + i:]
|
1738 |
+
|
1739 |
+
n = X.shape[1]
|
1740 |
+
res = np.zeros((4, n))
|
1741 |
+
for i in range(n):
|
1742 |
+
for j in range(min(n-i, 4)):
|
1743 |
+
res[-j-1, i + j] = sum(X[j:, i] * W_Y[:5-j, i + j])
|
1744 |
+
return res
|
1745 |
+
|
1746 |
+
def compute_b_inv(A):
|
1747 |
+
"""
|
1748 |
+
Inverse 3 central bands of matrix :math:`A=U^T D^{-1} U` assuming that
|
1749 |
+
``U`` is a unit upper triangular banded matrix using an algorithm
|
1750 |
+
proposed in [1].
|
1751 |
+
|
1752 |
+
Parameters
|
1753 |
+
----------
|
1754 |
+
A : array, shape (4, n)
|
1755 |
+
Matrix to inverse, stored in LAPACK banded storage.
|
1756 |
+
|
1757 |
+
Returns
|
1758 |
+
-------
|
1759 |
+
B : array, shape (4, n)
|
1760 |
+
3 unique bands of the symmetric matrix that is an inverse to ``A``.
|
1761 |
+
The first row is filled with zeros.
|
1762 |
+
|
1763 |
+
Notes
|
1764 |
+
-----
|
1765 |
+
The algorithm is based on the cholesky decomposition and, therefore,
|
1766 |
+
in case matrix ``A`` is close to not positive defined, the function
|
1767 |
+
raises LinalgError.
|
1768 |
+
|
1769 |
+
Both matrices ``A`` and ``B`` are stored in LAPACK banded storage.
|
1770 |
+
|
1771 |
+
References
|
1772 |
+
----------
|
1773 |
+
.. [1] M. F. Hutchinson and F. R. de Hoog, "Smoothing noisy data with
|
1774 |
+
spline functions," Numerische Mathematik, vol. 47, no. 1,
|
1775 |
+
pp. 99-106, 1985.
|
1776 |
+
:doi:`10.1007/BF01389878`
|
1777 |
+
|
1778 |
+
"""
|
1779 |
+
|
1780 |
+
def find_b_inv_elem(i, j, U, D, B):
|
1781 |
+
rng = min(3, n - i - 1)
|
1782 |
+
rng_sum = 0.
|
1783 |
+
if j == 0:
|
1784 |
+
# use 2-nd formula from [1]
|
1785 |
+
for k in range(1, rng + 1):
|
1786 |
+
rng_sum -= U[-k - 1, i + k] * B[-k - 1, i + k]
|
1787 |
+
rng_sum += D[i]
|
1788 |
+
B[-1, i] = rng_sum
|
1789 |
+
else:
|
1790 |
+
# use 1-st formula from [1]
|
1791 |
+
for k in range(1, rng + 1):
|
1792 |
+
diag = abs(k - j)
|
1793 |
+
ind = i + min(k, j)
|
1794 |
+
rng_sum -= U[-k - 1, i + k] * B[-diag - 1, ind + diag]
|
1795 |
+
B[-j - 1, i + j] = rng_sum
|
1796 |
+
|
1797 |
+
U = cholesky_banded(A)
|
1798 |
+
for i in range(2, 5):
|
1799 |
+
U[-i, i-1:] /= U[-1, :-i+1]
|
1800 |
+
D = 1. / (U[-1])**2
|
1801 |
+
U[-1] /= U[-1]
|
1802 |
+
|
1803 |
+
n = U.shape[1]
|
1804 |
+
|
1805 |
+
B = np.zeros(shape=(4, n))
|
1806 |
+
for i in range(n - 1, -1, -1):
|
1807 |
+
for j in range(min(3, n - i - 1), -1, -1):
|
1808 |
+
find_b_inv_elem(i, j, U, D, B)
|
1809 |
+
# the first row contains garbage and should be removed
|
1810 |
+
B[0] = [0.] * n
|
1811 |
+
return B
|
1812 |
+
|
1813 |
+
def _gcv(lam, X, XtWX, wE, XtE):
|
1814 |
+
r"""
|
1815 |
+
Computes the generalized cross-validation criteria [1].
|
1816 |
+
|
1817 |
+
Parameters
|
1818 |
+
----------
|
1819 |
+
lam : float, (:math:`\lambda \geq 0`)
|
1820 |
+
Regularization parameter.
|
1821 |
+
X : array, shape (5, n)
|
1822 |
+
Matrix is stored in LAPACK banded storage.
|
1823 |
+
XtWX : array, shape (4, n)
|
1824 |
+
Product :math:`X^T W X` stored in LAPACK banded storage.
|
1825 |
+
wE : array, shape (5, n)
|
1826 |
+
Matrix :math:`W^{-1} E` stored in LAPACK banded storage.
|
1827 |
+
XtE : array, shape (4, n)
|
1828 |
+
Product :math:`X^T E` stored in LAPACK banded storage.
|
1829 |
+
|
1830 |
+
Returns
|
1831 |
+
-------
|
1832 |
+
res : float
|
1833 |
+
Value of the GCV criteria with the regularization parameter
|
1834 |
+
:math:`\lambda`.
|
1835 |
+
|
1836 |
+
Notes
|
1837 |
+
-----
|
1838 |
+
Criteria is computed from the formula (1.3.2) [3]:
|
1839 |
+
|
1840 |
+
.. math:
|
1841 |
+
|
1842 |
+
GCV(\lambda) = \dfrac{1}{n} \sum\limits_{k = 1}^{n} \dfrac{ \left(
|
1843 |
+
y_k - f_{\lambda}(x_k) \right)^2}{\left( 1 - \Tr{A}/n\right)^2}$.
|
1844 |
+
The criteria is discussed in section 1.3 [3].
|
1845 |
+
|
1846 |
+
The numerator is computed using (2.2.4) [3] and the denominator is
|
1847 |
+
computed using an algorithm from [2] (see in the ``compute_b_inv``
|
1848 |
+
function).
|
1849 |
+
|
1850 |
+
References
|
1851 |
+
----------
|
1852 |
+
.. [1] G. Wahba, "Estimating the smoothing parameter" in Spline models
|
1853 |
+
for observational data, Philadelphia, Pennsylvania: Society for
|
1854 |
+
Industrial and Applied Mathematics, 1990, pp. 45-65.
|
1855 |
+
:doi:`10.1137/1.9781611970128`
|
1856 |
+
.. [2] M. F. Hutchinson and F. R. de Hoog, "Smoothing noisy data with
|
1857 |
+
spline functions," Numerische Mathematik, vol. 47, no. 1,
|
1858 |
+
pp. 99-106, 1985.
|
1859 |
+
:doi:`10.1007/BF01389878`
|
1860 |
+
.. [3] E. Zemlyanoy, "Generalized cross-validation smoothing splines",
|
1861 |
+
BSc thesis, 2022. Might be available (in Russian)
|
1862 |
+
`here <https://www.hse.ru/ba/am/students/diplomas/620910604>`_
|
1863 |
+
|
1864 |
+
"""
|
1865 |
+
# Compute the numerator from (2.2.4) [3]
|
1866 |
+
n = X.shape[1]
|
1867 |
+
c = solve_banded((2, 2), X + lam * wE, y)
|
1868 |
+
res = np.zeros(n)
|
1869 |
+
# compute ``W^{-1} E c`` with respect to banded-storage of ``E``
|
1870 |
+
tmp = wE * c
|
1871 |
+
for i in range(n):
|
1872 |
+
for j in range(max(0, i - n + 3), min(5, i + 3)):
|
1873 |
+
res[i] += tmp[j, i + 2 - j]
|
1874 |
+
numer = np.linalg.norm(lam * res)**2 / n
|
1875 |
+
|
1876 |
+
# compute the denominator
|
1877 |
+
lhs = XtWX + lam * XtE
|
1878 |
+
try:
|
1879 |
+
b_banded = compute_b_inv(lhs)
|
1880 |
+
# compute the trace of the product b_banded @ XtX
|
1881 |
+
tr = b_banded * XtWX
|
1882 |
+
tr[:-1] *= 2
|
1883 |
+
# find the denominator
|
1884 |
+
denom = (1 - sum(sum(tr)) / n)**2
|
1885 |
+
except LinAlgError:
|
1886 |
+
# cholesky decomposition cannot be performed
|
1887 |
+
raise ValueError('Seems like the problem is ill-posed')
|
1888 |
+
|
1889 |
+
res = numer / denom
|
1890 |
+
|
1891 |
+
return res
|
1892 |
+
|
1893 |
+
n = X.shape[1]
|
1894 |
+
|
1895 |
+
XtWX = compute_banded_symmetric_XT_W_Y(X, w, X)
|
1896 |
+
XtE = compute_banded_symmetric_XT_W_Y(X, w, wE)
|
1897 |
+
|
1898 |
+
def fun(lam):
|
1899 |
+
return _gcv(lam, X, XtWX, wE, XtE)
|
1900 |
+
|
1901 |
+
gcv_est = minimize_scalar(fun, bounds=(0, n), method='Bounded')
|
1902 |
+
if gcv_est.success:
|
1903 |
+
return gcv_est.x
|
1904 |
+
raise ValueError(f"Unable to find minimum of the GCV "
|
1905 |
+
f"function: {gcv_est.message}")
|
1906 |
+
|
1907 |
+
|
1908 |
+
def _coeff_of_divided_diff(x):
|
1909 |
+
"""
|
1910 |
+
Returns the coefficients of the divided difference.
|
1911 |
+
|
1912 |
+
Parameters
|
1913 |
+
----------
|
1914 |
+
x : array, shape (n,)
|
1915 |
+
Array which is used for the computation of divided difference.
|
1916 |
+
|
1917 |
+
Returns
|
1918 |
+
-------
|
1919 |
+
res : array_like, shape (n,)
|
1920 |
+
Coefficients of the divided difference.
|
1921 |
+
|
1922 |
+
Notes
|
1923 |
+
-----
|
1924 |
+
Vector ``x`` should have unique elements, otherwise an error division by
|
1925 |
+
zero might be raised.
|
1926 |
+
|
1927 |
+
No checks are performed.
|
1928 |
+
|
1929 |
+
"""
|
1930 |
+
n = x.shape[0]
|
1931 |
+
res = np.zeros(n)
|
1932 |
+
for i in range(n):
|
1933 |
+
pp = 1.
|
1934 |
+
for k in range(n):
|
1935 |
+
if k != i:
|
1936 |
+
pp *= (x[i] - x[k])
|
1937 |
+
res[i] = 1. / pp
|
1938 |
+
return res
|
1939 |
+
|
1940 |
+
|
1941 |
+
def make_smoothing_spline(x, y, w=None, lam=None):
|
1942 |
+
r"""
|
1943 |
+
Compute the (coefficients of) smoothing cubic spline function using
|
1944 |
+
``lam`` to control the tradeoff between the amount of smoothness of the
|
1945 |
+
curve and its proximity to the data. In case ``lam`` is None, using the
|
1946 |
+
GCV criteria [1] to find it.
|
1947 |
+
|
1948 |
+
A smoothing spline is found as a solution to the regularized weighted
|
1949 |
+
linear regression problem:
|
1950 |
+
|
1951 |
+
.. math::
|
1952 |
+
|
1953 |
+
\sum\limits_{i=1}^n w_i\lvert y_i - f(x_i) \rvert^2 +
|
1954 |
+
\lambda\int\limits_{x_1}^{x_n} (f^{(2)}(u))^2 d u
|
1955 |
+
|
1956 |
+
where :math:`f` is a spline function, :math:`w` is a vector of weights and
|
1957 |
+
:math:`\lambda` is a regularization parameter.
|
1958 |
+
|
1959 |
+
If ``lam`` is None, we use the GCV criteria to find an optimal
|
1960 |
+
regularization parameter, otherwise we solve the regularized weighted
|
1961 |
+
linear regression problem with given parameter. The parameter controls
|
1962 |
+
the tradeoff in the following way: the larger the parameter becomes, the
|
1963 |
+
smoother the function gets.
|
1964 |
+
|
1965 |
+
Parameters
|
1966 |
+
----------
|
1967 |
+
x : array_like, shape (n,)
|
1968 |
+
Abscissas. `n` must be at least 5.
|
1969 |
+
y : array_like, shape (n,)
|
1970 |
+
Ordinates. `n` must be at least 5.
|
1971 |
+
w : array_like, shape (n,), optional
|
1972 |
+
Vector of weights. Default is ``np.ones_like(x)``.
|
1973 |
+
lam : float, (:math:`\lambda \geq 0`), optional
|
1974 |
+
Regularization parameter. If ``lam`` is None, then it is found from
|
1975 |
+
the GCV criteria. Default is None.
|
1976 |
+
|
1977 |
+
Returns
|
1978 |
+
-------
|
1979 |
+
func : a BSpline object.
|
1980 |
+
A callable representing a spline in the B-spline basis
|
1981 |
+
as a solution of the problem of smoothing splines using
|
1982 |
+
the GCV criteria [1] in case ``lam`` is None, otherwise using the
|
1983 |
+
given parameter ``lam``.
|
1984 |
+
|
1985 |
+
Notes
|
1986 |
+
-----
|
1987 |
+
This algorithm is a clean room reimplementation of the algorithm
|
1988 |
+
introduced by Woltring in FORTRAN [2]. The original version cannot be used
|
1989 |
+
in SciPy source code because of the license issues. The details of the
|
1990 |
+
reimplementation are discussed here (available only in Russian) [4].
|
1991 |
+
|
1992 |
+
If the vector of weights ``w`` is None, we assume that all the points are
|
1993 |
+
equal in terms of weights, and vector of weights is vector of ones.
|
1994 |
+
|
1995 |
+
Note that in weighted residual sum of squares, weights are not squared:
|
1996 |
+
:math:`\sum\limits_{i=1}^n w_i\lvert y_i - f(x_i) \rvert^2` while in
|
1997 |
+
``splrep`` the sum is built from the squared weights.
|
1998 |
+
|
1999 |
+
In cases when the initial problem is ill-posed (for example, the product
|
2000 |
+
:math:`X^T W X` where :math:`X` is a design matrix is not a positive
|
2001 |
+
defined matrix) a ValueError is raised.
|
2002 |
+
|
2003 |
+
References
|
2004 |
+
----------
|
2005 |
+
.. [1] G. Wahba, "Estimating the smoothing parameter" in Spline models for
|
2006 |
+
observational data, Philadelphia, Pennsylvania: Society for Industrial
|
2007 |
+
and Applied Mathematics, 1990, pp. 45-65.
|
2008 |
+
:doi:`10.1137/1.9781611970128`
|
2009 |
+
.. [2] H. J. Woltring, A Fortran package for generalized, cross-validatory
|
2010 |
+
spline smoothing and differentiation, Advances in Engineering
|
2011 |
+
Software, vol. 8, no. 2, pp. 104-113, 1986.
|
2012 |
+
:doi:`10.1016/0141-1195(86)90098-7`
|
2013 |
+
.. [3] T. Hastie, J. Friedman, and R. Tisbshirani, "Smoothing Splines" in
|
2014 |
+
The elements of Statistical Learning: Data Mining, Inference, and
|
2015 |
+
prediction, New York: Springer, 2017, pp. 241-249.
|
2016 |
+
:doi:`10.1007/978-0-387-84858-7`
|
2017 |
+
.. [4] E. Zemlyanoy, "Generalized cross-validation smoothing splines",
|
2018 |
+
BSc thesis, 2022.
|
2019 |
+
`<https://www.hse.ru/ba/am/students/diplomas/620910604>`_ (in
|
2020 |
+
Russian)
|
2021 |
+
|
2022 |
+
Examples
|
2023 |
+
--------
|
2024 |
+
Generate some noisy data
|
2025 |
+
|
2026 |
+
>>> import numpy as np
|
2027 |
+
>>> np.random.seed(1234)
|
2028 |
+
>>> n = 200
|
2029 |
+
>>> def func(x):
|
2030 |
+
... return x**3 + x**2 * np.sin(4 * x)
|
2031 |
+
>>> x = np.sort(np.random.random_sample(n) * 4 - 2)
|
2032 |
+
>>> y = func(x) + np.random.normal(scale=1.5, size=n)
|
2033 |
+
|
2034 |
+
Make a smoothing spline function
|
2035 |
+
|
2036 |
+
>>> from scipy.interpolate import make_smoothing_spline
|
2037 |
+
>>> spl = make_smoothing_spline(x, y)
|
2038 |
+
|
2039 |
+
Plot both
|
2040 |
+
|
2041 |
+
>>> import matplotlib.pyplot as plt
|
2042 |
+
>>> grid = np.linspace(x[0], x[-1], 400)
|
2043 |
+
>>> plt.plot(grid, spl(grid), label='Spline')
|
2044 |
+
>>> plt.plot(grid, func(grid), label='Original function')
|
2045 |
+
>>> plt.scatter(x, y, marker='.')
|
2046 |
+
>>> plt.legend(loc='best')
|
2047 |
+
>>> plt.show()
|
2048 |
+
|
2049 |
+
"""
|
2050 |
+
|
2051 |
+
x = np.ascontiguousarray(x, dtype=float)
|
2052 |
+
y = np.ascontiguousarray(y, dtype=float)
|
2053 |
+
|
2054 |
+
if any(x[1:] - x[:-1] <= 0):
|
2055 |
+
raise ValueError('``x`` should be an ascending array')
|
2056 |
+
|
2057 |
+
if x.ndim != 1 or y.ndim != 1 or x.shape[0] != y.shape[0]:
|
2058 |
+
raise ValueError('``x`` and ``y`` should be one dimensional and the'
|
2059 |
+
' same size')
|
2060 |
+
|
2061 |
+
if w is None:
|
2062 |
+
w = np.ones(len(x))
|
2063 |
+
else:
|
2064 |
+
w = np.ascontiguousarray(w)
|
2065 |
+
if any(w <= 0):
|
2066 |
+
raise ValueError('Invalid vector of weights')
|
2067 |
+
|
2068 |
+
t = np.r_[[x[0]] * 3, x, [x[-1]] * 3]
|
2069 |
+
n = x.shape[0]
|
2070 |
+
|
2071 |
+
if n <= 4:
|
2072 |
+
raise ValueError('``x`` and ``y`` length must be at least 5')
|
2073 |
+
|
2074 |
+
# It is known that the solution to the stated minimization problem exists
|
2075 |
+
# and is a natural cubic spline with vector of knots equal to the unique
|
2076 |
+
# elements of ``x`` [3], so we will solve the problem in the basis of
|
2077 |
+
# natural splines.
|
2078 |
+
|
2079 |
+
# create design matrix in the B-spline basis
|
2080 |
+
X_bspl = BSpline.design_matrix(x, t, 3)
|
2081 |
+
# move from B-spline basis to the basis of natural splines using equations
|
2082 |
+
# (2.1.7) [4]
|
2083 |
+
# central elements
|
2084 |
+
X = np.zeros((5, n))
|
2085 |
+
for i in range(1, 4):
|
2086 |
+
X[i, 2: -2] = X_bspl[i: i - 4, 3: -3][np.diag_indices(n - 4)]
|
2087 |
+
|
2088 |
+
# first elements
|
2089 |
+
X[1, 1] = X_bspl[0, 0]
|
2090 |
+
X[2, :2] = ((x[2] + x[1] - 2 * x[0]) * X_bspl[0, 0],
|
2091 |
+
X_bspl[1, 1] + X_bspl[1, 2])
|
2092 |
+
X[3, :2] = ((x[2] - x[0]) * X_bspl[1, 1], X_bspl[2, 2])
|
2093 |
+
|
2094 |
+
# last elements
|
2095 |
+
X[1, -2:] = (X_bspl[-3, -3], (x[-1] - x[-3]) * X_bspl[-2, -2])
|
2096 |
+
X[2, -2:] = (X_bspl[-2, -3] + X_bspl[-2, -2],
|
2097 |
+
(2 * x[-1] - x[-2] - x[-3]) * X_bspl[-1, -1])
|
2098 |
+
X[3, -2] = X_bspl[-1, -1]
|
2099 |
+
|
2100 |
+
# create penalty matrix and divide it by vector of weights: W^{-1} E
|
2101 |
+
wE = np.zeros((5, n))
|
2102 |
+
wE[2:, 0] = _coeff_of_divided_diff(x[:3]) / w[:3]
|
2103 |
+
wE[1:, 1] = _coeff_of_divided_diff(x[:4]) / w[:4]
|
2104 |
+
for j in range(2, n - 2):
|
2105 |
+
wE[:, j] = (x[j+2] - x[j-2]) * _coeff_of_divided_diff(x[j-2:j+3])\
|
2106 |
+
/ w[j-2: j+3]
|
2107 |
+
|
2108 |
+
wE[:-1, -2] = -_coeff_of_divided_diff(x[-4:]) / w[-4:]
|
2109 |
+
wE[:-2, -1] = _coeff_of_divided_diff(x[-3:]) / w[-3:]
|
2110 |
+
wE *= 6
|
2111 |
+
|
2112 |
+
if lam is None:
|
2113 |
+
lam = _compute_optimal_gcv_parameter(X, wE, y, w)
|
2114 |
+
elif lam < 0.:
|
2115 |
+
raise ValueError('Regularization parameter should be non-negative')
|
2116 |
+
|
2117 |
+
# solve the initial problem in the basis of natural splines
|
2118 |
+
c = solve_banded((2, 2), X + lam * wE, y)
|
2119 |
+
# move back to B-spline basis using equations (2.2.10) [4]
|
2120 |
+
c_ = np.r_[c[0] * (t[5] + t[4] - 2 * t[3]) + c[1],
|
2121 |
+
c[0] * (t[5] - t[3]) + c[1],
|
2122 |
+
c[1: -1],
|
2123 |
+
c[-1] * (t[-4] - t[-6]) + c[-2],
|
2124 |
+
c[-1] * (2 * t[-4] - t[-5] - t[-6]) + c[-2]]
|
2125 |
+
|
2126 |
+
return BSpline.construct_fast(t, c_, 3)
|
2127 |
+
|
2128 |
+
|
2129 |
+
########################
|
2130 |
+
# FITPACK look-alikes #
|
2131 |
+
########################
|
2132 |
+
|
2133 |
+
def fpcheck(x, t, k):
|
2134 |
+
""" Check consistency of the data vector `x` and the knot vector `t`.
|
2135 |
+
|
2136 |
+
Return None if inputs are consistent, raises a ValueError otherwise.
|
2137 |
+
"""
|
2138 |
+
# This routine is a clone of the `fpchec` Fortran routine,
|
2139 |
+
# https://github.com/scipy/scipy/blob/main/scipy/interpolate/fitpack/fpchec.f
|
2140 |
+
# which carries the following comment:
|
2141 |
+
#
|
2142 |
+
# subroutine fpchec verifies the number and the position of the knots
|
2143 |
+
# t(j),j=1,2,...,n of a spline of degree k, in relation to the number
|
2144 |
+
# and the position of the data points x(i),i=1,2,...,m. if all of the
|
2145 |
+
# following conditions are fulfilled, the error parameter ier is set
|
2146 |
+
# to zero. if one of the conditions is violated ier is set to ten.
|
2147 |
+
# 1) k+1 <= n-k-1 <= m
|
2148 |
+
# 2) t(1) <= t(2) <= ... <= t(k+1)
|
2149 |
+
# t(n-k) <= t(n-k+1) <= ... <= t(n)
|
2150 |
+
# 3) t(k+1) < t(k+2) < ... < t(n-k)
|
2151 |
+
# 4) t(k+1) <= x(i) <= t(n-k)
|
2152 |
+
# 5) the conditions specified by schoenberg and whitney must hold
|
2153 |
+
# for at least one subset of data points, i.e. there must be a
|
2154 |
+
# subset of data points y(j) such that
|
2155 |
+
# t(j) < y(j) < t(j+k+1), j=1,2,...,n-k-1
|
2156 |
+
x = np.asarray(x)
|
2157 |
+
t = np.asarray(t)
|
2158 |
+
|
2159 |
+
if x.ndim != 1 or t.ndim != 1:
|
2160 |
+
raise ValueError(f"Expect `x` and `t` be 1D sequences. Got {x = } and {t = }")
|
2161 |
+
|
2162 |
+
m = x.shape[0]
|
2163 |
+
n = t.shape[0]
|
2164 |
+
nk1 = n - k - 1
|
2165 |
+
|
2166 |
+
# check condition no 1
|
2167 |
+
# c 1) k+1 <= n-k-1 <= m
|
2168 |
+
if not (k + 1 <= nk1 <= m):
|
2169 |
+
raise ValueError(f"Need k+1 <= n-k-1 <= m. Got {m = }, {n = } and {k = }.")
|
2170 |
+
|
2171 |
+
# check condition no 2
|
2172 |
+
# c 2) t(1) <= t(2) <= ... <= t(k+1)
|
2173 |
+
# c t(n-k) <= t(n-k+1) <= ... <= t(n)
|
2174 |
+
if (t[:k+1] > t[1:k+2]).any():
|
2175 |
+
raise ValueError(f"First k knots must be ordered; got {t = }.")
|
2176 |
+
|
2177 |
+
if (t[nk1:] < t[nk1-1:-1]).any():
|
2178 |
+
raise ValueError(f"Last k knots must be ordered; got {t = }.")
|
2179 |
+
|
2180 |
+
# c check condition no 3
|
2181 |
+
# c 3) t(k+1) < t(k+2) < ... < t(n-k)
|
2182 |
+
if (t[k+1:n-k] <= t[k:n-k-1]).any():
|
2183 |
+
raise ValueError(f"Internal knots must be distinct. Got {t = }.")
|
2184 |
+
|
2185 |
+
# c check condition no 4
|
2186 |
+
# c 4) t(k+1) <= x(i) <= t(n-k)
|
2187 |
+
# NB: FITPACK's fpchec only checks x[0] & x[-1], so we follow.
|
2188 |
+
if (x[0] < t[k]) or (x[-1] > t[n-k-1]):
|
2189 |
+
raise ValueError(f"Out of bounds: {x = } and {t = }.")
|
2190 |
+
|
2191 |
+
# c check condition no 5
|
2192 |
+
# c 5) the conditions specified by schoenberg and whitney must hold
|
2193 |
+
# c for at least one subset of data points, i.e. there must be a
|
2194 |
+
# c subset of data points y(j) such that
|
2195 |
+
# c t(j) < y(j) < t(j+k+1), j=1,2,...,n-k-1
|
2196 |
+
mesg = f"Schoenberg-Whitney condition is violated with {t = } and {x =}."
|
2197 |
+
|
2198 |
+
if (x[0] >= t[k+1]) or (x[-1] <= t[n-k-2]):
|
2199 |
+
raise ValueError(mesg)
|
2200 |
+
|
2201 |
+
m = x.shape[0]
|
2202 |
+
l = k+1
|
2203 |
+
nk3 = n - k - 3
|
2204 |
+
if nk3 < 2:
|
2205 |
+
return
|
2206 |
+
for j in range(1, nk3+1):
|
2207 |
+
tj = t[j]
|
2208 |
+
l += 1
|
2209 |
+
tl = t[l]
|
2210 |
+
i = np.argmax(x > tj)
|
2211 |
+
if i >= m-1:
|
2212 |
+
raise ValueError(mesg)
|
2213 |
+
if x[i] >= tl:
|
2214 |
+
raise ValueError(mesg)
|
2215 |
+
return
|
venv/lib/python3.10/site-packages/scipy/interpolate/_cubic.py
ADDED
@@ -0,0 +1,970 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Interpolation algorithms using piecewise cubic polynomials."""
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
from typing import TYPE_CHECKING
|
6 |
+
|
7 |
+
import warnings
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
from scipy.linalg import solve, solve_banded
|
12 |
+
|
13 |
+
from . import PPoly
|
14 |
+
from ._polyint import _isscalar
|
15 |
+
|
16 |
+
if TYPE_CHECKING:
|
17 |
+
from typing import Literal
|
18 |
+
|
19 |
+
__all__ = ["CubicHermiteSpline", "PchipInterpolator", "pchip_interpolate",
|
20 |
+
"Akima1DInterpolator", "CubicSpline"]
|
21 |
+
|
22 |
+
|
23 |
+
def prepare_input(x, y, axis, dydx=None):
|
24 |
+
"""Prepare input for cubic spline interpolators.
|
25 |
+
|
26 |
+
All data are converted to numpy arrays and checked for correctness.
|
27 |
+
Axes equal to `axis` of arrays `y` and `dydx` are moved to be the 0th
|
28 |
+
axis. The value of `axis` is converted to lie in
|
29 |
+
[0, number of dimensions of `y`).
|
30 |
+
"""
|
31 |
+
|
32 |
+
x, y = map(np.asarray, (x, y))
|
33 |
+
if np.issubdtype(x.dtype, np.complexfloating):
|
34 |
+
raise ValueError("`x` must contain real values.")
|
35 |
+
x = x.astype(float)
|
36 |
+
|
37 |
+
if np.issubdtype(y.dtype, np.complexfloating):
|
38 |
+
dtype = complex
|
39 |
+
else:
|
40 |
+
dtype = float
|
41 |
+
|
42 |
+
if dydx is not None:
|
43 |
+
dydx = np.asarray(dydx)
|
44 |
+
if y.shape != dydx.shape:
|
45 |
+
raise ValueError("The shapes of `y` and `dydx` must be identical.")
|
46 |
+
if np.issubdtype(dydx.dtype, np.complexfloating):
|
47 |
+
dtype = complex
|
48 |
+
dydx = dydx.astype(dtype, copy=False)
|
49 |
+
|
50 |
+
y = y.astype(dtype, copy=False)
|
51 |
+
axis = axis % y.ndim
|
52 |
+
if x.ndim != 1:
|
53 |
+
raise ValueError("`x` must be 1-dimensional.")
|
54 |
+
if x.shape[0] < 2:
|
55 |
+
raise ValueError("`x` must contain at least 2 elements.")
|
56 |
+
if x.shape[0] != y.shape[axis]:
|
57 |
+
raise ValueError(f"The length of `y` along `axis`={axis} doesn't "
|
58 |
+
"match the length of `x`")
|
59 |
+
|
60 |
+
if not np.all(np.isfinite(x)):
|
61 |
+
raise ValueError("`x` must contain only finite values.")
|
62 |
+
if not np.all(np.isfinite(y)):
|
63 |
+
raise ValueError("`y` must contain only finite values.")
|
64 |
+
|
65 |
+
if dydx is not None and not np.all(np.isfinite(dydx)):
|
66 |
+
raise ValueError("`dydx` must contain only finite values.")
|
67 |
+
|
68 |
+
dx = np.diff(x)
|
69 |
+
if np.any(dx <= 0):
|
70 |
+
raise ValueError("`x` must be strictly increasing sequence.")
|
71 |
+
|
72 |
+
y = np.moveaxis(y, axis, 0)
|
73 |
+
if dydx is not None:
|
74 |
+
dydx = np.moveaxis(dydx, axis, 0)
|
75 |
+
|
76 |
+
return x, dx, y, axis, dydx
|
77 |
+
|
78 |
+
|
79 |
+
class CubicHermiteSpline(PPoly):
|
80 |
+
"""Piecewise-cubic interpolator matching values and first derivatives.
|
81 |
+
|
82 |
+
The result is represented as a `PPoly` instance.
|
83 |
+
|
84 |
+
Parameters
|
85 |
+
----------
|
86 |
+
x : array_like, shape (n,)
|
87 |
+
1-D array containing values of the independent variable.
|
88 |
+
Values must be real, finite and in strictly increasing order.
|
89 |
+
y : array_like
|
90 |
+
Array containing values of the dependent variable. It can have
|
91 |
+
arbitrary number of dimensions, but the length along ``axis``
|
92 |
+
(see below) must match the length of ``x``. Values must be finite.
|
93 |
+
dydx : array_like
|
94 |
+
Array containing derivatives of the dependent variable. It can have
|
95 |
+
arbitrary number of dimensions, but the length along ``axis``
|
96 |
+
(see below) must match the length of ``x``. Values must be finite.
|
97 |
+
axis : int, optional
|
98 |
+
Axis along which `y` is assumed to be varying. Meaning that for
|
99 |
+
``x[i]`` the corresponding values are ``np.take(y, i, axis=axis)``.
|
100 |
+
Default is 0.
|
101 |
+
extrapolate : {bool, 'periodic', None}, optional
|
102 |
+
If bool, determines whether to extrapolate to out-of-bounds points
|
103 |
+
based on first and last intervals, or to return NaNs. If 'periodic',
|
104 |
+
periodic extrapolation is used. If None (default), it is set to True.
|
105 |
+
|
106 |
+
Attributes
|
107 |
+
----------
|
108 |
+
x : ndarray, shape (n,)
|
109 |
+
Breakpoints. The same ``x`` which was passed to the constructor.
|
110 |
+
c : ndarray, shape (4, n-1, ...)
|
111 |
+
Coefficients of the polynomials on each segment. The trailing
|
112 |
+
dimensions match the dimensions of `y`, excluding ``axis``.
|
113 |
+
For example, if `y` is 1-D, then ``c[k, i]`` is a coefficient for
|
114 |
+
``(x-x[i])**(3-k)`` on the segment between ``x[i]`` and ``x[i+1]``.
|
115 |
+
axis : int
|
116 |
+
Interpolation axis. The same axis which was passed to the
|
117 |
+
constructor.
|
118 |
+
|
119 |
+
Methods
|
120 |
+
-------
|
121 |
+
__call__
|
122 |
+
derivative
|
123 |
+
antiderivative
|
124 |
+
integrate
|
125 |
+
roots
|
126 |
+
|
127 |
+
See Also
|
128 |
+
--------
|
129 |
+
Akima1DInterpolator : Akima 1D interpolator.
|
130 |
+
PchipInterpolator : PCHIP 1-D monotonic cubic interpolator.
|
131 |
+
CubicSpline : Cubic spline data interpolator.
|
132 |
+
PPoly : Piecewise polynomial in terms of coefficients and breakpoints
|
133 |
+
|
134 |
+
Notes
|
135 |
+
-----
|
136 |
+
If you want to create a higher-order spline matching higher-order
|
137 |
+
derivatives, use `BPoly.from_derivatives`.
|
138 |
+
|
139 |
+
References
|
140 |
+
----------
|
141 |
+
.. [1] `Cubic Hermite spline
|
142 |
+
<https://en.wikipedia.org/wiki/Cubic_Hermite_spline>`_
|
143 |
+
on Wikipedia.
|
144 |
+
"""
|
145 |
+
|
146 |
+
def __init__(self, x, y, dydx, axis=0, extrapolate=None):
|
147 |
+
if extrapolate is None:
|
148 |
+
extrapolate = True
|
149 |
+
|
150 |
+
x, dx, y, axis, dydx = prepare_input(x, y, axis, dydx)
|
151 |
+
|
152 |
+
dxr = dx.reshape([dx.shape[0]] + [1] * (y.ndim - 1))
|
153 |
+
slope = np.diff(y, axis=0) / dxr
|
154 |
+
t = (dydx[:-1] + dydx[1:] - 2 * slope) / dxr
|
155 |
+
|
156 |
+
c = np.empty((4, len(x) - 1) + y.shape[1:], dtype=t.dtype)
|
157 |
+
c[0] = t / dxr
|
158 |
+
c[1] = (slope - dydx[:-1]) / dxr - t
|
159 |
+
c[2] = dydx[:-1]
|
160 |
+
c[3] = y[:-1]
|
161 |
+
|
162 |
+
super().__init__(c, x, extrapolate=extrapolate)
|
163 |
+
self.axis = axis
|
164 |
+
|
165 |
+
|
166 |
+
class PchipInterpolator(CubicHermiteSpline):
|
167 |
+
r"""PCHIP 1-D monotonic cubic interpolation.
|
168 |
+
|
169 |
+
``x`` and ``y`` are arrays of values used to approximate some function f,
|
170 |
+
with ``y = f(x)``. The interpolant uses monotonic cubic splines
|
171 |
+
to find the value of new points. (PCHIP stands for Piecewise Cubic
|
172 |
+
Hermite Interpolating Polynomial).
|
173 |
+
|
174 |
+
Parameters
|
175 |
+
----------
|
176 |
+
x : ndarray, shape (npoints, )
|
177 |
+
A 1-D array of monotonically increasing real values. ``x`` cannot
|
178 |
+
include duplicate values (otherwise f is overspecified)
|
179 |
+
y : ndarray, shape (..., npoints, ...)
|
180 |
+
A N-D array of real values. ``y``'s length along the interpolation
|
181 |
+
axis must be equal to the length of ``x``. Use the ``axis``
|
182 |
+
parameter to select the interpolation axis.
|
183 |
+
|
184 |
+
.. deprecated:: 1.13.0
|
185 |
+
Complex data is deprecated and will raise an error in SciPy 1.15.0.
|
186 |
+
If you are trying to use the real components of the passed array,
|
187 |
+
use ``np.real`` on ``y``.
|
188 |
+
|
189 |
+
axis : int, optional
|
190 |
+
Axis in the ``y`` array corresponding to the x-coordinate values. Defaults
|
191 |
+
to ``axis=0``.
|
192 |
+
extrapolate : bool, optional
|
193 |
+
Whether to extrapolate to out-of-bounds points based on first
|
194 |
+
and last intervals, or to return NaNs.
|
195 |
+
|
196 |
+
Methods
|
197 |
+
-------
|
198 |
+
__call__
|
199 |
+
derivative
|
200 |
+
antiderivative
|
201 |
+
roots
|
202 |
+
|
203 |
+
See Also
|
204 |
+
--------
|
205 |
+
CubicHermiteSpline : Piecewise-cubic interpolator.
|
206 |
+
Akima1DInterpolator : Akima 1D interpolator.
|
207 |
+
CubicSpline : Cubic spline data interpolator.
|
208 |
+
PPoly : Piecewise polynomial in terms of coefficients and breakpoints.
|
209 |
+
|
210 |
+
Notes
|
211 |
+
-----
|
212 |
+
The interpolator preserves monotonicity in the interpolation data and does
|
213 |
+
not overshoot if the data is not smooth.
|
214 |
+
|
215 |
+
The first derivatives are guaranteed to be continuous, but the second
|
216 |
+
derivatives may jump at :math:`x_k`.
|
217 |
+
|
218 |
+
Determines the derivatives at the points :math:`x_k`, :math:`f'_k`,
|
219 |
+
by using PCHIP algorithm [1]_.
|
220 |
+
|
221 |
+
Let :math:`h_k = x_{k+1} - x_k`, and :math:`d_k = (y_{k+1} - y_k) / h_k`
|
222 |
+
are the slopes at internal points :math:`x_k`.
|
223 |
+
If the signs of :math:`d_k` and :math:`d_{k-1}` are different or either of
|
224 |
+
them equals zero, then :math:`f'_k = 0`. Otherwise, it is given by the
|
225 |
+
weighted harmonic mean
|
226 |
+
|
227 |
+
.. math::
|
228 |
+
|
229 |
+
\frac{w_1 + w_2}{f'_k} = \frac{w_1}{d_{k-1}} + \frac{w_2}{d_k}
|
230 |
+
|
231 |
+
where :math:`w_1 = 2 h_k + h_{k-1}` and :math:`w_2 = h_k + 2 h_{k-1}`.
|
232 |
+
|
233 |
+
The end slopes are set using a one-sided scheme [2]_.
|
234 |
+
|
235 |
+
|
236 |
+
References
|
237 |
+
----------
|
238 |
+
.. [1] F. N. Fritsch and J. Butland,
|
239 |
+
A method for constructing local
|
240 |
+
monotone piecewise cubic interpolants,
|
241 |
+
SIAM J. Sci. Comput., 5(2), 300-304 (1984).
|
242 |
+
:doi:`10.1137/0905021`.
|
243 |
+
.. [2] see, e.g., C. Moler, Numerical Computing with Matlab, 2004.
|
244 |
+
:doi:`10.1137/1.9780898717952`
|
245 |
+
|
246 |
+
"""
|
247 |
+
|
248 |
+
def __init__(self, x, y, axis=0, extrapolate=None):
|
249 |
+
x, _, y, axis, _ = prepare_input(x, y, axis)
|
250 |
+
if np.iscomplexobj(y):
|
251 |
+
msg = ("`PchipInterpolator` only works with real values for `y`. "
|
252 |
+
"Passing an array with a complex dtype for `y` is deprecated "
|
253 |
+
"and will raise an error in SciPy 1.15.0. If you are trying to "
|
254 |
+
"use the real components of the passed array, use `np.real` on "
|
255 |
+
"the array before passing to `PchipInterpolator`.")
|
256 |
+
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
257 |
+
xp = x.reshape((x.shape[0],) + (1,)*(y.ndim-1))
|
258 |
+
dk = self._find_derivatives(xp, y)
|
259 |
+
super().__init__(x, y, dk, axis=0, extrapolate=extrapolate)
|
260 |
+
self.axis = axis
|
261 |
+
|
262 |
+
@staticmethod
|
263 |
+
def _edge_case(h0, h1, m0, m1):
|
264 |
+
# one-sided three-point estimate for the derivative
|
265 |
+
d = ((2*h0 + h1)*m0 - h0*m1) / (h0 + h1)
|
266 |
+
|
267 |
+
# try to preserve shape
|
268 |
+
mask = np.sign(d) != np.sign(m0)
|
269 |
+
mask2 = (np.sign(m0) != np.sign(m1)) & (np.abs(d) > 3.*np.abs(m0))
|
270 |
+
mmm = (~mask) & mask2
|
271 |
+
|
272 |
+
d[mask] = 0.
|
273 |
+
d[mmm] = 3.*m0[mmm]
|
274 |
+
|
275 |
+
return d
|
276 |
+
|
277 |
+
@staticmethod
|
278 |
+
def _find_derivatives(x, y):
|
279 |
+
# Determine the derivatives at the points y_k, d_k, by using
|
280 |
+
# PCHIP algorithm is:
|
281 |
+
# We choose the derivatives at the point x_k by
|
282 |
+
# Let m_k be the slope of the kth segment (between k and k+1)
|
283 |
+
# If m_k=0 or m_{k-1}=0 or sgn(m_k) != sgn(m_{k-1}) then d_k == 0
|
284 |
+
# else use weighted harmonic mean:
|
285 |
+
# w_1 = 2h_k + h_{k-1}, w_2 = h_k + 2h_{k-1}
|
286 |
+
# 1/d_k = 1/(w_1 + w_2)*(w_1 / m_k + w_2 / m_{k-1})
|
287 |
+
# where h_k is the spacing between x_k and x_{k+1}
|
288 |
+
y_shape = y.shape
|
289 |
+
if y.ndim == 1:
|
290 |
+
# So that _edge_case doesn't end up assigning to scalars
|
291 |
+
x = x[:, None]
|
292 |
+
y = y[:, None]
|
293 |
+
|
294 |
+
hk = x[1:] - x[:-1]
|
295 |
+
mk = (y[1:] - y[:-1]) / hk
|
296 |
+
|
297 |
+
if y.shape[0] == 2:
|
298 |
+
# edge case: only have two points, use linear interpolation
|
299 |
+
dk = np.zeros_like(y)
|
300 |
+
dk[0] = mk
|
301 |
+
dk[1] = mk
|
302 |
+
return dk.reshape(y_shape)
|
303 |
+
|
304 |
+
smk = np.sign(mk)
|
305 |
+
condition = (smk[1:] != smk[:-1]) | (mk[1:] == 0) | (mk[:-1] == 0)
|
306 |
+
|
307 |
+
w1 = 2*hk[1:] + hk[:-1]
|
308 |
+
w2 = hk[1:] + 2*hk[:-1]
|
309 |
+
|
310 |
+
# values where division by zero occurs will be excluded
|
311 |
+
# by 'condition' afterwards
|
312 |
+
with np.errstate(divide='ignore', invalid='ignore'):
|
313 |
+
whmean = (w1/mk[:-1] + w2/mk[1:]) / (w1 + w2)
|
314 |
+
|
315 |
+
dk = np.zeros_like(y)
|
316 |
+
dk[1:-1][condition] = 0.0
|
317 |
+
dk[1:-1][~condition] = 1.0 / whmean[~condition]
|
318 |
+
|
319 |
+
# special case endpoints, as suggested in
|
320 |
+
# Cleve Moler, Numerical Computing with MATLAB, Chap 3.6 (pchiptx.m)
|
321 |
+
dk[0] = PchipInterpolator._edge_case(hk[0], hk[1], mk[0], mk[1])
|
322 |
+
dk[-1] = PchipInterpolator._edge_case(hk[-1], hk[-2], mk[-1], mk[-2])
|
323 |
+
|
324 |
+
return dk.reshape(y_shape)
|
325 |
+
|
326 |
+
|
327 |
+
def pchip_interpolate(xi, yi, x, der=0, axis=0):
|
328 |
+
"""
|
329 |
+
Convenience function for pchip interpolation.
|
330 |
+
|
331 |
+
xi and yi are arrays of values used to approximate some function f,
|
332 |
+
with ``yi = f(xi)``. The interpolant uses monotonic cubic splines
|
333 |
+
to find the value of new points x and the derivatives there.
|
334 |
+
|
335 |
+
See `scipy.interpolate.PchipInterpolator` for details.
|
336 |
+
|
337 |
+
Parameters
|
338 |
+
----------
|
339 |
+
xi : array_like
|
340 |
+
A sorted list of x-coordinates, of length N.
|
341 |
+
yi : array_like
|
342 |
+
A 1-D array of real values. `yi`'s length along the interpolation
|
343 |
+
axis must be equal to the length of `xi`. If N-D array, use axis
|
344 |
+
parameter to select correct axis.
|
345 |
+
|
346 |
+
.. deprecated:: 1.13.0
|
347 |
+
Complex data is deprecated and will raise an error in
|
348 |
+
SciPy 1.15.0. If you are trying to use the real components of
|
349 |
+
the passed array, use ``np.real`` on `yi`.
|
350 |
+
|
351 |
+
x : scalar or array_like
|
352 |
+
Of length M.
|
353 |
+
der : int or list, optional
|
354 |
+
Derivatives to extract. The 0th derivative can be included to
|
355 |
+
return the function value.
|
356 |
+
axis : int, optional
|
357 |
+
Axis in the yi array corresponding to the x-coordinate values.
|
358 |
+
|
359 |
+
Returns
|
360 |
+
-------
|
361 |
+
y : scalar or array_like
|
362 |
+
The result, of length R or length M or M by R.
|
363 |
+
|
364 |
+
See Also
|
365 |
+
--------
|
366 |
+
PchipInterpolator : PCHIP 1-D monotonic cubic interpolator.
|
367 |
+
|
368 |
+
Examples
|
369 |
+
--------
|
370 |
+
We can interpolate 2D observed data using pchip interpolation:
|
371 |
+
|
372 |
+
>>> import numpy as np
|
373 |
+
>>> import matplotlib.pyplot as plt
|
374 |
+
>>> from scipy.interpolate import pchip_interpolate
|
375 |
+
>>> x_observed = np.linspace(0.0, 10.0, 11)
|
376 |
+
>>> y_observed = np.sin(x_observed)
|
377 |
+
>>> x = np.linspace(min(x_observed), max(x_observed), num=100)
|
378 |
+
>>> y = pchip_interpolate(x_observed, y_observed, x)
|
379 |
+
>>> plt.plot(x_observed, y_observed, "o", label="observation")
|
380 |
+
>>> plt.plot(x, y, label="pchip interpolation")
|
381 |
+
>>> plt.legend()
|
382 |
+
>>> plt.show()
|
383 |
+
|
384 |
+
"""
|
385 |
+
P = PchipInterpolator(xi, yi, axis=axis)
|
386 |
+
|
387 |
+
if der == 0:
|
388 |
+
return P(x)
|
389 |
+
elif _isscalar(der):
|
390 |
+
return P.derivative(der)(x)
|
391 |
+
else:
|
392 |
+
return [P.derivative(nu)(x) for nu in der]
|
393 |
+
|
394 |
+
|
395 |
+
class Akima1DInterpolator(CubicHermiteSpline):
|
396 |
+
r"""
|
397 |
+
Akima interpolator
|
398 |
+
|
399 |
+
Fit piecewise cubic polynomials, given vectors x and y. The interpolation
|
400 |
+
method by Akima uses a continuously differentiable sub-spline built from
|
401 |
+
piecewise cubic polynomials. The resultant curve passes through the given
|
402 |
+
data points and will appear smooth and natural.
|
403 |
+
|
404 |
+
Parameters
|
405 |
+
----------
|
406 |
+
x : ndarray, shape (npoints, )
|
407 |
+
1-D array of monotonically increasing real values.
|
408 |
+
y : ndarray, shape (..., npoints, ...)
|
409 |
+
N-D array of real values. The length of ``y`` along the interpolation axis
|
410 |
+
must be equal to the length of ``x``. Use the ``axis`` parameter to
|
411 |
+
select the interpolation axis.
|
412 |
+
|
413 |
+
.. deprecated:: 1.13.0
|
414 |
+
Complex data is deprecated and will raise an error in SciPy 1.15.0.
|
415 |
+
If you are trying to use the real components of the passed array,
|
416 |
+
use ``np.real`` on ``y``.
|
417 |
+
|
418 |
+
axis : int, optional
|
419 |
+
Axis in the ``y`` array corresponding to the x-coordinate values. Defaults
|
420 |
+
to ``axis=0``.
|
421 |
+
method : {'akima', 'makima'}, optional
|
422 |
+
If ``"makima"``, use the modified Akima interpolation [2]_.
|
423 |
+
Defaults to ``"akima"``, use the Akima interpolation [1]_.
|
424 |
+
|
425 |
+
.. versionadded:: 1.13.0
|
426 |
+
|
427 |
+
Methods
|
428 |
+
-------
|
429 |
+
__call__
|
430 |
+
derivative
|
431 |
+
antiderivative
|
432 |
+
roots
|
433 |
+
|
434 |
+
See Also
|
435 |
+
--------
|
436 |
+
PchipInterpolator : PCHIP 1-D monotonic cubic interpolator.
|
437 |
+
CubicSpline : Cubic spline data interpolator.
|
438 |
+
PPoly : Piecewise polynomial in terms of coefficients and breakpoints
|
439 |
+
|
440 |
+
Notes
|
441 |
+
-----
|
442 |
+
.. versionadded:: 0.14
|
443 |
+
|
444 |
+
Use only for precise data, as the fitted curve passes through the given
|
445 |
+
points exactly. This routine is useful for plotting a pleasingly smooth
|
446 |
+
curve through a few given points for purposes of plotting.
|
447 |
+
|
448 |
+
Let :math:`\delta_i = (y_{i+1} - y_i) / (x_{i+1} - x_i)` be the slopes of
|
449 |
+
the interval :math:`\left[x_i, x_{i+1}\right)`. Akima's derivative at
|
450 |
+
:math:`x_i` is defined as:
|
451 |
+
|
452 |
+
.. math::
|
453 |
+
|
454 |
+
d_i = \frac{w_1}{w_1 + w_2}\delta_{i-1} + \frac{w_2}{w_1 + w_2}\delta_i
|
455 |
+
|
456 |
+
In the Akima interpolation [1]_ (``method="akima"``), the weights are:
|
457 |
+
|
458 |
+
.. math::
|
459 |
+
|
460 |
+
\begin{aligned}
|
461 |
+
w_1 &= |\delta_{i+1} - \delta_i| \\
|
462 |
+
w_2 &= |\delta_{i-1} - \delta_{i-2}|
|
463 |
+
\end{aligned}
|
464 |
+
|
465 |
+
In the modified Akima interpolation [2]_ (``method="makima"``),
|
466 |
+
to eliminate overshoot and avoid edge cases of both numerator and
|
467 |
+
denominator being equal to 0, the weights are modified as follows:
|
468 |
+
|
469 |
+
.. math::
|
470 |
+
|
471 |
+
\begin{align*}
|
472 |
+
w_1 &= |\delta_{i+1} - \delta_i| + |\delta_{i+1} + \delta_i| / 2 \\
|
473 |
+
w_2 &= |\delta_{i-1} - \delta_{i-2}| + |\delta_{i-1} + \delta_{i-2}| / 2
|
474 |
+
\end{align*}
|
475 |
+
|
476 |
+
Examples
|
477 |
+
--------
|
478 |
+
Comparison of ``method="akima"`` and ``method="makima"``:
|
479 |
+
|
480 |
+
>>> import numpy as np
|
481 |
+
>>> from scipy.interpolate import Akima1DInterpolator
|
482 |
+
>>> import matplotlib.pyplot as plt
|
483 |
+
>>> x = np.linspace(1, 7, 7)
|
484 |
+
>>> y = np.array([-1, -1, -1, 0, 1, 1, 1])
|
485 |
+
>>> xs = np.linspace(min(x), max(x), num=100)
|
486 |
+
>>> y_akima = Akima1DInterpolator(x, y, method="akima")(xs)
|
487 |
+
>>> y_makima = Akima1DInterpolator(x, y, method="makima")(xs)
|
488 |
+
|
489 |
+
>>> fig, ax = plt.subplots()
|
490 |
+
>>> ax.plot(x, y, "o", label="data")
|
491 |
+
>>> ax.plot(xs, y_akima, label="akima")
|
492 |
+
>>> ax.plot(xs, y_makima, label="makima")
|
493 |
+
>>> ax.legend()
|
494 |
+
>>> fig.show()
|
495 |
+
|
496 |
+
The overshoot that occured in ``"akima"`` has been avoided in ``"makima"``.
|
497 |
+
|
498 |
+
References
|
499 |
+
----------
|
500 |
+
.. [1] A new method of interpolation and smooth curve fitting based
|
501 |
+
on local procedures. Hiroshi Akima, J. ACM, October 1970, 17(4),
|
502 |
+
589-602. :doi:`10.1145/321607.321609`
|
503 |
+
.. [2] Makima Piecewise Cubic Interpolation. Cleve Moler and Cosmin Ionita, 2019.
|
504 |
+
https://blogs.mathworks.com/cleve/2019/04/29/makima-piecewise-cubic-interpolation/
|
505 |
+
|
506 |
+
"""
|
507 |
+
|
508 |
+
def __init__(self, x, y, axis=0, *, method: Literal["akima", "makima"]="akima"):
|
509 |
+
if method not in {"akima", "makima"}:
|
510 |
+
raise NotImplementedError(f"`method`={method} is unsupported.")
|
511 |
+
# Original implementation in MATLAB by N. Shamsundar (BSD licensed), see
|
512 |
+
# https://www.mathworks.com/matlabcentral/fileexchange/1814-akima-interpolation
|
513 |
+
x, dx, y, axis, _ = prepare_input(x, y, axis)
|
514 |
+
|
515 |
+
if np.iscomplexobj(y):
|
516 |
+
msg = ("`Akima1DInterpolator` only works with real values for `y`. "
|
517 |
+
"Passing an array with a complex dtype for `y` is deprecated "
|
518 |
+
"and will raise an error in SciPy 1.15.0. If you are trying to "
|
519 |
+
"use the real components of the passed array, use `np.real` on "
|
520 |
+
"the array before passing to `Akima1DInterpolator`.")
|
521 |
+
warnings.warn(msg, DeprecationWarning, stacklevel=2)
|
522 |
+
|
523 |
+
# determine slopes between breakpoints
|
524 |
+
m = np.empty((x.size + 3, ) + y.shape[1:])
|
525 |
+
dx = dx[(slice(None), ) + (None, ) * (y.ndim - 1)]
|
526 |
+
m[2:-2] = np.diff(y, axis=0) / dx
|
527 |
+
|
528 |
+
# add two additional points on the left ...
|
529 |
+
m[1] = 2. * m[2] - m[3]
|
530 |
+
m[0] = 2. * m[1] - m[2]
|
531 |
+
# ... and on the right
|
532 |
+
m[-2] = 2. * m[-3] - m[-4]
|
533 |
+
m[-1] = 2. * m[-2] - m[-3]
|
534 |
+
|
535 |
+
# if m1 == m2 != m3 == m4, the slope at the breakpoint is not
|
536 |
+
# defined. This is the fill value:
|
537 |
+
t = .5 * (m[3:] + m[:-3])
|
538 |
+
# get the denominator of the slope t
|
539 |
+
dm = np.abs(np.diff(m, axis=0))
|
540 |
+
if method == "makima":
|
541 |
+
pm = np.abs(m[1:] + m[:-1])
|
542 |
+
f1 = dm[2:] + 0.5 * pm[2:]
|
543 |
+
f2 = dm[:-2] + 0.5 * pm[:-2]
|
544 |
+
else:
|
545 |
+
f1 = dm[2:]
|
546 |
+
f2 = dm[:-2]
|
547 |
+
f12 = f1 + f2
|
548 |
+
# These are the mask of where the slope at breakpoint is defined:
|
549 |
+
ind = np.nonzero(f12 > 1e-9 * np.max(f12, initial=-np.inf))
|
550 |
+
x_ind, y_ind = ind[0], ind[1:]
|
551 |
+
# Set the slope at breakpoint
|
552 |
+
t[ind] = (f1[ind] * m[(x_ind + 1,) + y_ind] +
|
553 |
+
f2[ind] * m[(x_ind + 2,) + y_ind]) / f12[ind]
|
554 |
+
|
555 |
+
super().__init__(x, y, t, axis=0, extrapolate=False)
|
556 |
+
self.axis = axis
|
557 |
+
|
558 |
+
def extend(self, c, x, right=True):
|
559 |
+
raise NotImplementedError("Extending a 1-D Akima interpolator is not "
|
560 |
+
"yet implemented")
|
561 |
+
|
562 |
+
# These are inherited from PPoly, but they do not produce an Akima
|
563 |
+
# interpolator. Hence stub them out.
|
564 |
+
@classmethod
|
565 |
+
def from_spline(cls, tck, extrapolate=None):
|
566 |
+
raise NotImplementedError("This method does not make sense for "
|
567 |
+
"an Akima interpolator.")
|
568 |
+
|
569 |
+
@classmethod
|
570 |
+
def from_bernstein_basis(cls, bp, extrapolate=None):
|
571 |
+
raise NotImplementedError("This method does not make sense for "
|
572 |
+
"an Akima interpolator.")
|
573 |
+
|
574 |
+
|
575 |
+
class CubicSpline(CubicHermiteSpline):
|
576 |
+
"""Cubic spline data interpolator.
|
577 |
+
|
578 |
+
Interpolate data with a piecewise cubic polynomial which is twice
|
579 |
+
continuously differentiable [1]_. The result is represented as a `PPoly`
|
580 |
+
instance with breakpoints matching the given data.
|
581 |
+
|
582 |
+
Parameters
|
583 |
+
----------
|
584 |
+
x : array_like, shape (n,)
|
585 |
+
1-D array containing values of the independent variable.
|
586 |
+
Values must be real, finite and in strictly increasing order.
|
587 |
+
y : array_like
|
588 |
+
Array containing values of the dependent variable. It can have
|
589 |
+
arbitrary number of dimensions, but the length along ``axis``
|
590 |
+
(see below) must match the length of ``x``. Values must be finite.
|
591 |
+
axis : int, optional
|
592 |
+
Axis along which `y` is assumed to be varying. Meaning that for
|
593 |
+
``x[i]`` the corresponding values are ``np.take(y, i, axis=axis)``.
|
594 |
+
Default is 0.
|
595 |
+
bc_type : string or 2-tuple, optional
|
596 |
+
Boundary condition type. Two additional equations, given by the
|
597 |
+
boundary conditions, are required to determine all coefficients of
|
598 |
+
polynomials on each segment [2]_.
|
599 |
+
|
600 |
+
If `bc_type` is a string, then the specified condition will be applied
|
601 |
+
at both ends of a spline. Available conditions are:
|
602 |
+
|
603 |
+
* 'not-a-knot' (default): The first and second segment at a curve end
|
604 |
+
are the same polynomial. It is a good default when there is no
|
605 |
+
information on boundary conditions.
|
606 |
+
* 'periodic': The interpolated functions is assumed to be periodic
|
607 |
+
of period ``x[-1] - x[0]``. The first and last value of `y` must be
|
608 |
+
identical: ``y[0] == y[-1]``. This boundary condition will result in
|
609 |
+
``y'[0] == y'[-1]`` and ``y''[0] == y''[-1]``.
|
610 |
+
* 'clamped': The first derivative at curves ends are zero. Assuming
|
611 |
+
a 1D `y`, ``bc_type=((1, 0.0), (1, 0.0))`` is the same condition.
|
612 |
+
* 'natural': The second derivative at curve ends are zero. Assuming
|
613 |
+
a 1D `y`, ``bc_type=((2, 0.0), (2, 0.0))`` is the same condition.
|
614 |
+
|
615 |
+
If `bc_type` is a 2-tuple, the first and the second value will be
|
616 |
+
applied at the curve start and end respectively. The tuple values can
|
617 |
+
be one of the previously mentioned strings (except 'periodic') or a
|
618 |
+
tuple `(order, deriv_values)` allowing to specify arbitrary
|
619 |
+
derivatives at curve ends:
|
620 |
+
|
621 |
+
* `order`: the derivative order, 1 or 2.
|
622 |
+
* `deriv_value`: array_like containing derivative values, shape must
|
623 |
+
be the same as `y`, excluding ``axis`` dimension. For example, if
|
624 |
+
`y` is 1-D, then `deriv_value` must be a scalar. If `y` is 3-D with
|
625 |
+
the shape (n0, n1, n2) and axis=2, then `deriv_value` must be 2-D
|
626 |
+
and have the shape (n0, n1).
|
627 |
+
extrapolate : {bool, 'periodic', None}, optional
|
628 |
+
If bool, determines whether to extrapolate to out-of-bounds points
|
629 |
+
based on first and last intervals, or to return NaNs. If 'periodic',
|
630 |
+
periodic extrapolation is used. If None (default), ``extrapolate`` is
|
631 |
+
set to 'periodic' for ``bc_type='periodic'`` and to True otherwise.
|
632 |
+
|
633 |
+
Attributes
|
634 |
+
----------
|
635 |
+
x : ndarray, shape (n,)
|
636 |
+
Breakpoints. The same ``x`` which was passed to the constructor.
|
637 |
+
c : ndarray, shape (4, n-1, ...)
|
638 |
+
Coefficients of the polynomials on each segment. The trailing
|
639 |
+
dimensions match the dimensions of `y`, excluding ``axis``.
|
640 |
+
For example, if `y` is 1-d, then ``c[k, i]`` is a coefficient for
|
641 |
+
``(x-x[i])**(3-k)`` on the segment between ``x[i]`` and ``x[i+1]``.
|
642 |
+
axis : int
|
643 |
+
Interpolation axis. The same axis which was passed to the
|
644 |
+
constructor.
|
645 |
+
|
646 |
+
Methods
|
647 |
+
-------
|
648 |
+
__call__
|
649 |
+
derivative
|
650 |
+
antiderivative
|
651 |
+
integrate
|
652 |
+
roots
|
653 |
+
|
654 |
+
See Also
|
655 |
+
--------
|
656 |
+
Akima1DInterpolator : Akima 1D interpolator.
|
657 |
+
PchipInterpolator : PCHIP 1-D monotonic cubic interpolator.
|
658 |
+
PPoly : Piecewise polynomial in terms of coefficients and breakpoints.
|
659 |
+
|
660 |
+
Notes
|
661 |
+
-----
|
662 |
+
Parameters `bc_type` and ``extrapolate`` work independently, i.e. the
|
663 |
+
former controls only construction of a spline, and the latter only
|
664 |
+
evaluation.
|
665 |
+
|
666 |
+
When a boundary condition is 'not-a-knot' and n = 2, it is replaced by
|
667 |
+
a condition that the first derivative is equal to the linear interpolant
|
668 |
+
slope. When both boundary conditions are 'not-a-knot' and n = 3, the
|
669 |
+
solution is sought as a parabola passing through given points.
|
670 |
+
|
671 |
+
When 'not-a-knot' boundary conditions is applied to both ends, the
|
672 |
+
resulting spline will be the same as returned by `splrep` (with ``s=0``)
|
673 |
+
and `InterpolatedUnivariateSpline`, but these two methods use a
|
674 |
+
representation in B-spline basis.
|
675 |
+
|
676 |
+
.. versionadded:: 0.18.0
|
677 |
+
|
678 |
+
Examples
|
679 |
+
--------
|
680 |
+
In this example the cubic spline is used to interpolate a sampled sinusoid.
|
681 |
+
You can see that the spline continuity property holds for the first and
|
682 |
+
second derivatives and violates only for the third derivative.
|
683 |
+
|
684 |
+
>>> import numpy as np
|
685 |
+
>>> from scipy.interpolate import CubicSpline
|
686 |
+
>>> import matplotlib.pyplot as plt
|
687 |
+
>>> x = np.arange(10)
|
688 |
+
>>> y = np.sin(x)
|
689 |
+
>>> cs = CubicSpline(x, y)
|
690 |
+
>>> xs = np.arange(-0.5, 9.6, 0.1)
|
691 |
+
>>> fig, ax = plt.subplots(figsize=(6.5, 4))
|
692 |
+
>>> ax.plot(x, y, 'o', label='data')
|
693 |
+
>>> ax.plot(xs, np.sin(xs), label='true')
|
694 |
+
>>> ax.plot(xs, cs(xs), label="S")
|
695 |
+
>>> ax.plot(xs, cs(xs, 1), label="S'")
|
696 |
+
>>> ax.plot(xs, cs(xs, 2), label="S''")
|
697 |
+
>>> ax.plot(xs, cs(xs, 3), label="S'''")
|
698 |
+
>>> ax.set_xlim(-0.5, 9.5)
|
699 |
+
>>> ax.legend(loc='lower left', ncol=2)
|
700 |
+
>>> plt.show()
|
701 |
+
|
702 |
+
In the second example, the unit circle is interpolated with a spline. A
|
703 |
+
periodic boundary condition is used. You can see that the first derivative
|
704 |
+
values, ds/dx=0, ds/dy=1 at the periodic point (1, 0) are correctly
|
705 |
+
computed. Note that a circle cannot be exactly represented by a cubic
|
706 |
+
spline. To increase precision, more breakpoints would be required.
|
707 |
+
|
708 |
+
>>> theta = 2 * np.pi * np.linspace(0, 1, 5)
|
709 |
+
>>> y = np.c_[np.cos(theta), np.sin(theta)]
|
710 |
+
>>> cs = CubicSpline(theta, y, bc_type='periodic')
|
711 |
+
>>> print("ds/dx={:.1f} ds/dy={:.1f}".format(cs(0, 1)[0], cs(0, 1)[1]))
|
712 |
+
ds/dx=0.0 ds/dy=1.0
|
713 |
+
>>> xs = 2 * np.pi * np.linspace(0, 1, 100)
|
714 |
+
>>> fig, ax = plt.subplots(figsize=(6.5, 4))
|
715 |
+
>>> ax.plot(y[:, 0], y[:, 1], 'o', label='data')
|
716 |
+
>>> ax.plot(np.cos(xs), np.sin(xs), label='true')
|
717 |
+
>>> ax.plot(cs(xs)[:, 0], cs(xs)[:, 1], label='spline')
|
718 |
+
>>> ax.axes.set_aspect('equal')
|
719 |
+
>>> ax.legend(loc='center')
|
720 |
+
>>> plt.show()
|
721 |
+
|
722 |
+
The third example is the interpolation of a polynomial y = x**3 on the
|
723 |
+
interval 0 <= x<= 1. A cubic spline can represent this function exactly.
|
724 |
+
To achieve that we need to specify values and first derivatives at
|
725 |
+
endpoints of the interval. Note that y' = 3 * x**2 and thus y'(0) = 0 and
|
726 |
+
y'(1) = 3.
|
727 |
+
|
728 |
+
>>> cs = CubicSpline([0, 1], [0, 1], bc_type=((1, 0), (1, 3)))
|
729 |
+
>>> x = np.linspace(0, 1)
|
730 |
+
>>> np.allclose(x**3, cs(x))
|
731 |
+
True
|
732 |
+
|
733 |
+
References
|
734 |
+
----------
|
735 |
+
.. [1] `Cubic Spline Interpolation
|
736 |
+
<https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation>`_
|
737 |
+
on Wikiversity.
|
738 |
+
.. [2] Carl de Boor, "A Practical Guide to Splines", Springer-Verlag, 1978.
|
739 |
+
"""
|
740 |
+
|
741 |
+
def __init__(self, x, y, axis=0, bc_type='not-a-knot', extrapolate=None):
|
742 |
+
x, dx, y, axis, _ = prepare_input(x, y, axis)
|
743 |
+
n = len(x)
|
744 |
+
|
745 |
+
bc, y = self._validate_bc(bc_type, y, y.shape[1:], axis)
|
746 |
+
|
747 |
+
if extrapolate is None:
|
748 |
+
if bc[0] == 'periodic':
|
749 |
+
extrapolate = 'periodic'
|
750 |
+
else:
|
751 |
+
extrapolate = True
|
752 |
+
|
753 |
+
if y.size == 0:
|
754 |
+
# bail out early for zero-sized arrays
|
755 |
+
s = np.zeros_like(y)
|
756 |
+
else:
|
757 |
+
dxr = dx.reshape([dx.shape[0]] + [1] * (y.ndim - 1))
|
758 |
+
slope = np.diff(y, axis=0) / dxr
|
759 |
+
|
760 |
+
# If bc is 'not-a-knot' this change is just a convention.
|
761 |
+
# If bc is 'periodic' then we already checked that y[0] == y[-1],
|
762 |
+
# and the spline is just a constant, we handle this case in the
|
763 |
+
# same way by setting the first derivatives to slope, which is 0.
|
764 |
+
if n == 2:
|
765 |
+
if bc[0] in ['not-a-knot', 'periodic']:
|
766 |
+
bc[0] = (1, slope[0])
|
767 |
+
if bc[1] in ['not-a-knot', 'periodic']:
|
768 |
+
bc[1] = (1, slope[0])
|
769 |
+
|
770 |
+
# This is a special case, when both conditions are 'not-a-knot'
|
771 |
+
# and n == 3. In this case 'not-a-knot' can't be handled regularly
|
772 |
+
# as the both conditions are identical. We handle this case by
|
773 |
+
# constructing a parabola passing through given points.
|
774 |
+
if n == 3 and bc[0] == 'not-a-knot' and bc[1] == 'not-a-knot':
|
775 |
+
A = np.zeros((3, 3)) # This is a standard matrix.
|
776 |
+
b = np.empty((3,) + y.shape[1:], dtype=y.dtype)
|
777 |
+
|
778 |
+
A[0, 0] = 1
|
779 |
+
A[0, 1] = 1
|
780 |
+
A[1, 0] = dx[1]
|
781 |
+
A[1, 1] = 2 * (dx[0] + dx[1])
|
782 |
+
A[1, 2] = dx[0]
|
783 |
+
A[2, 1] = 1
|
784 |
+
A[2, 2] = 1
|
785 |
+
|
786 |
+
b[0] = 2 * slope[0]
|
787 |
+
b[1] = 3 * (dxr[0] * slope[1] + dxr[1] * slope[0])
|
788 |
+
b[2] = 2 * slope[1]
|
789 |
+
|
790 |
+
s = solve(A, b, overwrite_a=True, overwrite_b=True,
|
791 |
+
check_finite=False)
|
792 |
+
elif n == 3 and bc[0] == 'periodic':
|
793 |
+
# In case when number of points is 3 we compute the derivatives
|
794 |
+
# manually
|
795 |
+
t = (slope / dxr).sum(0) / (1. / dxr).sum(0)
|
796 |
+
s = np.broadcast_to(t, (n,) + y.shape[1:])
|
797 |
+
else:
|
798 |
+
# Find derivative values at each x[i] by solving a tridiagonal
|
799 |
+
# system.
|
800 |
+
A = np.zeros((3, n)) # This is a banded matrix representation.
|
801 |
+
b = np.empty((n,) + y.shape[1:], dtype=y.dtype)
|
802 |
+
|
803 |
+
# Filling the system for i=1..n-2
|
804 |
+
# (x[i-1] - x[i]) * s[i-1] +\
|
805 |
+
# 2 * ((x[i] - x[i-1]) + (x[i+1] - x[i])) * s[i] +\
|
806 |
+
# (x[i] - x[i-1]) * s[i+1] =\
|
807 |
+
# 3 * ((x[i+1] - x[i])*(y[i] - y[i-1])/(x[i] - x[i-1]) +\
|
808 |
+
# (x[i] - x[i-1])*(y[i+1] - y[i])/(x[i+1] - x[i]))
|
809 |
+
|
810 |
+
A[1, 1:-1] = 2 * (dx[:-1] + dx[1:]) # The diagonal
|
811 |
+
A[0, 2:] = dx[:-1] # The upper diagonal
|
812 |
+
A[-1, :-2] = dx[1:] # The lower diagonal
|
813 |
+
|
814 |
+
b[1:-1] = 3 * (dxr[1:] * slope[:-1] + dxr[:-1] * slope[1:])
|
815 |
+
|
816 |
+
bc_start, bc_end = bc
|
817 |
+
|
818 |
+
if bc_start == 'periodic':
|
819 |
+
# Due to the periodicity, and because y[-1] = y[0], the
|
820 |
+
# linear system has (n-1) unknowns/equations instead of n:
|
821 |
+
A = A[:, 0:-1]
|
822 |
+
A[1, 0] = 2 * (dx[-1] + dx[0])
|
823 |
+
A[0, 1] = dx[-1]
|
824 |
+
|
825 |
+
b = b[:-1]
|
826 |
+
|
827 |
+
# Also, due to the periodicity, the system is not tri-diagonal.
|
828 |
+
# We need to compute a "condensed" matrix of shape (n-2, n-2).
|
829 |
+
# See https://web.archive.org/web/20151220180652/http://www.cfm.brown.edu/people/gk/chap6/node14.html
|
830 |
+
# for more explanations.
|
831 |
+
# The condensed matrix is obtained by removing the last column
|
832 |
+
# and last row of the (n-1, n-1) system matrix. The removed
|
833 |
+
# values are saved in scalar variables with the (n-1, n-1)
|
834 |
+
# system matrix indices forming their names:
|
835 |
+
a_m1_0 = dx[-2] # lower left corner value: A[-1, 0]
|
836 |
+
a_m1_m2 = dx[-1]
|
837 |
+
a_m1_m1 = 2 * (dx[-1] + dx[-2])
|
838 |
+
a_m2_m1 = dx[-3]
|
839 |
+
a_0_m1 = dx[0]
|
840 |
+
|
841 |
+
b[0] = 3 * (dxr[0] * slope[-1] + dxr[-1] * slope[0])
|
842 |
+
b[-1] = 3 * (dxr[-1] * slope[-2] + dxr[-2] * slope[-1])
|
843 |
+
|
844 |
+
Ac = A[:, :-1]
|
845 |
+
b1 = b[:-1]
|
846 |
+
b2 = np.zeros_like(b1)
|
847 |
+
b2[0] = -a_0_m1
|
848 |
+
b2[-1] = -a_m2_m1
|
849 |
+
|
850 |
+
# s1 and s2 are the solutions of (n-2, n-2) system
|
851 |
+
s1 = solve_banded((1, 1), Ac, b1, overwrite_ab=False,
|
852 |
+
overwrite_b=False, check_finite=False)
|
853 |
+
|
854 |
+
s2 = solve_banded((1, 1), Ac, b2, overwrite_ab=False,
|
855 |
+
overwrite_b=False, check_finite=False)
|
856 |
+
|
857 |
+
# computing the s[n-2] solution:
|
858 |
+
s_m1 = ((b[-1] - a_m1_0 * s1[0] - a_m1_m2 * s1[-1]) /
|
859 |
+
(a_m1_m1 + a_m1_0 * s2[0] + a_m1_m2 * s2[-1]))
|
860 |
+
|
861 |
+
# s is the solution of the (n, n) system:
|
862 |
+
s = np.empty((n,) + y.shape[1:], dtype=y.dtype)
|
863 |
+
s[:-2] = s1 + s_m1 * s2
|
864 |
+
s[-2] = s_m1
|
865 |
+
s[-1] = s[0]
|
866 |
+
else:
|
867 |
+
if bc_start == 'not-a-knot':
|
868 |
+
A[1, 0] = dx[1]
|
869 |
+
A[0, 1] = x[2] - x[0]
|
870 |
+
d = x[2] - x[0]
|
871 |
+
b[0] = ((dxr[0] + 2*d) * dxr[1] * slope[0] +
|
872 |
+
dxr[0]**2 * slope[1]) / d
|
873 |
+
elif bc_start[0] == 1:
|
874 |
+
A[1, 0] = 1
|
875 |
+
A[0, 1] = 0
|
876 |
+
b[0] = bc_start[1]
|
877 |
+
elif bc_start[0] == 2:
|
878 |
+
A[1, 0] = 2 * dx[0]
|
879 |
+
A[0, 1] = dx[0]
|
880 |
+
b[0] = -0.5 * bc_start[1] * dx[0]**2 + 3 * (y[1] - y[0])
|
881 |
+
|
882 |
+
if bc_end == 'not-a-knot':
|
883 |
+
A[1, -1] = dx[-2]
|
884 |
+
A[-1, -2] = x[-1] - x[-3]
|
885 |
+
d = x[-1] - x[-3]
|
886 |
+
b[-1] = ((dxr[-1]**2*slope[-2] +
|
887 |
+
(2*d + dxr[-1])*dxr[-2]*slope[-1]) / d)
|
888 |
+
elif bc_end[0] == 1:
|
889 |
+
A[1, -1] = 1
|
890 |
+
A[-1, -2] = 0
|
891 |
+
b[-1] = bc_end[1]
|
892 |
+
elif bc_end[0] == 2:
|
893 |
+
A[1, -1] = 2 * dx[-1]
|
894 |
+
A[-1, -2] = dx[-1]
|
895 |
+
b[-1] = 0.5 * bc_end[1] * dx[-1]**2 + 3 * (y[-1] - y[-2])
|
896 |
+
|
897 |
+
s = solve_banded((1, 1), A, b, overwrite_ab=True,
|
898 |
+
overwrite_b=True, check_finite=False)
|
899 |
+
|
900 |
+
super().__init__(x, y, s, axis=0, extrapolate=extrapolate)
|
901 |
+
self.axis = axis
|
902 |
+
|
903 |
+
@staticmethod
|
904 |
+
def _validate_bc(bc_type, y, expected_deriv_shape, axis):
|
905 |
+
"""Validate and prepare boundary conditions.
|
906 |
+
|
907 |
+
Returns
|
908 |
+
-------
|
909 |
+
validated_bc : 2-tuple
|
910 |
+
Boundary conditions for a curve start and end.
|
911 |
+
y : ndarray
|
912 |
+
y casted to complex dtype if one of the boundary conditions has
|
913 |
+
complex dtype.
|
914 |
+
"""
|
915 |
+
if isinstance(bc_type, str):
|
916 |
+
if bc_type == 'periodic':
|
917 |
+
if not np.allclose(y[0], y[-1], rtol=1e-15, atol=1e-15):
|
918 |
+
raise ValueError(
|
919 |
+
f"The first and last `y` point along axis {axis} must "
|
920 |
+
"be identical (within machine precision) when "
|
921 |
+
"bc_type='periodic'.")
|
922 |
+
|
923 |
+
bc_type = (bc_type, bc_type)
|
924 |
+
|
925 |
+
else:
|
926 |
+
if len(bc_type) != 2:
|
927 |
+
raise ValueError("`bc_type` must contain 2 elements to "
|
928 |
+
"specify start and end conditions.")
|
929 |
+
|
930 |
+
if 'periodic' in bc_type:
|
931 |
+
raise ValueError("'periodic' `bc_type` is defined for both "
|
932 |
+
"curve ends and cannot be used with other "
|
933 |
+
"boundary conditions.")
|
934 |
+
|
935 |
+
validated_bc = []
|
936 |
+
for bc in bc_type:
|
937 |
+
if isinstance(bc, str):
|
938 |
+
if bc == 'clamped':
|
939 |
+
validated_bc.append((1, np.zeros(expected_deriv_shape)))
|
940 |
+
elif bc == 'natural':
|
941 |
+
validated_bc.append((2, np.zeros(expected_deriv_shape)))
|
942 |
+
elif bc in ['not-a-knot', 'periodic']:
|
943 |
+
validated_bc.append(bc)
|
944 |
+
else:
|
945 |
+
raise ValueError(f"bc_type={bc} is not allowed.")
|
946 |
+
else:
|
947 |
+
try:
|
948 |
+
deriv_order, deriv_value = bc
|
949 |
+
except Exception as e:
|
950 |
+
raise ValueError(
|
951 |
+
"A specified derivative value must be "
|
952 |
+
"given in the form (order, value)."
|
953 |
+
) from e
|
954 |
+
|
955 |
+
if deriv_order not in [1, 2]:
|
956 |
+
raise ValueError("The specified derivative order must "
|
957 |
+
"be 1 or 2.")
|
958 |
+
|
959 |
+
deriv_value = np.asarray(deriv_value)
|
960 |
+
if deriv_value.shape != expected_deriv_shape:
|
961 |
+
raise ValueError(
|
962 |
+
"`deriv_value` shape {} is not the expected one {}."
|
963 |
+
.format(deriv_value.shape, expected_deriv_shape))
|
964 |
+
|
965 |
+
if np.issubdtype(deriv_value.dtype, np.complexfloating):
|
966 |
+
y = y.astype(complex, copy=False)
|
967 |
+
|
968 |
+
validated_bc.append((deriv_order, deriv_value))
|
969 |
+
|
970 |
+
return validated_bc, y
|
venv/lib/python3.10/site-packages/scipy/interpolate/_fitpack.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (91.4 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/_fitpack2.py
ADDED
@@ -0,0 +1,2362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
fitpack --- curve and surface fitting with splines
|
3 |
+
|
4 |
+
fitpack is based on a collection of Fortran routines DIERCKX
|
5 |
+
by P. Dierckx (see http://www.netlib.org/dierckx/) transformed
|
6 |
+
to double routines by Pearu Peterson.
|
7 |
+
"""
|
8 |
+
# Created by Pearu Peterson, June,August 2003
|
9 |
+
__all__ = [
|
10 |
+
'UnivariateSpline',
|
11 |
+
'InterpolatedUnivariateSpline',
|
12 |
+
'LSQUnivariateSpline',
|
13 |
+
'BivariateSpline',
|
14 |
+
'LSQBivariateSpline',
|
15 |
+
'SmoothBivariateSpline',
|
16 |
+
'LSQSphereBivariateSpline',
|
17 |
+
'SmoothSphereBivariateSpline',
|
18 |
+
'RectBivariateSpline',
|
19 |
+
'RectSphereBivariateSpline']
|
20 |
+
|
21 |
+
|
22 |
+
import warnings
|
23 |
+
|
24 |
+
from numpy import zeros, concatenate, ravel, diff, array, ones # noqa:F401
|
25 |
+
import numpy as np
|
26 |
+
|
27 |
+
from . import _fitpack_impl
|
28 |
+
from . import dfitpack
|
29 |
+
|
30 |
+
|
31 |
+
dfitpack_int = dfitpack.types.intvar.dtype
|
32 |
+
|
33 |
+
|
34 |
+
# ############### Univariate spline ####################
|
35 |
+
|
36 |
+
_curfit_messages = {1: """
|
37 |
+
The required storage space exceeds the available storage space, as
|
38 |
+
specified by the parameter nest: nest too small. If nest is already
|
39 |
+
large (say nest > m/2), it may also indicate that s is too small.
|
40 |
+
The approximation returned is the weighted least-squares spline
|
41 |
+
according to the knots t[0],t[1],...,t[n-1]. (n=nest) the parameter fp
|
42 |
+
gives the corresponding weighted sum of squared residuals (fp>s).
|
43 |
+
""",
|
44 |
+
2: """
|
45 |
+
A theoretically impossible result was found during the iteration
|
46 |
+
process for finding a smoothing spline with fp = s: s too small.
|
47 |
+
There is an approximation returned but the corresponding weighted sum
|
48 |
+
of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""",
|
49 |
+
3: """
|
50 |
+
The maximal number of iterations maxit (set to 20 by the program)
|
51 |
+
allowed for finding a smoothing spline with fp=s has been reached: s
|
52 |
+
too small.
|
53 |
+
There is an approximation returned but the corresponding weighted sum
|
54 |
+
of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""",
|
55 |
+
10: """
|
56 |
+
Error on entry, no approximation returned. The following conditions
|
57 |
+
must hold:
|
58 |
+
xb<=x[0]<x[1]<...<x[m-1]<=xe, w[i]>0, i=0..m-1
|
59 |
+
if iopt=-1:
|
60 |
+
xb<t[k+1]<t[k+2]<...<t[n-k-2]<xe"""
|
61 |
+
}
|
62 |
+
|
63 |
+
|
64 |
+
# UnivariateSpline, ext parameter can be an int or a string
|
65 |
+
_extrap_modes = {0: 0, 'extrapolate': 0,
|
66 |
+
1: 1, 'zeros': 1,
|
67 |
+
2: 2, 'raise': 2,
|
68 |
+
3: 3, 'const': 3}
|
69 |
+
|
70 |
+
|
71 |
+
class UnivariateSpline:
|
72 |
+
"""
|
73 |
+
1-D smoothing spline fit to a given set of data points.
|
74 |
+
|
75 |
+
Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `s`
|
76 |
+
specifies the number of knots by specifying a smoothing condition.
|
77 |
+
|
78 |
+
Parameters
|
79 |
+
----------
|
80 |
+
x : (N,) array_like
|
81 |
+
1-D array of independent input data. Must be increasing;
|
82 |
+
must be strictly increasing if `s` is 0.
|
83 |
+
y : (N,) array_like
|
84 |
+
1-D array of dependent input data, of the same length as `x`.
|
85 |
+
w : (N,) array_like, optional
|
86 |
+
Weights for spline fitting. Must be positive. If `w` is None,
|
87 |
+
weights are all 1. Default is None.
|
88 |
+
bbox : (2,) array_like, optional
|
89 |
+
2-sequence specifying the boundary of the approximation interval. If
|
90 |
+
`bbox` is None, ``bbox=[x[0], x[-1]]``. Default is None.
|
91 |
+
k : int, optional
|
92 |
+
Degree of the smoothing spline. Must be 1 <= `k` <= 5.
|
93 |
+
``k = 3`` is a cubic spline. Default is 3.
|
94 |
+
s : float or None, optional
|
95 |
+
Positive smoothing factor used to choose the number of knots. Number
|
96 |
+
of knots will be increased until the smoothing condition is satisfied::
|
97 |
+
|
98 |
+
sum((w[i] * (y[i]-spl(x[i])))**2, axis=0) <= s
|
99 |
+
|
100 |
+
However, because of numerical issues, the actual condition is::
|
101 |
+
|
102 |
+
abs(sum((w[i] * (y[i]-spl(x[i])))**2, axis=0) - s) < 0.001 * s
|
103 |
+
|
104 |
+
If `s` is None, `s` will be set as `len(w)` for a smoothing spline
|
105 |
+
that uses all data points.
|
106 |
+
If 0, spline will interpolate through all data points. This is
|
107 |
+
equivalent to `InterpolatedUnivariateSpline`.
|
108 |
+
Default is None.
|
109 |
+
The user can use the `s` to control the tradeoff between closeness
|
110 |
+
and smoothness of fit. Larger `s` means more smoothing while smaller
|
111 |
+
values of `s` indicate less smoothing.
|
112 |
+
Recommended values of `s` depend on the weights, `w`. If the weights
|
113 |
+
represent the inverse of the standard-deviation of `y`, then a good
|
114 |
+
`s` value should be found in the range (m-sqrt(2*m),m+sqrt(2*m))
|
115 |
+
where m is the number of datapoints in `x`, `y`, and `w`. This means
|
116 |
+
``s = len(w)`` should be a good value if ``1/w[i]`` is an
|
117 |
+
estimate of the standard deviation of ``y[i]``.
|
118 |
+
ext : int or str, optional
|
119 |
+
Controls the extrapolation mode for elements
|
120 |
+
not in the interval defined by the knot sequence.
|
121 |
+
|
122 |
+
* if ext=0 or 'extrapolate', return the extrapolated value.
|
123 |
+
* if ext=1 or 'zeros', return 0
|
124 |
+
* if ext=2 or 'raise', raise a ValueError
|
125 |
+
* if ext=3 or 'const', return the boundary value.
|
126 |
+
|
127 |
+
Default is 0.
|
128 |
+
|
129 |
+
check_finite : bool, optional
|
130 |
+
Whether to check that the input arrays contain only finite numbers.
|
131 |
+
Disabling may give a performance gain, but may result in problems
|
132 |
+
(crashes, non-termination or non-sensical results) if the inputs
|
133 |
+
do contain infinities or NaNs.
|
134 |
+
Default is False.
|
135 |
+
|
136 |
+
See Also
|
137 |
+
--------
|
138 |
+
BivariateSpline :
|
139 |
+
a base class for bivariate splines.
|
140 |
+
SmoothBivariateSpline :
|
141 |
+
a smoothing bivariate spline through the given points
|
142 |
+
LSQBivariateSpline :
|
143 |
+
a bivariate spline using weighted least-squares fitting
|
144 |
+
RectSphereBivariateSpline :
|
145 |
+
a bivariate spline over a rectangular mesh on a sphere
|
146 |
+
SmoothSphereBivariateSpline :
|
147 |
+
a smoothing bivariate spline in spherical coordinates
|
148 |
+
LSQSphereBivariateSpline :
|
149 |
+
a bivariate spline in spherical coordinates using weighted
|
150 |
+
least-squares fitting
|
151 |
+
RectBivariateSpline :
|
152 |
+
a bivariate spline over a rectangular mesh
|
153 |
+
InterpolatedUnivariateSpline :
|
154 |
+
a interpolating univariate spline for a given set of data points.
|
155 |
+
bisplrep :
|
156 |
+
a function to find a bivariate B-spline representation of a surface
|
157 |
+
bisplev :
|
158 |
+
a function to evaluate a bivariate B-spline and its derivatives
|
159 |
+
splrep :
|
160 |
+
a function to find the B-spline representation of a 1-D curve
|
161 |
+
splev :
|
162 |
+
a function to evaluate a B-spline or its derivatives
|
163 |
+
sproot :
|
164 |
+
a function to find the roots of a cubic B-spline
|
165 |
+
splint :
|
166 |
+
a function to evaluate the definite integral of a B-spline between two
|
167 |
+
given points
|
168 |
+
spalde :
|
169 |
+
a function to evaluate all derivatives of a B-spline
|
170 |
+
|
171 |
+
Notes
|
172 |
+
-----
|
173 |
+
The number of data points must be larger than the spline degree `k`.
|
174 |
+
|
175 |
+
**NaN handling**: If the input arrays contain ``nan`` values, the result
|
176 |
+
is not useful, since the underlying spline fitting routines cannot deal
|
177 |
+
with ``nan``. A workaround is to use zero weights for not-a-number
|
178 |
+
data points:
|
179 |
+
|
180 |
+
>>> import numpy as np
|
181 |
+
>>> from scipy.interpolate import UnivariateSpline
|
182 |
+
>>> x, y = np.array([1, 2, 3, 4]), np.array([1, np.nan, 3, 4])
|
183 |
+
>>> w = np.isnan(y)
|
184 |
+
>>> y[w] = 0.
|
185 |
+
>>> spl = UnivariateSpline(x, y, w=~w)
|
186 |
+
|
187 |
+
Notice the need to replace a ``nan`` by a numerical value (precise value
|
188 |
+
does not matter as long as the corresponding weight is zero.)
|
189 |
+
|
190 |
+
References
|
191 |
+
----------
|
192 |
+
Based on algorithms described in [1]_, [2]_, [3]_, and [4]_:
|
193 |
+
|
194 |
+
.. [1] P. Dierckx, "An algorithm for smoothing, differentiation and
|
195 |
+
integration of experimental data using spline functions",
|
196 |
+
J.Comp.Appl.Maths 1 (1975) 165-184.
|
197 |
+
.. [2] P. Dierckx, "A fast algorithm for smoothing data on a rectangular
|
198 |
+
grid while using spline functions", SIAM J.Numer.Anal. 19 (1982)
|
199 |
+
1286-1304.
|
200 |
+
.. [3] P. Dierckx, "An improved algorithm for curve fitting with spline
|
201 |
+
functions", report tw54, Dept. Computer Science,K.U. Leuven, 1981.
|
202 |
+
.. [4] P. Dierckx, "Curve and surface fitting with splines", Monographs on
|
203 |
+
Numerical Analysis, Oxford University Press, 1993.
|
204 |
+
|
205 |
+
Examples
|
206 |
+
--------
|
207 |
+
>>> import numpy as np
|
208 |
+
>>> import matplotlib.pyplot as plt
|
209 |
+
>>> from scipy.interpolate import UnivariateSpline
|
210 |
+
>>> rng = np.random.default_rng()
|
211 |
+
>>> x = np.linspace(-3, 3, 50)
|
212 |
+
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)
|
213 |
+
>>> plt.plot(x, y, 'ro', ms=5)
|
214 |
+
|
215 |
+
Use the default value for the smoothing parameter:
|
216 |
+
|
217 |
+
>>> spl = UnivariateSpline(x, y)
|
218 |
+
>>> xs = np.linspace(-3, 3, 1000)
|
219 |
+
>>> plt.plot(xs, spl(xs), 'g', lw=3)
|
220 |
+
|
221 |
+
Manually change the amount of smoothing:
|
222 |
+
|
223 |
+
>>> spl.set_smoothing_factor(0.5)
|
224 |
+
>>> plt.plot(xs, spl(xs), 'b', lw=3)
|
225 |
+
>>> plt.show()
|
226 |
+
|
227 |
+
"""
|
228 |
+
|
229 |
+
def __init__(self, x, y, w=None, bbox=[None]*2, k=3, s=None,
|
230 |
+
ext=0, check_finite=False):
|
231 |
+
|
232 |
+
x, y, w, bbox, self.ext = self.validate_input(x, y, w, bbox, k, s, ext,
|
233 |
+
check_finite)
|
234 |
+
|
235 |
+
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
|
236 |
+
data = dfitpack.fpcurf0(x, y, k, w=w, xb=bbox[0],
|
237 |
+
xe=bbox[1], s=s)
|
238 |
+
if data[-1] == 1:
|
239 |
+
# nest too small, setting to maximum bound
|
240 |
+
data = self._reset_nest(data)
|
241 |
+
self._data = data
|
242 |
+
self._reset_class()
|
243 |
+
|
244 |
+
@staticmethod
|
245 |
+
def validate_input(x, y, w, bbox, k, s, ext, check_finite):
|
246 |
+
x, y, bbox = np.asarray(x), np.asarray(y), np.asarray(bbox)
|
247 |
+
if w is not None:
|
248 |
+
w = np.asarray(w)
|
249 |
+
if check_finite:
|
250 |
+
w_finite = np.isfinite(w).all() if w is not None else True
|
251 |
+
if (not np.isfinite(x).all() or not np.isfinite(y).all() or
|
252 |
+
not w_finite):
|
253 |
+
raise ValueError("x and y array must not contain "
|
254 |
+
"NaNs or infs.")
|
255 |
+
if s is None or s > 0:
|
256 |
+
if not np.all(diff(x) >= 0.0):
|
257 |
+
raise ValueError("x must be increasing if s > 0")
|
258 |
+
else:
|
259 |
+
if not np.all(diff(x) > 0.0):
|
260 |
+
raise ValueError("x must be strictly increasing if s = 0")
|
261 |
+
if x.size != y.size:
|
262 |
+
raise ValueError("x and y should have a same length")
|
263 |
+
elif w is not None and not x.size == y.size == w.size:
|
264 |
+
raise ValueError("x, y, and w should have a same length")
|
265 |
+
elif bbox.shape != (2,):
|
266 |
+
raise ValueError("bbox shape should be (2,)")
|
267 |
+
elif not (1 <= k <= 5):
|
268 |
+
raise ValueError("k should be 1 <= k <= 5")
|
269 |
+
elif s is not None and not s >= 0.0:
|
270 |
+
raise ValueError("s should be s >= 0.0")
|
271 |
+
|
272 |
+
try:
|
273 |
+
ext = _extrap_modes[ext]
|
274 |
+
except KeyError as e:
|
275 |
+
raise ValueError("Unknown extrapolation mode %s." % ext) from e
|
276 |
+
|
277 |
+
return x, y, w, bbox, ext
|
278 |
+
|
279 |
+
@classmethod
|
280 |
+
def _from_tck(cls, tck, ext=0):
|
281 |
+
"""Construct a spline object from given tck"""
|
282 |
+
self = cls.__new__(cls)
|
283 |
+
t, c, k = tck
|
284 |
+
self._eval_args = tck
|
285 |
+
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
|
286 |
+
self._data = (None, None, None, None, None, k, None, len(t), t,
|
287 |
+
c, None, None, None, None)
|
288 |
+
self.ext = ext
|
289 |
+
return self
|
290 |
+
|
291 |
+
def _reset_class(self):
|
292 |
+
data = self._data
|
293 |
+
n, t, c, k, ier = data[7], data[8], data[9], data[5], data[-1]
|
294 |
+
self._eval_args = t[:n], c[:n], k
|
295 |
+
if ier == 0:
|
296 |
+
# the spline returned has a residual sum of squares fp
|
297 |
+
# such that abs(fp-s)/s <= tol with tol a relative
|
298 |
+
# tolerance set to 0.001 by the program
|
299 |
+
pass
|
300 |
+
elif ier == -1:
|
301 |
+
# the spline returned is an interpolating spline
|
302 |
+
self._set_class(InterpolatedUnivariateSpline)
|
303 |
+
elif ier == -2:
|
304 |
+
# the spline returned is the weighted least-squares
|
305 |
+
# polynomial of degree k. In this extreme case fp gives
|
306 |
+
# the upper bound fp0 for the smoothing factor s.
|
307 |
+
self._set_class(LSQUnivariateSpline)
|
308 |
+
else:
|
309 |
+
# error
|
310 |
+
if ier == 1:
|
311 |
+
self._set_class(LSQUnivariateSpline)
|
312 |
+
message = _curfit_messages.get(ier, 'ier=%s' % (ier))
|
313 |
+
warnings.warn(message, stacklevel=3)
|
314 |
+
|
315 |
+
def _set_class(self, cls):
|
316 |
+
self._spline_class = cls
|
317 |
+
if self.__class__ in (UnivariateSpline, InterpolatedUnivariateSpline,
|
318 |
+
LSQUnivariateSpline):
|
319 |
+
self.__class__ = cls
|
320 |
+
else:
|
321 |
+
# It's an unknown subclass -- don't change class. cf. #731
|
322 |
+
pass
|
323 |
+
|
324 |
+
def _reset_nest(self, data, nest=None):
|
325 |
+
n = data[10]
|
326 |
+
if nest is None:
|
327 |
+
k, m = data[5], len(data[0])
|
328 |
+
nest = m+k+1 # this is the maximum bound for nest
|
329 |
+
else:
|
330 |
+
if not n <= nest:
|
331 |
+
raise ValueError("`nest` can only be increased")
|
332 |
+
t, c, fpint, nrdata = (np.resize(data[j], nest) for j in
|
333 |
+
[8, 9, 11, 12])
|
334 |
+
|
335 |
+
args = data[:8] + (t, c, n, fpint, nrdata, data[13])
|
336 |
+
data = dfitpack.fpcurf1(*args)
|
337 |
+
return data
|
338 |
+
|
339 |
+
def set_smoothing_factor(self, s):
|
340 |
+
""" Continue spline computation with the given smoothing
|
341 |
+
factor s and with the knots found at the last call.
|
342 |
+
|
343 |
+
This routine modifies the spline in place.
|
344 |
+
|
345 |
+
"""
|
346 |
+
data = self._data
|
347 |
+
if data[6] == -1:
|
348 |
+
warnings.warn('smoothing factor unchanged for'
|
349 |
+
'LSQ spline with fixed knots',
|
350 |
+
stacklevel=2)
|
351 |
+
return
|
352 |
+
args = data[:6] + (s,) + data[7:]
|
353 |
+
data = dfitpack.fpcurf1(*args)
|
354 |
+
if data[-1] == 1:
|
355 |
+
# nest too small, setting to maximum bound
|
356 |
+
data = self._reset_nest(data)
|
357 |
+
self._data = data
|
358 |
+
self._reset_class()
|
359 |
+
|
360 |
+
def __call__(self, x, nu=0, ext=None):
|
361 |
+
"""
|
362 |
+
Evaluate spline (or its nu-th derivative) at positions x.
|
363 |
+
|
364 |
+
Parameters
|
365 |
+
----------
|
366 |
+
x : array_like
|
367 |
+
A 1-D array of points at which to return the value of the smoothed
|
368 |
+
spline or its derivatives. Note: `x` can be unordered but the
|
369 |
+
evaluation is more efficient if `x` is (partially) ordered.
|
370 |
+
nu : int
|
371 |
+
The order of derivative of the spline to compute.
|
372 |
+
ext : int
|
373 |
+
Controls the value returned for elements of `x` not in the
|
374 |
+
interval defined by the knot sequence.
|
375 |
+
|
376 |
+
* if ext=0 or 'extrapolate', return the extrapolated value.
|
377 |
+
* if ext=1 or 'zeros', return 0
|
378 |
+
* if ext=2 or 'raise', raise a ValueError
|
379 |
+
* if ext=3 or 'const', return the boundary value.
|
380 |
+
|
381 |
+
The default value is 0, passed from the initialization of
|
382 |
+
UnivariateSpline.
|
383 |
+
|
384 |
+
"""
|
385 |
+
x = np.asarray(x)
|
386 |
+
# empty input yields empty output
|
387 |
+
if x.size == 0:
|
388 |
+
return array([])
|
389 |
+
if ext is None:
|
390 |
+
ext = self.ext
|
391 |
+
else:
|
392 |
+
try:
|
393 |
+
ext = _extrap_modes[ext]
|
394 |
+
except KeyError as e:
|
395 |
+
raise ValueError("Unknown extrapolation mode %s." % ext) from e
|
396 |
+
return _fitpack_impl.splev(x, self._eval_args, der=nu, ext=ext)
|
397 |
+
|
398 |
+
def get_knots(self):
|
399 |
+
""" Return positions of interior knots of the spline.
|
400 |
+
|
401 |
+
Internally, the knot vector contains ``2*k`` additional boundary knots.
|
402 |
+
"""
|
403 |
+
data = self._data
|
404 |
+
k, n = data[5], data[7]
|
405 |
+
return data[8][k:n-k]
|
406 |
+
|
407 |
+
def get_coeffs(self):
|
408 |
+
"""Return spline coefficients."""
|
409 |
+
data = self._data
|
410 |
+
k, n = data[5], data[7]
|
411 |
+
return data[9][:n-k-1]
|
412 |
+
|
413 |
+
def get_residual(self):
|
414 |
+
"""Return weighted sum of squared residuals of the spline approximation.
|
415 |
+
|
416 |
+
This is equivalent to::
|
417 |
+
|
418 |
+
sum((w[i] * (y[i]-spl(x[i])))**2, axis=0)
|
419 |
+
|
420 |
+
"""
|
421 |
+
return self._data[10]
|
422 |
+
|
423 |
+
def integral(self, a, b):
|
424 |
+
""" Return definite integral of the spline between two given points.
|
425 |
+
|
426 |
+
Parameters
|
427 |
+
----------
|
428 |
+
a : float
|
429 |
+
Lower limit of integration.
|
430 |
+
b : float
|
431 |
+
Upper limit of integration.
|
432 |
+
|
433 |
+
Returns
|
434 |
+
-------
|
435 |
+
integral : float
|
436 |
+
The value of the definite integral of the spline between limits.
|
437 |
+
|
438 |
+
Examples
|
439 |
+
--------
|
440 |
+
>>> import numpy as np
|
441 |
+
>>> from scipy.interpolate import UnivariateSpline
|
442 |
+
>>> x = np.linspace(0, 3, 11)
|
443 |
+
>>> y = x**2
|
444 |
+
>>> spl = UnivariateSpline(x, y)
|
445 |
+
>>> spl.integral(0, 3)
|
446 |
+
9.0
|
447 |
+
|
448 |
+
which agrees with :math:`\\int x^2 dx = x^3 / 3` between the limits
|
449 |
+
of 0 and 3.
|
450 |
+
|
451 |
+
A caveat is that this routine assumes the spline to be zero outside of
|
452 |
+
the data limits:
|
453 |
+
|
454 |
+
>>> spl.integral(-1, 4)
|
455 |
+
9.0
|
456 |
+
>>> spl.integral(-1, 0)
|
457 |
+
0.0
|
458 |
+
|
459 |
+
"""
|
460 |
+
return _fitpack_impl.splint(a, b, self._eval_args)
|
461 |
+
|
462 |
+
def derivatives(self, x):
|
463 |
+
""" Return all derivatives of the spline at the point x.
|
464 |
+
|
465 |
+
Parameters
|
466 |
+
----------
|
467 |
+
x : float
|
468 |
+
The point to evaluate the derivatives at.
|
469 |
+
|
470 |
+
Returns
|
471 |
+
-------
|
472 |
+
der : ndarray, shape(k+1,)
|
473 |
+
Derivatives of the orders 0 to k.
|
474 |
+
|
475 |
+
Examples
|
476 |
+
--------
|
477 |
+
>>> import numpy as np
|
478 |
+
>>> from scipy.interpolate import UnivariateSpline
|
479 |
+
>>> x = np.linspace(0, 3, 11)
|
480 |
+
>>> y = x**2
|
481 |
+
>>> spl = UnivariateSpline(x, y)
|
482 |
+
>>> spl.derivatives(1.5)
|
483 |
+
array([2.25, 3.0, 2.0, 0])
|
484 |
+
|
485 |
+
"""
|
486 |
+
return _fitpack_impl.spalde(x, self._eval_args)
|
487 |
+
|
488 |
+
def roots(self):
|
489 |
+
""" Return the zeros of the spline.
|
490 |
+
|
491 |
+
Notes
|
492 |
+
-----
|
493 |
+
Restriction: only cubic splines are supported by FITPACK. For non-cubic
|
494 |
+
splines, use `PPoly.root` (see below for an example).
|
495 |
+
|
496 |
+
Examples
|
497 |
+
--------
|
498 |
+
|
499 |
+
For some data, this method may miss a root. This happens when one of
|
500 |
+
the spline knots (which FITPACK places automatically) happens to
|
501 |
+
coincide with the true root. A workaround is to convert to `PPoly`,
|
502 |
+
which uses a different root-finding algorithm.
|
503 |
+
|
504 |
+
For example,
|
505 |
+
|
506 |
+
>>> x = [1.96, 1.97, 1.98, 1.99, 2.00, 2.01, 2.02, 2.03, 2.04, 2.05]
|
507 |
+
>>> y = [-6.365470e-03, -4.790580e-03, -3.204320e-03, -1.607270e-03,
|
508 |
+
... 4.440892e-16, 1.616930e-03, 3.243000e-03, 4.877670e-03,
|
509 |
+
... 6.520430e-03, 8.170770e-03]
|
510 |
+
>>> from scipy.interpolate import UnivariateSpline
|
511 |
+
>>> spl = UnivariateSpline(x, y, s=0)
|
512 |
+
>>> spl.roots()
|
513 |
+
array([], dtype=float64)
|
514 |
+
|
515 |
+
Converting to a PPoly object does find the roots at `x=2`:
|
516 |
+
|
517 |
+
>>> from scipy.interpolate import splrep, PPoly
|
518 |
+
>>> tck = splrep(x, y, s=0)
|
519 |
+
>>> ppoly = PPoly.from_spline(tck)
|
520 |
+
>>> ppoly.roots(extrapolate=False)
|
521 |
+
array([2.])
|
522 |
+
|
523 |
+
See Also
|
524 |
+
--------
|
525 |
+
sproot
|
526 |
+
PPoly.roots
|
527 |
+
|
528 |
+
"""
|
529 |
+
k = self._data[5]
|
530 |
+
if k == 3:
|
531 |
+
t = self._eval_args[0]
|
532 |
+
mest = 3 * (len(t) - 7)
|
533 |
+
return _fitpack_impl.sproot(self._eval_args, mest=mest)
|
534 |
+
raise NotImplementedError('finding roots unsupported for '
|
535 |
+
'non-cubic splines')
|
536 |
+
|
537 |
+
def derivative(self, n=1):
|
538 |
+
"""
|
539 |
+
Construct a new spline representing the derivative of this spline.
|
540 |
+
|
541 |
+
Parameters
|
542 |
+
----------
|
543 |
+
n : int, optional
|
544 |
+
Order of derivative to evaluate. Default: 1
|
545 |
+
|
546 |
+
Returns
|
547 |
+
-------
|
548 |
+
spline : UnivariateSpline
|
549 |
+
Spline of order k2=k-n representing the derivative of this
|
550 |
+
spline.
|
551 |
+
|
552 |
+
See Also
|
553 |
+
--------
|
554 |
+
splder, antiderivative
|
555 |
+
|
556 |
+
Notes
|
557 |
+
-----
|
558 |
+
|
559 |
+
.. versionadded:: 0.13.0
|
560 |
+
|
561 |
+
Examples
|
562 |
+
--------
|
563 |
+
This can be used for finding maxima of a curve:
|
564 |
+
|
565 |
+
>>> import numpy as np
|
566 |
+
>>> from scipy.interpolate import UnivariateSpline
|
567 |
+
>>> x = np.linspace(0, 10, 70)
|
568 |
+
>>> y = np.sin(x)
|
569 |
+
>>> spl = UnivariateSpline(x, y, k=4, s=0)
|
570 |
+
|
571 |
+
Now, differentiate the spline and find the zeros of the
|
572 |
+
derivative. (NB: `sproot` only works for order 3 splines, so we
|
573 |
+
fit an order 4 spline):
|
574 |
+
|
575 |
+
>>> spl.derivative().roots() / np.pi
|
576 |
+
array([ 0.50000001, 1.5 , 2.49999998])
|
577 |
+
|
578 |
+
This agrees well with roots :math:`\\pi/2 + n\\pi` of
|
579 |
+
:math:`\\cos(x) = \\sin'(x)`.
|
580 |
+
|
581 |
+
"""
|
582 |
+
tck = _fitpack_impl.splder(self._eval_args, n)
|
583 |
+
# if self.ext is 'const', derivative.ext will be 'zeros'
|
584 |
+
ext = 1 if self.ext == 3 else self.ext
|
585 |
+
return UnivariateSpline._from_tck(tck, ext=ext)
|
586 |
+
|
587 |
+
def antiderivative(self, n=1):
|
588 |
+
"""
|
589 |
+
Construct a new spline representing the antiderivative of this spline.
|
590 |
+
|
591 |
+
Parameters
|
592 |
+
----------
|
593 |
+
n : int, optional
|
594 |
+
Order of antiderivative to evaluate. Default: 1
|
595 |
+
|
596 |
+
Returns
|
597 |
+
-------
|
598 |
+
spline : UnivariateSpline
|
599 |
+
Spline of order k2=k+n representing the antiderivative of this
|
600 |
+
spline.
|
601 |
+
|
602 |
+
Notes
|
603 |
+
-----
|
604 |
+
|
605 |
+
.. versionadded:: 0.13.0
|
606 |
+
|
607 |
+
See Also
|
608 |
+
--------
|
609 |
+
splantider, derivative
|
610 |
+
|
611 |
+
Examples
|
612 |
+
--------
|
613 |
+
>>> import numpy as np
|
614 |
+
>>> from scipy.interpolate import UnivariateSpline
|
615 |
+
>>> x = np.linspace(0, np.pi/2, 70)
|
616 |
+
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
|
617 |
+
>>> spl = UnivariateSpline(x, y, s=0)
|
618 |
+
|
619 |
+
The derivative is the inverse operation of the antiderivative,
|
620 |
+
although some floating point error accumulates:
|
621 |
+
|
622 |
+
>>> spl(1.7), spl.antiderivative().derivative()(1.7)
|
623 |
+
(array(2.1565429877197317), array(2.1565429877201865))
|
624 |
+
|
625 |
+
Antiderivative can be used to evaluate definite integrals:
|
626 |
+
|
627 |
+
>>> ispl = spl.antiderivative()
|
628 |
+
>>> ispl(np.pi/2) - ispl(0)
|
629 |
+
2.2572053588768486
|
630 |
+
|
631 |
+
This is indeed an approximation to the complete elliptic integral
|
632 |
+
:math:`K(m) = \\int_0^{\\pi/2} [1 - m\\sin^2 x]^{-1/2} dx`:
|
633 |
+
|
634 |
+
>>> from scipy.special import ellipk
|
635 |
+
>>> ellipk(0.8)
|
636 |
+
2.2572053268208538
|
637 |
+
|
638 |
+
"""
|
639 |
+
tck = _fitpack_impl.splantider(self._eval_args, n)
|
640 |
+
return UnivariateSpline._from_tck(tck, self.ext)
|
641 |
+
|
642 |
+
|
643 |
+
class InterpolatedUnivariateSpline(UnivariateSpline):
|
644 |
+
"""
|
645 |
+
1-D interpolating spline for a given set of data points.
|
646 |
+
|
647 |
+
Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data.
|
648 |
+
Spline function passes through all provided points. Equivalent to
|
649 |
+
`UnivariateSpline` with `s` = 0.
|
650 |
+
|
651 |
+
Parameters
|
652 |
+
----------
|
653 |
+
x : (N,) array_like
|
654 |
+
Input dimension of data points -- must be strictly increasing
|
655 |
+
y : (N,) array_like
|
656 |
+
input dimension of data points
|
657 |
+
w : (N,) array_like, optional
|
658 |
+
Weights for spline fitting. Must be positive. If None (default),
|
659 |
+
weights are all 1.
|
660 |
+
bbox : (2,) array_like, optional
|
661 |
+
2-sequence specifying the boundary of the approximation interval. If
|
662 |
+
None (default), ``bbox=[x[0], x[-1]]``.
|
663 |
+
k : int, optional
|
664 |
+
Degree of the smoothing spline. Must be ``1 <= k <= 5``. Default is
|
665 |
+
``k = 3``, a cubic spline.
|
666 |
+
ext : int or str, optional
|
667 |
+
Controls the extrapolation mode for elements
|
668 |
+
not in the interval defined by the knot sequence.
|
669 |
+
|
670 |
+
* if ext=0 or 'extrapolate', return the extrapolated value.
|
671 |
+
* if ext=1 or 'zeros', return 0
|
672 |
+
* if ext=2 or 'raise', raise a ValueError
|
673 |
+
* if ext=3 of 'const', return the boundary value.
|
674 |
+
|
675 |
+
The default value is 0.
|
676 |
+
|
677 |
+
check_finite : bool, optional
|
678 |
+
Whether to check that the input arrays contain only finite numbers.
|
679 |
+
Disabling may give a performance gain, but may result in problems
|
680 |
+
(crashes, non-termination or non-sensical results) if the inputs
|
681 |
+
do contain infinities or NaNs.
|
682 |
+
Default is False.
|
683 |
+
|
684 |
+
See Also
|
685 |
+
--------
|
686 |
+
UnivariateSpline :
|
687 |
+
a smooth univariate spline to fit a given set of data points.
|
688 |
+
LSQUnivariateSpline :
|
689 |
+
a spline for which knots are user-selected
|
690 |
+
SmoothBivariateSpline :
|
691 |
+
a smoothing bivariate spline through the given points
|
692 |
+
LSQBivariateSpline :
|
693 |
+
a bivariate spline using weighted least-squares fitting
|
694 |
+
splrep :
|
695 |
+
a function to find the B-spline representation of a 1-D curve
|
696 |
+
splev :
|
697 |
+
a function to evaluate a B-spline or its derivatives
|
698 |
+
sproot :
|
699 |
+
a function to find the roots of a cubic B-spline
|
700 |
+
splint :
|
701 |
+
a function to evaluate the definite integral of a B-spline between two
|
702 |
+
given points
|
703 |
+
spalde :
|
704 |
+
a function to evaluate all derivatives of a B-spline
|
705 |
+
|
706 |
+
Notes
|
707 |
+
-----
|
708 |
+
The number of data points must be larger than the spline degree `k`.
|
709 |
+
|
710 |
+
Examples
|
711 |
+
--------
|
712 |
+
>>> import numpy as np
|
713 |
+
>>> import matplotlib.pyplot as plt
|
714 |
+
>>> from scipy.interpolate import InterpolatedUnivariateSpline
|
715 |
+
>>> rng = np.random.default_rng()
|
716 |
+
>>> x = np.linspace(-3, 3, 50)
|
717 |
+
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)
|
718 |
+
>>> spl = InterpolatedUnivariateSpline(x, y)
|
719 |
+
>>> plt.plot(x, y, 'ro', ms=5)
|
720 |
+
>>> xs = np.linspace(-3, 3, 1000)
|
721 |
+
>>> plt.plot(xs, spl(xs), 'g', lw=3, alpha=0.7)
|
722 |
+
>>> plt.show()
|
723 |
+
|
724 |
+
Notice that the ``spl(x)`` interpolates `y`:
|
725 |
+
|
726 |
+
>>> spl.get_residual()
|
727 |
+
0.0
|
728 |
+
|
729 |
+
"""
|
730 |
+
|
731 |
+
def __init__(self, x, y, w=None, bbox=[None]*2, k=3,
|
732 |
+
ext=0, check_finite=False):
|
733 |
+
|
734 |
+
x, y, w, bbox, self.ext = self.validate_input(x, y, w, bbox, k, None,
|
735 |
+
ext, check_finite)
|
736 |
+
if not np.all(diff(x) > 0.0):
|
737 |
+
raise ValueError('x must be strictly increasing')
|
738 |
+
|
739 |
+
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
|
740 |
+
self._data = dfitpack.fpcurf0(x, y, k, w=w, xb=bbox[0],
|
741 |
+
xe=bbox[1], s=0)
|
742 |
+
self._reset_class()
|
743 |
+
|
744 |
+
|
745 |
+
_fpchec_error_string = """The input parameters have been rejected by fpchec. \
|
746 |
+
This means that at least one of the following conditions is violated:
|
747 |
+
|
748 |
+
1) k+1 <= n-k-1 <= m
|
749 |
+
2) t(1) <= t(2) <= ... <= t(k+1)
|
750 |
+
t(n-k) <= t(n-k+1) <= ... <= t(n)
|
751 |
+
3) t(k+1) < t(k+2) < ... < t(n-k)
|
752 |
+
4) t(k+1) <= x(i) <= t(n-k)
|
753 |
+
5) The conditions specified by Schoenberg and Whitney must hold
|
754 |
+
for at least one subset of data points, i.e., there must be a
|
755 |
+
subset of data points y(j) such that
|
756 |
+
t(j) < y(j) < t(j+k+1), j=1,2,...,n-k-1
|
757 |
+
"""
|
758 |
+
|
759 |
+
|
760 |
+
class LSQUnivariateSpline(UnivariateSpline):
|
761 |
+
"""
|
762 |
+
1-D spline with explicit internal knots.
|
763 |
+
|
764 |
+
Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `t`
|
765 |
+
specifies the internal knots of the spline
|
766 |
+
|
767 |
+
Parameters
|
768 |
+
----------
|
769 |
+
x : (N,) array_like
|
770 |
+
Input dimension of data points -- must be increasing
|
771 |
+
y : (N,) array_like
|
772 |
+
Input dimension of data points
|
773 |
+
t : (M,) array_like
|
774 |
+
interior knots of the spline. Must be in ascending order and::
|
775 |
+
|
776 |
+
bbox[0] < t[0] < ... < t[-1] < bbox[-1]
|
777 |
+
|
778 |
+
w : (N,) array_like, optional
|
779 |
+
weights for spline fitting. Must be positive. If None (default),
|
780 |
+
weights are all 1.
|
781 |
+
bbox : (2,) array_like, optional
|
782 |
+
2-sequence specifying the boundary of the approximation interval. If
|
783 |
+
None (default), ``bbox = [x[0], x[-1]]``.
|
784 |
+
k : int, optional
|
785 |
+
Degree of the smoothing spline. Must be 1 <= `k` <= 5.
|
786 |
+
Default is `k` = 3, a cubic spline.
|
787 |
+
ext : int or str, optional
|
788 |
+
Controls the extrapolation mode for elements
|
789 |
+
not in the interval defined by the knot sequence.
|
790 |
+
|
791 |
+
* if ext=0 or 'extrapolate', return the extrapolated value.
|
792 |
+
* if ext=1 or 'zeros', return 0
|
793 |
+
* if ext=2 or 'raise', raise a ValueError
|
794 |
+
* if ext=3 of 'const', return the boundary value.
|
795 |
+
|
796 |
+
The default value is 0.
|
797 |
+
|
798 |
+
check_finite : bool, optional
|
799 |
+
Whether to check that the input arrays contain only finite numbers.
|
800 |
+
Disabling may give a performance gain, but may result in problems
|
801 |
+
(crashes, non-termination or non-sensical results) if the inputs
|
802 |
+
do contain infinities or NaNs.
|
803 |
+
Default is False.
|
804 |
+
|
805 |
+
Raises
|
806 |
+
------
|
807 |
+
ValueError
|
808 |
+
If the interior knots do not satisfy the Schoenberg-Whitney conditions
|
809 |
+
|
810 |
+
See Also
|
811 |
+
--------
|
812 |
+
UnivariateSpline :
|
813 |
+
a smooth univariate spline to fit a given set of data points.
|
814 |
+
InterpolatedUnivariateSpline :
|
815 |
+
a interpolating univariate spline for a given set of data points.
|
816 |
+
splrep :
|
817 |
+
a function to find the B-spline representation of a 1-D curve
|
818 |
+
splev :
|
819 |
+
a function to evaluate a B-spline or its derivatives
|
820 |
+
sproot :
|
821 |
+
a function to find the roots of a cubic B-spline
|
822 |
+
splint :
|
823 |
+
a function to evaluate the definite integral of a B-spline between two
|
824 |
+
given points
|
825 |
+
spalde :
|
826 |
+
a function to evaluate all derivatives of a B-spline
|
827 |
+
|
828 |
+
Notes
|
829 |
+
-----
|
830 |
+
The number of data points must be larger than the spline degree `k`.
|
831 |
+
|
832 |
+
Knots `t` must satisfy the Schoenberg-Whitney conditions,
|
833 |
+
i.e., there must be a subset of data points ``x[j]`` such that
|
834 |
+
``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``.
|
835 |
+
|
836 |
+
Examples
|
837 |
+
--------
|
838 |
+
>>> import numpy as np
|
839 |
+
>>> from scipy.interpolate import LSQUnivariateSpline, UnivariateSpline
|
840 |
+
>>> import matplotlib.pyplot as plt
|
841 |
+
>>> rng = np.random.default_rng()
|
842 |
+
>>> x = np.linspace(-3, 3, 50)
|
843 |
+
>>> y = np.exp(-x**2) + 0.1 * rng.standard_normal(50)
|
844 |
+
|
845 |
+
Fit a smoothing spline with a pre-defined internal knots:
|
846 |
+
|
847 |
+
>>> t = [-1, 0, 1]
|
848 |
+
>>> spl = LSQUnivariateSpline(x, y, t)
|
849 |
+
|
850 |
+
>>> xs = np.linspace(-3, 3, 1000)
|
851 |
+
>>> plt.plot(x, y, 'ro', ms=5)
|
852 |
+
>>> plt.plot(xs, spl(xs), 'g-', lw=3)
|
853 |
+
>>> plt.show()
|
854 |
+
|
855 |
+
Check the knot vector:
|
856 |
+
|
857 |
+
>>> spl.get_knots()
|
858 |
+
array([-3., -1., 0., 1., 3.])
|
859 |
+
|
860 |
+
Constructing lsq spline using the knots from another spline:
|
861 |
+
|
862 |
+
>>> x = np.arange(10)
|
863 |
+
>>> s = UnivariateSpline(x, x, s=0)
|
864 |
+
>>> s.get_knots()
|
865 |
+
array([ 0., 2., 3., 4., 5., 6., 7., 9.])
|
866 |
+
>>> knt = s.get_knots()
|
867 |
+
>>> s1 = LSQUnivariateSpline(x, x, knt[1:-1]) # Chop 1st and last knot
|
868 |
+
>>> s1.get_knots()
|
869 |
+
array([ 0., 2., 3., 4., 5., 6., 7., 9.])
|
870 |
+
|
871 |
+
"""
|
872 |
+
|
873 |
+
def __init__(self, x, y, t, w=None, bbox=[None]*2, k=3,
|
874 |
+
ext=0, check_finite=False):
|
875 |
+
|
876 |
+
x, y, w, bbox, self.ext = self.validate_input(x, y, w, bbox, k, None,
|
877 |
+
ext, check_finite)
|
878 |
+
if not np.all(diff(x) >= 0.0):
|
879 |
+
raise ValueError('x must be increasing')
|
880 |
+
|
881 |
+
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
|
882 |
+
xb = bbox[0]
|
883 |
+
xe = bbox[1]
|
884 |
+
if xb is None:
|
885 |
+
xb = x[0]
|
886 |
+
if xe is None:
|
887 |
+
xe = x[-1]
|
888 |
+
t = concatenate(([xb]*(k+1), t, [xe]*(k+1)))
|
889 |
+
n = len(t)
|
890 |
+
if not np.all(t[k+1:n-k]-t[k:n-k-1] > 0, axis=0):
|
891 |
+
raise ValueError('Interior knots t must satisfy '
|
892 |
+
'Schoenberg-Whitney conditions')
|
893 |
+
if not dfitpack.fpchec(x, t, k) == 0:
|
894 |
+
raise ValueError(_fpchec_error_string)
|
895 |
+
data = dfitpack.fpcurfm1(x, y, k, t, w=w, xb=xb, xe=xe)
|
896 |
+
self._data = data[:-3] + (None, None, data[-1])
|
897 |
+
self._reset_class()
|
898 |
+
|
899 |
+
|
900 |
+
# ############### Bivariate spline ####################
|
901 |
+
|
902 |
+
class _BivariateSplineBase:
|
903 |
+
""" Base class for Bivariate spline s(x,y) interpolation on the rectangle
|
904 |
+
[xb,xe] x [yb, ye] calculated from a given set of data points
|
905 |
+
(x,y,z).
|
906 |
+
|
907 |
+
See Also
|
908 |
+
--------
|
909 |
+
bisplrep :
|
910 |
+
a function to find a bivariate B-spline representation of a surface
|
911 |
+
bisplev :
|
912 |
+
a function to evaluate a bivariate B-spline and its derivatives
|
913 |
+
BivariateSpline :
|
914 |
+
a base class for bivariate splines.
|
915 |
+
SphereBivariateSpline :
|
916 |
+
a bivariate spline on a spherical grid
|
917 |
+
"""
|
918 |
+
|
919 |
+
@classmethod
|
920 |
+
def _from_tck(cls, tck):
|
921 |
+
"""Construct a spline object from given tck and degree"""
|
922 |
+
self = cls.__new__(cls)
|
923 |
+
if len(tck) != 5:
|
924 |
+
raise ValueError("tck should be a 5 element tuple of tx,"
|
925 |
+
" ty, c, kx, ky")
|
926 |
+
self.tck = tck[:3]
|
927 |
+
self.degrees = tck[3:]
|
928 |
+
return self
|
929 |
+
|
930 |
+
def get_residual(self):
|
931 |
+
""" Return weighted sum of squared residuals of the spline
|
932 |
+
approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0)
|
933 |
+
"""
|
934 |
+
return self.fp
|
935 |
+
|
936 |
+
def get_knots(self):
|
937 |
+
""" Return a tuple (tx,ty) where tx,ty contain knots positions
|
938 |
+
of the spline with respect to x-, y-variable, respectively.
|
939 |
+
The position of interior and additional knots are given as
|
940 |
+
t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e, respectively.
|
941 |
+
"""
|
942 |
+
return self.tck[:2]
|
943 |
+
|
944 |
+
def get_coeffs(self):
|
945 |
+
""" Return spline coefficients."""
|
946 |
+
return self.tck[2]
|
947 |
+
|
948 |
+
def __call__(self, x, y, dx=0, dy=0, grid=True):
|
949 |
+
"""
|
950 |
+
Evaluate the spline or its derivatives at given positions.
|
951 |
+
|
952 |
+
Parameters
|
953 |
+
----------
|
954 |
+
x, y : array_like
|
955 |
+
Input coordinates.
|
956 |
+
|
957 |
+
If `grid` is False, evaluate the spline at points ``(x[i],
|
958 |
+
y[i]), i=0, ..., len(x)-1``. Standard Numpy broadcasting
|
959 |
+
is obeyed.
|
960 |
+
|
961 |
+
If `grid` is True: evaluate spline at the grid points
|
962 |
+
defined by the coordinate arrays x, y. The arrays must be
|
963 |
+
sorted to increasing order.
|
964 |
+
|
965 |
+
The ordering of axes is consistent with
|
966 |
+
``np.meshgrid(..., indexing="ij")`` and inconsistent with the
|
967 |
+
default ordering ``np.meshgrid(..., indexing="xy")``.
|
968 |
+
dx : int
|
969 |
+
Order of x-derivative
|
970 |
+
|
971 |
+
.. versionadded:: 0.14.0
|
972 |
+
dy : int
|
973 |
+
Order of y-derivative
|
974 |
+
|
975 |
+
.. versionadded:: 0.14.0
|
976 |
+
grid : bool
|
977 |
+
Whether to evaluate the results on a grid spanned by the
|
978 |
+
input arrays, or at points specified by the input arrays.
|
979 |
+
|
980 |
+
.. versionadded:: 0.14.0
|
981 |
+
|
982 |
+
Examples
|
983 |
+
--------
|
984 |
+
Suppose that we want to bilinearly interpolate an exponentially decaying
|
985 |
+
function in 2 dimensions.
|
986 |
+
|
987 |
+
>>> import numpy as np
|
988 |
+
>>> from scipy.interpolate import RectBivariateSpline
|
989 |
+
|
990 |
+
We sample the function on a coarse grid. Note that the default indexing="xy"
|
991 |
+
of meshgrid would result in an unexpected (transposed) result after
|
992 |
+
interpolation.
|
993 |
+
|
994 |
+
>>> xarr = np.linspace(-3, 3, 100)
|
995 |
+
>>> yarr = np.linspace(-3, 3, 100)
|
996 |
+
>>> xgrid, ygrid = np.meshgrid(xarr, yarr, indexing="ij")
|
997 |
+
|
998 |
+
The function to interpolate decays faster along one axis than the other.
|
999 |
+
|
1000 |
+
>>> zdata = np.exp(-np.sqrt((xgrid / 2) ** 2 + ygrid**2))
|
1001 |
+
|
1002 |
+
Next we sample on a finer grid using interpolation (kx=ky=1 for bilinear).
|
1003 |
+
|
1004 |
+
>>> rbs = RectBivariateSpline(xarr, yarr, zdata, kx=1, ky=1)
|
1005 |
+
>>> xarr_fine = np.linspace(-3, 3, 200)
|
1006 |
+
>>> yarr_fine = np.linspace(-3, 3, 200)
|
1007 |
+
>>> xgrid_fine, ygrid_fine = np.meshgrid(xarr_fine, yarr_fine, indexing="ij")
|
1008 |
+
>>> zdata_interp = rbs(xgrid_fine, ygrid_fine, grid=False)
|
1009 |
+
|
1010 |
+
And check that the result agrees with the input by plotting both.
|
1011 |
+
|
1012 |
+
>>> import matplotlib.pyplot as plt
|
1013 |
+
>>> fig = plt.figure()
|
1014 |
+
>>> ax1 = fig.add_subplot(1, 2, 1, aspect="equal")
|
1015 |
+
>>> ax2 = fig.add_subplot(1, 2, 2, aspect="equal")
|
1016 |
+
>>> ax1.imshow(zdata)
|
1017 |
+
>>> ax2.imshow(zdata_interp)
|
1018 |
+
>>> plt.show()
|
1019 |
+
"""
|
1020 |
+
x = np.asarray(x)
|
1021 |
+
y = np.asarray(y)
|
1022 |
+
|
1023 |
+
tx, ty, c = self.tck[:3]
|
1024 |
+
kx, ky = self.degrees
|
1025 |
+
if grid:
|
1026 |
+
if x.size == 0 or y.size == 0:
|
1027 |
+
return np.zeros((x.size, y.size), dtype=self.tck[2].dtype)
|
1028 |
+
|
1029 |
+
if (x.size >= 2) and (not np.all(np.diff(x) >= 0.0)):
|
1030 |
+
raise ValueError("x must be strictly increasing when `grid` is True")
|
1031 |
+
if (y.size >= 2) and (not np.all(np.diff(y) >= 0.0)):
|
1032 |
+
raise ValueError("y must be strictly increasing when `grid` is True")
|
1033 |
+
|
1034 |
+
if dx or dy:
|
1035 |
+
z, ier = dfitpack.parder(tx, ty, c, kx, ky, dx, dy, x, y)
|
1036 |
+
if not ier == 0:
|
1037 |
+
raise ValueError("Error code returned by parder: %s" % ier)
|
1038 |
+
else:
|
1039 |
+
z, ier = dfitpack.bispev(tx, ty, c, kx, ky, x, y)
|
1040 |
+
if not ier == 0:
|
1041 |
+
raise ValueError("Error code returned by bispev: %s" % ier)
|
1042 |
+
else:
|
1043 |
+
# standard Numpy broadcasting
|
1044 |
+
if x.shape != y.shape:
|
1045 |
+
x, y = np.broadcast_arrays(x, y)
|
1046 |
+
|
1047 |
+
shape = x.shape
|
1048 |
+
x = x.ravel()
|
1049 |
+
y = y.ravel()
|
1050 |
+
|
1051 |
+
if x.size == 0 or y.size == 0:
|
1052 |
+
return np.zeros(shape, dtype=self.tck[2].dtype)
|
1053 |
+
|
1054 |
+
if dx or dy:
|
1055 |
+
z, ier = dfitpack.pardeu(tx, ty, c, kx, ky, dx, dy, x, y)
|
1056 |
+
if not ier == 0:
|
1057 |
+
raise ValueError("Error code returned by pardeu: %s" % ier)
|
1058 |
+
else:
|
1059 |
+
z, ier = dfitpack.bispeu(tx, ty, c, kx, ky, x, y)
|
1060 |
+
if not ier == 0:
|
1061 |
+
raise ValueError("Error code returned by bispeu: %s" % ier)
|
1062 |
+
|
1063 |
+
z = z.reshape(shape)
|
1064 |
+
return z
|
1065 |
+
|
1066 |
+
def partial_derivative(self, dx, dy):
|
1067 |
+
"""Construct a new spline representing a partial derivative of this
|
1068 |
+
spline.
|
1069 |
+
|
1070 |
+
Parameters
|
1071 |
+
----------
|
1072 |
+
dx, dy : int
|
1073 |
+
Orders of the derivative in x and y respectively. They must be
|
1074 |
+
non-negative integers and less than the respective degree of the
|
1075 |
+
original spline (self) in that direction (``kx``, ``ky``).
|
1076 |
+
|
1077 |
+
Returns
|
1078 |
+
-------
|
1079 |
+
spline :
|
1080 |
+
A new spline of degrees (``kx - dx``, ``ky - dy``) representing the
|
1081 |
+
derivative of this spline.
|
1082 |
+
|
1083 |
+
Notes
|
1084 |
+
-----
|
1085 |
+
|
1086 |
+
.. versionadded:: 1.9.0
|
1087 |
+
|
1088 |
+
"""
|
1089 |
+
if dx == 0 and dy == 0:
|
1090 |
+
return self
|
1091 |
+
else:
|
1092 |
+
kx, ky = self.degrees
|
1093 |
+
if not (dx >= 0 and dy >= 0):
|
1094 |
+
raise ValueError("order of derivative must be positive or"
|
1095 |
+
" zero")
|
1096 |
+
if not (dx < kx and dy < ky):
|
1097 |
+
raise ValueError("order of derivative must be less than"
|
1098 |
+
" degree of spline")
|
1099 |
+
tx, ty, c = self.tck[:3]
|
1100 |
+
newc, ier = dfitpack.pardtc(tx, ty, c, kx, ky, dx, dy)
|
1101 |
+
if ier != 0:
|
1102 |
+
# This should not happen under normal conditions.
|
1103 |
+
raise ValueError("Unexpected error code returned by"
|
1104 |
+
" pardtc: %d" % ier)
|
1105 |
+
nx = len(tx)
|
1106 |
+
ny = len(ty)
|
1107 |
+
newtx = tx[dx:nx - dx]
|
1108 |
+
newty = ty[dy:ny - dy]
|
1109 |
+
newkx, newky = kx - dx, ky - dy
|
1110 |
+
newclen = (nx - dx - kx - 1) * (ny - dy - ky - 1)
|
1111 |
+
return _DerivedBivariateSpline._from_tck((newtx, newty,
|
1112 |
+
newc[:newclen],
|
1113 |
+
newkx, newky))
|
1114 |
+
|
1115 |
+
|
1116 |
+
_surfit_messages = {1: """
|
1117 |
+
The required storage space exceeds the available storage space: nxest
|
1118 |
+
or nyest too small, or s too small.
|
1119 |
+
The weighted least-squares spline corresponds to the current set of
|
1120 |
+
knots.""",
|
1121 |
+
2: """
|
1122 |
+
A theoretically impossible result was found during the iteration
|
1123 |
+
process for finding a smoothing spline with fp = s: s too small or
|
1124 |
+
badly chosen eps.
|
1125 |
+
Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.""",
|
1126 |
+
3: """
|
1127 |
+
the maximal number of iterations maxit (set to 20 by the program)
|
1128 |
+
allowed for finding a smoothing spline with fp=s has been reached:
|
1129 |
+
s too small.
|
1130 |
+
Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.""",
|
1131 |
+
4: """
|
1132 |
+
No more knots can be added because the number of b-spline coefficients
|
1133 |
+
(nx-kx-1)*(ny-ky-1) already exceeds the number of data points m:
|
1134 |
+
either s or m too small.
|
1135 |
+
The weighted least-squares spline corresponds to the current set of
|
1136 |
+
knots.""",
|
1137 |
+
5: """
|
1138 |
+
No more knots can be added because the additional knot would (quasi)
|
1139 |
+
coincide with an old one: s too small or too large a weight to an
|
1140 |
+
inaccurate data point.
|
1141 |
+
The weighted least-squares spline corresponds to the current set of
|
1142 |
+
knots.""",
|
1143 |
+
10: """
|
1144 |
+
Error on entry, no approximation returned. The following conditions
|
1145 |
+
must hold:
|
1146 |
+
xb<=x[i]<=xe, yb<=y[i]<=ye, w[i]>0, i=0..m-1
|
1147 |
+
If iopt==-1, then
|
1148 |
+
xb<tx[kx+1]<tx[kx+2]<...<tx[nx-kx-2]<xe
|
1149 |
+
yb<ty[ky+1]<ty[ky+2]<...<ty[ny-ky-2]<ye""",
|
1150 |
+
-3: """
|
1151 |
+
The coefficients of the spline returned have been computed as the
|
1152 |
+
minimal norm least-squares solution of a (numerically) rank deficient
|
1153 |
+
system (deficiency=%i). If deficiency is large, the results may be
|
1154 |
+
inaccurate. Deficiency may strongly depend on the value of eps."""
|
1155 |
+
}
|
1156 |
+
|
1157 |
+
|
1158 |
+
class BivariateSpline(_BivariateSplineBase):
|
1159 |
+
"""
|
1160 |
+
Base class for bivariate splines.
|
1161 |
+
|
1162 |
+
This describes a spline ``s(x, y)`` of degrees ``kx`` and ``ky`` on
|
1163 |
+
the rectangle ``[xb, xe] * [yb, ye]`` calculated from a given set
|
1164 |
+
of data points ``(x, y, z)``.
|
1165 |
+
|
1166 |
+
This class is meant to be subclassed, not instantiated directly.
|
1167 |
+
To construct these splines, call either `SmoothBivariateSpline` or
|
1168 |
+
`LSQBivariateSpline` or `RectBivariateSpline`.
|
1169 |
+
|
1170 |
+
See Also
|
1171 |
+
--------
|
1172 |
+
UnivariateSpline :
|
1173 |
+
a smooth univariate spline to fit a given set of data points.
|
1174 |
+
SmoothBivariateSpline :
|
1175 |
+
a smoothing bivariate spline through the given points
|
1176 |
+
LSQBivariateSpline :
|
1177 |
+
a bivariate spline using weighted least-squares fitting
|
1178 |
+
RectSphereBivariateSpline :
|
1179 |
+
a bivariate spline over a rectangular mesh on a sphere
|
1180 |
+
SmoothSphereBivariateSpline :
|
1181 |
+
a smoothing bivariate spline in spherical coordinates
|
1182 |
+
LSQSphereBivariateSpline :
|
1183 |
+
a bivariate spline in spherical coordinates using weighted
|
1184 |
+
least-squares fitting
|
1185 |
+
RectBivariateSpline :
|
1186 |
+
a bivariate spline over a rectangular mesh.
|
1187 |
+
bisplrep :
|
1188 |
+
a function to find a bivariate B-spline representation of a surface
|
1189 |
+
bisplev :
|
1190 |
+
a function to evaluate a bivariate B-spline and its derivatives
|
1191 |
+
"""
|
1192 |
+
|
1193 |
+
def ev(self, xi, yi, dx=0, dy=0):
|
1194 |
+
"""
|
1195 |
+
Evaluate the spline at points
|
1196 |
+
|
1197 |
+
Returns the interpolated value at ``(xi[i], yi[i]),
|
1198 |
+
i=0,...,len(xi)-1``.
|
1199 |
+
|
1200 |
+
Parameters
|
1201 |
+
----------
|
1202 |
+
xi, yi : array_like
|
1203 |
+
Input coordinates. Standard Numpy broadcasting is obeyed.
|
1204 |
+
The ordering of axes is consistent with
|
1205 |
+
``np.meshgrid(..., indexing="ij")`` and inconsistent with the
|
1206 |
+
default ordering ``np.meshgrid(..., indexing="xy")``.
|
1207 |
+
dx : int, optional
|
1208 |
+
Order of x-derivative
|
1209 |
+
|
1210 |
+
.. versionadded:: 0.14.0
|
1211 |
+
dy : int, optional
|
1212 |
+
Order of y-derivative
|
1213 |
+
|
1214 |
+
.. versionadded:: 0.14.0
|
1215 |
+
|
1216 |
+
Examples
|
1217 |
+
--------
|
1218 |
+
Suppose that we want to bilinearly interpolate an exponentially decaying
|
1219 |
+
function in 2 dimensions.
|
1220 |
+
|
1221 |
+
>>> import numpy as np
|
1222 |
+
>>> from scipy.interpolate import RectBivariateSpline
|
1223 |
+
>>> def f(x, y):
|
1224 |
+
... return np.exp(-np.sqrt((x / 2) ** 2 + y**2))
|
1225 |
+
|
1226 |
+
We sample the function on a coarse grid and set up the interpolator. Note that
|
1227 |
+
the default ``indexing="xy"`` of meshgrid would result in an unexpected
|
1228 |
+
(transposed) result after interpolation.
|
1229 |
+
|
1230 |
+
>>> xarr = np.linspace(-3, 3, 21)
|
1231 |
+
>>> yarr = np.linspace(-3, 3, 21)
|
1232 |
+
>>> xgrid, ygrid = np.meshgrid(xarr, yarr, indexing="ij")
|
1233 |
+
>>> zdata = f(xgrid, ygrid)
|
1234 |
+
>>> rbs = RectBivariateSpline(xarr, yarr, zdata, kx=1, ky=1)
|
1235 |
+
|
1236 |
+
Next we sample the function along a diagonal slice through the coordinate space
|
1237 |
+
on a finer grid using interpolation.
|
1238 |
+
|
1239 |
+
>>> xinterp = np.linspace(-3, 3, 201)
|
1240 |
+
>>> yinterp = np.linspace(3, -3, 201)
|
1241 |
+
>>> zinterp = rbs.ev(xinterp, yinterp)
|
1242 |
+
|
1243 |
+
And check that the interpolation passes through the function evaluations as a
|
1244 |
+
function of the distance from the origin along the slice.
|
1245 |
+
|
1246 |
+
>>> import matplotlib.pyplot as plt
|
1247 |
+
>>> fig = plt.figure()
|
1248 |
+
>>> ax1 = fig.add_subplot(1, 1, 1)
|
1249 |
+
>>> ax1.plot(np.sqrt(xarr**2 + yarr**2), np.diag(zdata), "or")
|
1250 |
+
>>> ax1.plot(np.sqrt(xinterp**2 + yinterp**2), zinterp, "-b")
|
1251 |
+
>>> plt.show()
|
1252 |
+
"""
|
1253 |
+
return self.__call__(xi, yi, dx=dx, dy=dy, grid=False)
|
1254 |
+
|
1255 |
+
def integral(self, xa, xb, ya, yb):
|
1256 |
+
"""
|
1257 |
+
Evaluate the integral of the spline over area [xa,xb] x [ya,yb].
|
1258 |
+
|
1259 |
+
Parameters
|
1260 |
+
----------
|
1261 |
+
xa, xb : float
|
1262 |
+
The end-points of the x integration interval.
|
1263 |
+
ya, yb : float
|
1264 |
+
The end-points of the y integration interval.
|
1265 |
+
|
1266 |
+
Returns
|
1267 |
+
-------
|
1268 |
+
integ : float
|
1269 |
+
The value of the resulting integral.
|
1270 |
+
|
1271 |
+
"""
|
1272 |
+
tx, ty, c = self.tck[:3]
|
1273 |
+
kx, ky = self.degrees
|
1274 |
+
return dfitpack.dblint(tx, ty, c, kx, ky, xa, xb, ya, yb)
|
1275 |
+
|
1276 |
+
@staticmethod
|
1277 |
+
def _validate_input(x, y, z, w, kx, ky, eps):
|
1278 |
+
x, y, z = np.asarray(x), np.asarray(y), np.asarray(z)
|
1279 |
+
if not x.size == y.size == z.size:
|
1280 |
+
raise ValueError('x, y, and z should have a same length')
|
1281 |
+
|
1282 |
+
if w is not None:
|
1283 |
+
w = np.asarray(w)
|
1284 |
+
if x.size != w.size:
|
1285 |
+
raise ValueError('x, y, z, and w should have a same length')
|
1286 |
+
elif not np.all(w >= 0.0):
|
1287 |
+
raise ValueError('w should be positive')
|
1288 |
+
if (eps is not None) and (not 0.0 < eps < 1.0):
|
1289 |
+
raise ValueError('eps should be between (0, 1)')
|
1290 |
+
if not x.size >= (kx + 1) * (ky + 1):
|
1291 |
+
raise ValueError('The length of x, y and z should be at least'
|
1292 |
+
' (kx+1) * (ky+1)')
|
1293 |
+
return x, y, z, w
|
1294 |
+
|
1295 |
+
|
1296 |
+
class _DerivedBivariateSpline(_BivariateSplineBase):
|
1297 |
+
"""Bivariate spline constructed from the coefficients and knots of another
|
1298 |
+
spline.
|
1299 |
+
|
1300 |
+
Notes
|
1301 |
+
-----
|
1302 |
+
The class is not meant to be instantiated directly from the data to be
|
1303 |
+
interpolated or smoothed. As a result, its ``fp`` attribute and
|
1304 |
+
``get_residual`` method are inherited but overridden; ``AttributeError`` is
|
1305 |
+
raised when they are accessed.
|
1306 |
+
|
1307 |
+
The other inherited attributes can be used as usual.
|
1308 |
+
"""
|
1309 |
+
_invalid_why = ("is unavailable, because _DerivedBivariateSpline"
|
1310 |
+
" instance is not constructed from data that are to be"
|
1311 |
+
" interpolated or smoothed, but derived from the"
|
1312 |
+
" underlying knots and coefficients of another spline"
|
1313 |
+
" object")
|
1314 |
+
|
1315 |
+
@property
|
1316 |
+
def fp(self):
|
1317 |
+
raise AttributeError("attribute \"fp\" %s" % self._invalid_why)
|
1318 |
+
|
1319 |
+
def get_residual(self):
|
1320 |
+
raise AttributeError("method \"get_residual\" %s" % self._invalid_why)
|
1321 |
+
|
1322 |
+
|
1323 |
+
class SmoothBivariateSpline(BivariateSpline):
|
1324 |
+
"""
|
1325 |
+
Smooth bivariate spline approximation.
|
1326 |
+
|
1327 |
+
Parameters
|
1328 |
+
----------
|
1329 |
+
x, y, z : array_like
|
1330 |
+
1-D sequences of data points (order is not important).
|
1331 |
+
w : array_like, optional
|
1332 |
+
Positive 1-D sequence of weights, of same length as `x`, `y` and `z`.
|
1333 |
+
bbox : array_like, optional
|
1334 |
+
Sequence of length 4 specifying the boundary of the rectangular
|
1335 |
+
approximation domain. By default,
|
1336 |
+
``bbox=[min(x), max(x), min(y), max(y)]``.
|
1337 |
+
kx, ky : ints, optional
|
1338 |
+
Degrees of the bivariate spline. Default is 3.
|
1339 |
+
s : float, optional
|
1340 |
+
Positive smoothing factor defined for estimation condition:
|
1341 |
+
``sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s``
|
1342 |
+
Default ``s=len(w)`` which should be a good value if ``1/w[i]`` is an
|
1343 |
+
estimate of the standard deviation of ``z[i]``.
|
1344 |
+
eps : float, optional
|
1345 |
+
A threshold for determining the effective rank of an over-determined
|
1346 |
+
linear system of equations. `eps` should have a value within the open
|
1347 |
+
interval ``(0, 1)``, the default is 1e-16.
|
1348 |
+
|
1349 |
+
See Also
|
1350 |
+
--------
|
1351 |
+
BivariateSpline :
|
1352 |
+
a base class for bivariate splines.
|
1353 |
+
UnivariateSpline :
|
1354 |
+
a smooth univariate spline to fit a given set of data points.
|
1355 |
+
LSQBivariateSpline :
|
1356 |
+
a bivariate spline using weighted least-squares fitting
|
1357 |
+
RectSphereBivariateSpline :
|
1358 |
+
a bivariate spline over a rectangular mesh on a sphere
|
1359 |
+
SmoothSphereBivariateSpline :
|
1360 |
+
a smoothing bivariate spline in spherical coordinates
|
1361 |
+
LSQSphereBivariateSpline :
|
1362 |
+
a bivariate spline in spherical coordinates using weighted
|
1363 |
+
least-squares fitting
|
1364 |
+
RectBivariateSpline :
|
1365 |
+
a bivariate spline over a rectangular mesh
|
1366 |
+
bisplrep :
|
1367 |
+
a function to find a bivariate B-spline representation of a surface
|
1368 |
+
bisplev :
|
1369 |
+
a function to evaluate a bivariate B-spline and its derivatives
|
1370 |
+
|
1371 |
+
Notes
|
1372 |
+
-----
|
1373 |
+
The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``.
|
1374 |
+
|
1375 |
+
If the input data is such that input dimensions have incommensurate
|
1376 |
+
units and differ by many orders of magnitude, the interpolant may have
|
1377 |
+
numerical artifacts. Consider rescaling the data before interpolating.
|
1378 |
+
|
1379 |
+
This routine constructs spline knot vectors automatically via the FITPACK
|
1380 |
+
algorithm. The spline knots may be placed away from the data points. For
|
1381 |
+
some data sets, this routine may fail to construct an interpolating spline,
|
1382 |
+
even if one is requested via ``s=0`` parameter. In such situations, it is
|
1383 |
+
recommended to use `bisplrep` / `bisplev` directly instead of this routine
|
1384 |
+
and, if needed, increase the values of ``nxest`` and ``nyest`` parameters
|
1385 |
+
of `bisplrep`.
|
1386 |
+
|
1387 |
+
For linear interpolation, prefer `LinearNDInterpolator`.
|
1388 |
+
See ``https://gist.github.com/ev-br/8544371b40f414b7eaf3fe6217209bff``
|
1389 |
+
for discussion.
|
1390 |
+
|
1391 |
+
"""
|
1392 |
+
|
1393 |
+
def __init__(self, x, y, z, w=None, bbox=[None] * 4, kx=3, ky=3, s=None,
|
1394 |
+
eps=1e-16):
|
1395 |
+
|
1396 |
+
x, y, z, w = self._validate_input(x, y, z, w, kx, ky, eps)
|
1397 |
+
bbox = ravel(bbox)
|
1398 |
+
if not bbox.shape == (4,):
|
1399 |
+
raise ValueError('bbox shape should be (4,)')
|
1400 |
+
if s is not None and not s >= 0.0:
|
1401 |
+
raise ValueError("s should be s >= 0.0")
|
1402 |
+
|
1403 |
+
xb, xe, yb, ye = bbox
|
1404 |
+
nx, tx, ny, ty, c, fp, wrk1, ier = dfitpack.surfit_smth(x, y, z, w,
|
1405 |
+
xb, xe, yb,
|
1406 |
+
ye, kx, ky,
|
1407 |
+
s=s, eps=eps,
|
1408 |
+
lwrk2=1)
|
1409 |
+
if ier > 10: # lwrk2 was to small, re-run
|
1410 |
+
nx, tx, ny, ty, c, fp, wrk1, ier = dfitpack.surfit_smth(x, y, z, w,
|
1411 |
+
xb, xe, yb,
|
1412 |
+
ye, kx, ky,
|
1413 |
+
s=s,
|
1414 |
+
eps=eps,
|
1415 |
+
lwrk2=ier)
|
1416 |
+
if ier in [0, -1, -2]: # normal return
|
1417 |
+
pass
|
1418 |
+
else:
|
1419 |
+
message = _surfit_messages.get(ier, 'ier=%s' % (ier))
|
1420 |
+
warnings.warn(message, stacklevel=2)
|
1421 |
+
|
1422 |
+
self.fp = fp
|
1423 |
+
self.tck = tx[:nx], ty[:ny], c[:(nx-kx-1)*(ny-ky-1)]
|
1424 |
+
self.degrees = kx, ky
|
1425 |
+
|
1426 |
+
|
1427 |
+
class LSQBivariateSpline(BivariateSpline):
|
1428 |
+
"""
|
1429 |
+
Weighted least-squares bivariate spline approximation.
|
1430 |
+
|
1431 |
+
Parameters
|
1432 |
+
----------
|
1433 |
+
x, y, z : array_like
|
1434 |
+
1-D sequences of data points (order is not important).
|
1435 |
+
tx, ty : array_like
|
1436 |
+
Strictly ordered 1-D sequences of knots coordinates.
|
1437 |
+
w : array_like, optional
|
1438 |
+
Positive 1-D array of weights, of the same length as `x`, `y` and `z`.
|
1439 |
+
bbox : (4,) array_like, optional
|
1440 |
+
Sequence of length 4 specifying the boundary of the rectangular
|
1441 |
+
approximation domain. By default,
|
1442 |
+
``bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]``.
|
1443 |
+
kx, ky : ints, optional
|
1444 |
+
Degrees of the bivariate spline. Default is 3.
|
1445 |
+
eps : float, optional
|
1446 |
+
A threshold for determining the effective rank of an over-determined
|
1447 |
+
linear system of equations. `eps` should have a value within the open
|
1448 |
+
interval ``(0, 1)``, the default is 1e-16.
|
1449 |
+
|
1450 |
+
See Also
|
1451 |
+
--------
|
1452 |
+
BivariateSpline :
|
1453 |
+
a base class for bivariate splines.
|
1454 |
+
UnivariateSpline :
|
1455 |
+
a smooth univariate spline to fit a given set of data points.
|
1456 |
+
SmoothBivariateSpline :
|
1457 |
+
a smoothing bivariate spline through the given points
|
1458 |
+
RectSphereBivariateSpline :
|
1459 |
+
a bivariate spline over a rectangular mesh on a sphere
|
1460 |
+
SmoothSphereBivariateSpline :
|
1461 |
+
a smoothing bivariate spline in spherical coordinates
|
1462 |
+
LSQSphereBivariateSpline :
|
1463 |
+
a bivariate spline in spherical coordinates using weighted
|
1464 |
+
least-squares fitting
|
1465 |
+
RectBivariateSpline :
|
1466 |
+
a bivariate spline over a rectangular mesh.
|
1467 |
+
bisplrep :
|
1468 |
+
a function to find a bivariate B-spline representation of a surface
|
1469 |
+
bisplev :
|
1470 |
+
a function to evaluate a bivariate B-spline and its derivatives
|
1471 |
+
|
1472 |
+
Notes
|
1473 |
+
-----
|
1474 |
+
The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``.
|
1475 |
+
|
1476 |
+
If the input data is such that input dimensions have incommensurate
|
1477 |
+
units and differ by many orders of magnitude, the interpolant may have
|
1478 |
+
numerical artifacts. Consider rescaling the data before interpolating.
|
1479 |
+
|
1480 |
+
"""
|
1481 |
+
|
1482 |
+
def __init__(self, x, y, z, tx, ty, w=None, bbox=[None]*4, kx=3, ky=3,
|
1483 |
+
eps=None):
|
1484 |
+
|
1485 |
+
x, y, z, w = self._validate_input(x, y, z, w, kx, ky, eps)
|
1486 |
+
bbox = ravel(bbox)
|
1487 |
+
if not bbox.shape == (4,):
|
1488 |
+
raise ValueError('bbox shape should be (4,)')
|
1489 |
+
|
1490 |
+
nx = 2*kx+2+len(tx)
|
1491 |
+
ny = 2*ky+2+len(ty)
|
1492 |
+
# The Fortran subroutine "surfit" (called as dfitpack.surfit_lsq)
|
1493 |
+
# requires that the knot arrays passed as input should be "real
|
1494 |
+
# array(s) of dimension nmax" where "nmax" refers to the greater of nx
|
1495 |
+
# and ny. We pad the tx1/ty1 arrays here so that this is satisfied, and
|
1496 |
+
# slice them to the desired sizes upon return.
|
1497 |
+
nmax = max(nx, ny)
|
1498 |
+
tx1 = zeros((nmax,), float)
|
1499 |
+
ty1 = zeros((nmax,), float)
|
1500 |
+
tx1[kx+1:nx-kx-1] = tx
|
1501 |
+
ty1[ky+1:ny-ky-1] = ty
|
1502 |
+
|
1503 |
+
xb, xe, yb, ye = bbox
|
1504 |
+
tx1, ty1, c, fp, ier = dfitpack.surfit_lsq(x, y, z, nx, tx1, ny, ty1,
|
1505 |
+
w, xb, xe, yb, ye,
|
1506 |
+
kx, ky, eps, lwrk2=1)
|
1507 |
+
if ier > 10:
|
1508 |
+
tx1, ty1, c, fp, ier = dfitpack.surfit_lsq(x, y, z,
|
1509 |
+
nx, tx1, ny, ty1, w,
|
1510 |
+
xb, xe, yb, ye,
|
1511 |
+
kx, ky, eps, lwrk2=ier)
|
1512 |
+
if ier in [0, -1, -2]: # normal return
|
1513 |
+
pass
|
1514 |
+
else:
|
1515 |
+
if ier < -2:
|
1516 |
+
deficiency = (nx-kx-1)*(ny-ky-1)+ier
|
1517 |
+
message = _surfit_messages.get(-3) % (deficiency)
|
1518 |
+
else:
|
1519 |
+
message = _surfit_messages.get(ier, 'ier=%s' % (ier))
|
1520 |
+
warnings.warn(message, stacklevel=2)
|
1521 |
+
self.fp = fp
|
1522 |
+
self.tck = tx1[:nx], ty1[:ny], c
|
1523 |
+
self.degrees = kx, ky
|
1524 |
+
|
1525 |
+
|
1526 |
+
class RectBivariateSpline(BivariateSpline):
|
1527 |
+
"""
|
1528 |
+
Bivariate spline approximation over a rectangular mesh.
|
1529 |
+
|
1530 |
+
Can be used for both smoothing and interpolating data.
|
1531 |
+
|
1532 |
+
Parameters
|
1533 |
+
----------
|
1534 |
+
x,y : array_like
|
1535 |
+
1-D arrays of coordinates in strictly ascending order.
|
1536 |
+
Evaluated points outside the data range will be extrapolated.
|
1537 |
+
z : array_like
|
1538 |
+
2-D array of data with shape (x.size,y.size).
|
1539 |
+
bbox : array_like, optional
|
1540 |
+
Sequence of length 4 specifying the boundary of the rectangular
|
1541 |
+
approximation domain, which means the start and end spline knots of
|
1542 |
+
each dimension are set by these values. By default,
|
1543 |
+
``bbox=[min(x), max(x), min(y), max(y)]``.
|
1544 |
+
kx, ky : ints, optional
|
1545 |
+
Degrees of the bivariate spline. Default is 3.
|
1546 |
+
s : float, optional
|
1547 |
+
Positive smoothing factor defined for estimation condition:
|
1548 |
+
``sum((z[i]-f(x[i], y[i]))**2, axis=0) <= s`` where f is a spline
|
1549 |
+
function. Default is ``s=0``, which is for interpolation.
|
1550 |
+
|
1551 |
+
See Also
|
1552 |
+
--------
|
1553 |
+
BivariateSpline :
|
1554 |
+
a base class for bivariate splines.
|
1555 |
+
UnivariateSpline :
|
1556 |
+
a smooth univariate spline to fit a given set of data points.
|
1557 |
+
SmoothBivariateSpline :
|
1558 |
+
a smoothing bivariate spline through the given points
|
1559 |
+
LSQBivariateSpline :
|
1560 |
+
a bivariate spline using weighted least-squares fitting
|
1561 |
+
RectSphereBivariateSpline :
|
1562 |
+
a bivariate spline over a rectangular mesh on a sphere
|
1563 |
+
SmoothSphereBivariateSpline :
|
1564 |
+
a smoothing bivariate spline in spherical coordinates
|
1565 |
+
LSQSphereBivariateSpline :
|
1566 |
+
a bivariate spline in spherical coordinates using weighted
|
1567 |
+
least-squares fitting
|
1568 |
+
bisplrep :
|
1569 |
+
a function to find a bivariate B-spline representation of a surface
|
1570 |
+
bisplev :
|
1571 |
+
a function to evaluate a bivariate B-spline and its derivatives
|
1572 |
+
|
1573 |
+
Notes
|
1574 |
+
-----
|
1575 |
+
|
1576 |
+
If the input data is such that input dimensions have incommensurate
|
1577 |
+
units and differ by many orders of magnitude, the interpolant may have
|
1578 |
+
numerical artifacts. Consider rescaling the data before interpolating.
|
1579 |
+
|
1580 |
+
"""
|
1581 |
+
|
1582 |
+
def __init__(self, x, y, z, bbox=[None] * 4, kx=3, ky=3, s=0):
|
1583 |
+
x, y, bbox = ravel(x), ravel(y), ravel(bbox)
|
1584 |
+
z = np.asarray(z)
|
1585 |
+
if not np.all(diff(x) > 0.0):
|
1586 |
+
raise ValueError('x must be strictly increasing')
|
1587 |
+
if not np.all(diff(y) > 0.0):
|
1588 |
+
raise ValueError('y must be strictly increasing')
|
1589 |
+
if not x.size == z.shape[0]:
|
1590 |
+
raise ValueError('x dimension of z must have same number of '
|
1591 |
+
'elements as x')
|
1592 |
+
if not y.size == z.shape[1]:
|
1593 |
+
raise ValueError('y dimension of z must have same number of '
|
1594 |
+
'elements as y')
|
1595 |
+
if not bbox.shape == (4,):
|
1596 |
+
raise ValueError('bbox shape should be (4,)')
|
1597 |
+
if s is not None and not s >= 0.0:
|
1598 |
+
raise ValueError("s should be s >= 0.0")
|
1599 |
+
|
1600 |
+
z = ravel(z)
|
1601 |
+
xb, xe, yb, ye = bbox
|
1602 |
+
nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth(x, y, z, xb, xe, yb,
|
1603 |
+
ye, kx, ky, s)
|
1604 |
+
|
1605 |
+
if ier not in [0, -1, -2]:
|
1606 |
+
msg = _surfit_messages.get(ier, 'ier=%s' % (ier))
|
1607 |
+
raise ValueError(msg)
|
1608 |
+
|
1609 |
+
self.fp = fp
|
1610 |
+
self.tck = tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)]
|
1611 |
+
self.degrees = kx, ky
|
1612 |
+
|
1613 |
+
|
1614 |
+
_spherefit_messages = _surfit_messages.copy()
|
1615 |
+
_spherefit_messages[10] = """
|
1616 |
+
ERROR. On entry, the input data are controlled on validity. The following
|
1617 |
+
restrictions must be satisfied:
|
1618 |
+
-1<=iopt<=1, m>=2, ntest>=8 ,npest >=8, 0<eps<1,
|
1619 |
+
0<=teta(i)<=pi, 0<=phi(i)<=2*pi, w(i)>0, i=1,...,m
|
1620 |
+
lwrk1 >= 185+52*v+10*u+14*u*v+8*(u-1)*v**2+8*m
|
1621 |
+
kwrk >= m+(ntest-7)*(npest-7)
|
1622 |
+
if iopt=-1: 8<=nt<=ntest , 9<=np<=npest
|
1623 |
+
0<tt(5)<tt(6)<...<tt(nt-4)<pi
|
1624 |
+
0<tp(5)<tp(6)<...<tp(np-4)<2*pi
|
1625 |
+
if iopt>=0: s>=0
|
1626 |
+
if one of these conditions is found to be violated,control
|
1627 |
+
is immediately repassed to the calling program. in that
|
1628 |
+
case there is no approximation returned."""
|
1629 |
+
_spherefit_messages[-3] = """
|
1630 |
+
WARNING. The coefficients of the spline returned have been computed as the
|
1631 |
+
minimal norm least-squares solution of a (numerically) rank
|
1632 |
+
deficient system (deficiency=%i, rank=%i). Especially if the rank
|
1633 |
+
deficiency, which is computed by 6+(nt-8)*(np-7)+ier, is large,
|
1634 |
+
the results may be inaccurate. They could also seriously depend on
|
1635 |
+
the value of eps."""
|
1636 |
+
|
1637 |
+
|
1638 |
+
class SphereBivariateSpline(_BivariateSplineBase):
|
1639 |
+
"""
|
1640 |
+
Bivariate spline s(x,y) of degrees 3 on a sphere, calculated from a
|
1641 |
+
given set of data points (theta,phi,r).
|
1642 |
+
|
1643 |
+
.. versionadded:: 0.11.0
|
1644 |
+
|
1645 |
+
See Also
|
1646 |
+
--------
|
1647 |
+
bisplrep :
|
1648 |
+
a function to find a bivariate B-spline representation of a surface
|
1649 |
+
bisplev :
|
1650 |
+
a function to evaluate a bivariate B-spline and its derivatives
|
1651 |
+
UnivariateSpline :
|
1652 |
+
a smooth univariate spline to fit a given set of data points.
|
1653 |
+
SmoothBivariateSpline :
|
1654 |
+
a smoothing bivariate spline through the given points
|
1655 |
+
LSQUnivariateSpline :
|
1656 |
+
a univariate spline using weighted least-squares fitting
|
1657 |
+
"""
|
1658 |
+
|
1659 |
+
def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True):
|
1660 |
+
"""
|
1661 |
+
Evaluate the spline or its derivatives at given positions.
|
1662 |
+
|
1663 |
+
Parameters
|
1664 |
+
----------
|
1665 |
+
theta, phi : array_like
|
1666 |
+
Input coordinates.
|
1667 |
+
|
1668 |
+
If `grid` is False, evaluate the spline at points
|
1669 |
+
``(theta[i], phi[i]), i=0, ..., len(x)-1``. Standard
|
1670 |
+
Numpy broadcasting is obeyed.
|
1671 |
+
|
1672 |
+
If `grid` is True: evaluate spline at the grid points
|
1673 |
+
defined by the coordinate arrays theta, phi. The arrays
|
1674 |
+
must be sorted to increasing order.
|
1675 |
+
The ordering of axes is consistent with
|
1676 |
+
``np.meshgrid(..., indexing="ij")`` and inconsistent with the
|
1677 |
+
default ordering ``np.meshgrid(..., indexing="xy")``.
|
1678 |
+
dtheta : int, optional
|
1679 |
+
Order of theta-derivative
|
1680 |
+
|
1681 |
+
.. versionadded:: 0.14.0
|
1682 |
+
dphi : int
|
1683 |
+
Order of phi-derivative
|
1684 |
+
|
1685 |
+
.. versionadded:: 0.14.0
|
1686 |
+
grid : bool
|
1687 |
+
Whether to evaluate the results on a grid spanned by the
|
1688 |
+
input arrays, or at points specified by the input arrays.
|
1689 |
+
|
1690 |
+
.. versionadded:: 0.14.0
|
1691 |
+
|
1692 |
+
Examples
|
1693 |
+
--------
|
1694 |
+
|
1695 |
+
Suppose that we want to use splines to interpolate a bivariate function on a
|
1696 |
+
sphere. The value of the function is known on a grid of longitudes and
|
1697 |
+
colatitudes.
|
1698 |
+
|
1699 |
+
>>> import numpy as np
|
1700 |
+
>>> from scipy.interpolate import RectSphereBivariateSpline
|
1701 |
+
>>> def f(theta, phi):
|
1702 |
+
... return np.sin(theta) * np.cos(phi)
|
1703 |
+
|
1704 |
+
We evaluate the function on the grid. Note that the default indexing="xy"
|
1705 |
+
of meshgrid would result in an unexpected (transposed) result after
|
1706 |
+
interpolation.
|
1707 |
+
|
1708 |
+
>>> thetaarr = np.linspace(0, np.pi, 22)[1:-1]
|
1709 |
+
>>> phiarr = np.linspace(0, 2 * np.pi, 21)[:-1]
|
1710 |
+
>>> thetagrid, phigrid = np.meshgrid(thetaarr, phiarr, indexing="ij")
|
1711 |
+
>>> zdata = f(thetagrid, phigrid)
|
1712 |
+
|
1713 |
+
We next set up the interpolator and use it to evaluate the function
|
1714 |
+
on a finer grid.
|
1715 |
+
|
1716 |
+
>>> rsbs = RectSphereBivariateSpline(thetaarr, phiarr, zdata)
|
1717 |
+
>>> thetaarr_fine = np.linspace(0, np.pi, 200)
|
1718 |
+
>>> phiarr_fine = np.linspace(0, 2 * np.pi, 200)
|
1719 |
+
>>> zdata_fine = rsbs(thetaarr_fine, phiarr_fine)
|
1720 |
+
|
1721 |
+
Finally we plot the coarsly-sampled input data alongside the
|
1722 |
+
finely-sampled interpolated data to check that they agree.
|
1723 |
+
|
1724 |
+
>>> import matplotlib.pyplot as plt
|
1725 |
+
>>> fig = plt.figure()
|
1726 |
+
>>> ax1 = fig.add_subplot(1, 2, 1)
|
1727 |
+
>>> ax2 = fig.add_subplot(1, 2, 2)
|
1728 |
+
>>> ax1.imshow(zdata)
|
1729 |
+
>>> ax2.imshow(zdata_fine)
|
1730 |
+
>>> plt.show()
|
1731 |
+
"""
|
1732 |
+
theta = np.asarray(theta)
|
1733 |
+
phi = np.asarray(phi)
|
1734 |
+
|
1735 |
+
if theta.size > 0 and (theta.min() < 0. or theta.max() > np.pi):
|
1736 |
+
raise ValueError("requested theta out of bounds.")
|
1737 |
+
|
1738 |
+
return _BivariateSplineBase.__call__(self, theta, phi,
|
1739 |
+
dx=dtheta, dy=dphi, grid=grid)
|
1740 |
+
|
1741 |
+
def ev(self, theta, phi, dtheta=0, dphi=0):
|
1742 |
+
"""
|
1743 |
+
Evaluate the spline at points
|
1744 |
+
|
1745 |
+
Returns the interpolated value at ``(theta[i], phi[i]),
|
1746 |
+
i=0,...,len(theta)-1``.
|
1747 |
+
|
1748 |
+
Parameters
|
1749 |
+
----------
|
1750 |
+
theta, phi : array_like
|
1751 |
+
Input coordinates. Standard Numpy broadcasting is obeyed.
|
1752 |
+
The ordering of axes is consistent with
|
1753 |
+
np.meshgrid(..., indexing="ij") and inconsistent with the
|
1754 |
+
default ordering np.meshgrid(..., indexing="xy").
|
1755 |
+
dtheta : int, optional
|
1756 |
+
Order of theta-derivative
|
1757 |
+
|
1758 |
+
.. versionadded:: 0.14.0
|
1759 |
+
dphi : int, optional
|
1760 |
+
Order of phi-derivative
|
1761 |
+
|
1762 |
+
.. versionadded:: 0.14.0
|
1763 |
+
|
1764 |
+
Examples
|
1765 |
+
--------
|
1766 |
+
Suppose that we want to use splines to interpolate a bivariate function on a
|
1767 |
+
sphere. The value of the function is known on a grid of longitudes and
|
1768 |
+
colatitudes.
|
1769 |
+
|
1770 |
+
>>> import numpy as np
|
1771 |
+
>>> from scipy.interpolate import RectSphereBivariateSpline
|
1772 |
+
>>> def f(theta, phi):
|
1773 |
+
... return np.sin(theta) * np.cos(phi)
|
1774 |
+
|
1775 |
+
We evaluate the function on the grid. Note that the default indexing="xy"
|
1776 |
+
of meshgrid would result in an unexpected (transposed) result after
|
1777 |
+
interpolation.
|
1778 |
+
|
1779 |
+
>>> thetaarr = np.linspace(0, np.pi, 22)[1:-1]
|
1780 |
+
>>> phiarr = np.linspace(0, 2 * np.pi, 21)[:-1]
|
1781 |
+
>>> thetagrid, phigrid = np.meshgrid(thetaarr, phiarr, indexing="ij")
|
1782 |
+
>>> zdata = f(thetagrid, phigrid)
|
1783 |
+
|
1784 |
+
We next set up the interpolator and use it to evaluate the function
|
1785 |
+
at points not on the original grid.
|
1786 |
+
|
1787 |
+
>>> rsbs = RectSphereBivariateSpline(thetaarr, phiarr, zdata)
|
1788 |
+
>>> thetainterp = np.linspace(thetaarr[0], thetaarr[-1], 200)
|
1789 |
+
>>> phiinterp = np.linspace(phiarr[0], phiarr[-1], 200)
|
1790 |
+
>>> zinterp = rsbs.ev(thetainterp, phiinterp)
|
1791 |
+
|
1792 |
+
Finally we plot the original data for a diagonal slice through the
|
1793 |
+
initial grid, and the spline approximation along the same slice.
|
1794 |
+
|
1795 |
+
>>> import matplotlib.pyplot as plt
|
1796 |
+
>>> fig = plt.figure()
|
1797 |
+
>>> ax1 = fig.add_subplot(1, 1, 1)
|
1798 |
+
>>> ax1.plot(np.sin(thetaarr) * np.sin(phiarr), np.diag(zdata), "or")
|
1799 |
+
>>> ax1.plot(np.sin(thetainterp) * np.sin(phiinterp), zinterp, "-b")
|
1800 |
+
>>> plt.show()
|
1801 |
+
"""
|
1802 |
+
return self.__call__(theta, phi, dtheta=dtheta, dphi=dphi, grid=False)
|
1803 |
+
|
1804 |
+
|
1805 |
+
class SmoothSphereBivariateSpline(SphereBivariateSpline):
|
1806 |
+
"""
|
1807 |
+
Smooth bivariate spline approximation in spherical coordinates.
|
1808 |
+
|
1809 |
+
.. versionadded:: 0.11.0
|
1810 |
+
|
1811 |
+
Parameters
|
1812 |
+
----------
|
1813 |
+
theta, phi, r : array_like
|
1814 |
+
1-D sequences of data points (order is not important). Coordinates
|
1815 |
+
must be given in radians. Theta must lie within the interval
|
1816 |
+
``[0, pi]``, and phi must lie within the interval ``[0, 2pi]``.
|
1817 |
+
w : array_like, optional
|
1818 |
+
Positive 1-D sequence of weights.
|
1819 |
+
s : float, optional
|
1820 |
+
Positive smoothing factor defined for estimation condition:
|
1821 |
+
``sum((w(i)*(r(i) - s(theta(i), phi(i))))**2, axis=0) <= s``
|
1822 |
+
Default ``s=len(w)`` which should be a good value if ``1/w[i]`` is an
|
1823 |
+
estimate of the standard deviation of ``r[i]``.
|
1824 |
+
eps : float, optional
|
1825 |
+
A threshold for determining the effective rank of an over-determined
|
1826 |
+
linear system of equations. `eps` should have a value within the open
|
1827 |
+
interval ``(0, 1)``, the default is 1e-16.
|
1828 |
+
|
1829 |
+
See Also
|
1830 |
+
--------
|
1831 |
+
BivariateSpline :
|
1832 |
+
a base class for bivariate splines.
|
1833 |
+
UnivariateSpline :
|
1834 |
+
a smooth univariate spline to fit a given set of data points.
|
1835 |
+
SmoothBivariateSpline :
|
1836 |
+
a smoothing bivariate spline through the given points
|
1837 |
+
LSQBivariateSpline :
|
1838 |
+
a bivariate spline using weighted least-squares fitting
|
1839 |
+
RectSphereBivariateSpline :
|
1840 |
+
a bivariate spline over a rectangular mesh on a sphere
|
1841 |
+
LSQSphereBivariateSpline :
|
1842 |
+
a bivariate spline in spherical coordinates using weighted
|
1843 |
+
least-squares fitting
|
1844 |
+
RectBivariateSpline :
|
1845 |
+
a bivariate spline over a rectangular mesh.
|
1846 |
+
bisplrep :
|
1847 |
+
a function to find a bivariate B-spline representation of a surface
|
1848 |
+
bisplev :
|
1849 |
+
a function to evaluate a bivariate B-spline and its derivatives
|
1850 |
+
|
1851 |
+
Notes
|
1852 |
+
-----
|
1853 |
+
For more information, see the FITPACK_ site about this function.
|
1854 |
+
|
1855 |
+
.. _FITPACK: http://www.netlib.org/dierckx/sphere.f
|
1856 |
+
|
1857 |
+
Examples
|
1858 |
+
--------
|
1859 |
+
Suppose we have global data on a coarse grid (the input data does not
|
1860 |
+
have to be on a grid):
|
1861 |
+
|
1862 |
+
>>> import numpy as np
|
1863 |
+
>>> theta = np.linspace(0., np.pi, 7)
|
1864 |
+
>>> phi = np.linspace(0., 2*np.pi, 9)
|
1865 |
+
>>> data = np.empty((theta.shape[0], phi.shape[0]))
|
1866 |
+
>>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0.
|
1867 |
+
>>> data[1:-1,1], data[1:-1,-1] = 1., 1.
|
1868 |
+
>>> data[1,1:-1], data[-2,1:-1] = 1., 1.
|
1869 |
+
>>> data[2:-2,2], data[2:-2,-2] = 2., 2.
|
1870 |
+
>>> data[2,2:-2], data[-3,2:-2] = 2., 2.
|
1871 |
+
>>> data[3,3:-2] = 3.
|
1872 |
+
>>> data = np.roll(data, 4, 1)
|
1873 |
+
|
1874 |
+
We need to set up the interpolator object
|
1875 |
+
|
1876 |
+
>>> lats, lons = np.meshgrid(theta, phi)
|
1877 |
+
>>> from scipy.interpolate import SmoothSphereBivariateSpline
|
1878 |
+
>>> lut = SmoothSphereBivariateSpline(lats.ravel(), lons.ravel(),
|
1879 |
+
... data.T.ravel(), s=3.5)
|
1880 |
+
|
1881 |
+
As a first test, we'll see what the algorithm returns when run on the
|
1882 |
+
input coordinates
|
1883 |
+
|
1884 |
+
>>> data_orig = lut(theta, phi)
|
1885 |
+
|
1886 |
+
Finally we interpolate the data to a finer grid
|
1887 |
+
|
1888 |
+
>>> fine_lats = np.linspace(0., np.pi, 70)
|
1889 |
+
>>> fine_lons = np.linspace(0., 2 * np.pi, 90)
|
1890 |
+
|
1891 |
+
>>> data_smth = lut(fine_lats, fine_lons)
|
1892 |
+
|
1893 |
+
>>> import matplotlib.pyplot as plt
|
1894 |
+
>>> fig = plt.figure()
|
1895 |
+
>>> ax1 = fig.add_subplot(131)
|
1896 |
+
>>> ax1.imshow(data, interpolation='nearest')
|
1897 |
+
>>> ax2 = fig.add_subplot(132)
|
1898 |
+
>>> ax2.imshow(data_orig, interpolation='nearest')
|
1899 |
+
>>> ax3 = fig.add_subplot(133)
|
1900 |
+
>>> ax3.imshow(data_smth, interpolation='nearest')
|
1901 |
+
>>> plt.show()
|
1902 |
+
|
1903 |
+
"""
|
1904 |
+
|
1905 |
+
def __init__(self, theta, phi, r, w=None, s=0., eps=1E-16):
|
1906 |
+
|
1907 |
+
theta, phi, r = np.asarray(theta), np.asarray(phi), np.asarray(r)
|
1908 |
+
|
1909 |
+
# input validation
|
1910 |
+
if not ((0.0 <= theta).all() and (theta <= np.pi).all()):
|
1911 |
+
raise ValueError('theta should be between [0, pi]')
|
1912 |
+
if not ((0.0 <= phi).all() and (phi <= 2.0 * np.pi).all()):
|
1913 |
+
raise ValueError('phi should be between [0, 2pi]')
|
1914 |
+
if w is not None:
|
1915 |
+
w = np.asarray(w)
|
1916 |
+
if not (w >= 0.0).all():
|
1917 |
+
raise ValueError('w should be positive')
|
1918 |
+
if not s >= 0.0:
|
1919 |
+
raise ValueError('s should be positive')
|
1920 |
+
if not 0.0 < eps < 1.0:
|
1921 |
+
raise ValueError('eps should be between (0, 1)')
|
1922 |
+
|
1923 |
+
nt_, tt_, np_, tp_, c, fp, ier = dfitpack.spherfit_smth(theta, phi,
|
1924 |
+
r, w=w, s=s,
|
1925 |
+
eps=eps)
|
1926 |
+
if ier not in [0, -1, -2]:
|
1927 |
+
message = _spherefit_messages.get(ier, 'ier=%s' % (ier))
|
1928 |
+
raise ValueError(message)
|
1929 |
+
|
1930 |
+
self.fp = fp
|
1931 |
+
self.tck = tt_[:nt_], tp_[:np_], c[:(nt_ - 4) * (np_ - 4)]
|
1932 |
+
self.degrees = (3, 3)
|
1933 |
+
|
1934 |
+
def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True):
|
1935 |
+
|
1936 |
+
theta = np.asarray(theta)
|
1937 |
+
phi = np.asarray(phi)
|
1938 |
+
|
1939 |
+
if phi.size > 0 and (phi.min() < 0. or phi.max() > 2. * np.pi):
|
1940 |
+
raise ValueError("requested phi out of bounds.")
|
1941 |
+
|
1942 |
+
return SphereBivariateSpline.__call__(self, theta, phi, dtheta=dtheta,
|
1943 |
+
dphi=dphi, grid=grid)
|
1944 |
+
|
1945 |
+
|
1946 |
+
class LSQSphereBivariateSpline(SphereBivariateSpline):
|
1947 |
+
"""
|
1948 |
+
Weighted least-squares bivariate spline approximation in spherical
|
1949 |
+
coordinates.
|
1950 |
+
|
1951 |
+
Determines a smoothing bicubic spline according to a given
|
1952 |
+
set of knots in the `theta` and `phi` directions.
|
1953 |
+
|
1954 |
+
.. versionadded:: 0.11.0
|
1955 |
+
|
1956 |
+
Parameters
|
1957 |
+
----------
|
1958 |
+
theta, phi, r : array_like
|
1959 |
+
1-D sequences of data points (order is not important). Coordinates
|
1960 |
+
must be given in radians. Theta must lie within the interval
|
1961 |
+
``[0, pi]``, and phi must lie within the interval ``[0, 2pi]``.
|
1962 |
+
tt, tp : array_like
|
1963 |
+
Strictly ordered 1-D sequences of knots coordinates.
|
1964 |
+
Coordinates must satisfy ``0 < tt[i] < pi``, ``0 < tp[i] < 2*pi``.
|
1965 |
+
w : array_like, optional
|
1966 |
+
Positive 1-D sequence of weights, of the same length as `theta`, `phi`
|
1967 |
+
and `r`.
|
1968 |
+
eps : float, optional
|
1969 |
+
A threshold for determining the effective rank of an over-determined
|
1970 |
+
linear system of equations. `eps` should have a value within the
|
1971 |
+
open interval ``(0, 1)``, the default is 1e-16.
|
1972 |
+
|
1973 |
+
See Also
|
1974 |
+
--------
|
1975 |
+
BivariateSpline :
|
1976 |
+
a base class for bivariate splines.
|
1977 |
+
UnivariateSpline :
|
1978 |
+
a smooth univariate spline to fit a given set of data points.
|
1979 |
+
SmoothBivariateSpline :
|
1980 |
+
a smoothing bivariate spline through the given points
|
1981 |
+
LSQBivariateSpline :
|
1982 |
+
a bivariate spline using weighted least-squares fitting
|
1983 |
+
RectSphereBivariateSpline :
|
1984 |
+
a bivariate spline over a rectangular mesh on a sphere
|
1985 |
+
SmoothSphereBivariateSpline :
|
1986 |
+
a smoothing bivariate spline in spherical coordinates
|
1987 |
+
RectBivariateSpline :
|
1988 |
+
a bivariate spline over a rectangular mesh.
|
1989 |
+
bisplrep :
|
1990 |
+
a function to find a bivariate B-spline representation of a surface
|
1991 |
+
bisplev :
|
1992 |
+
a function to evaluate a bivariate B-spline and its derivatives
|
1993 |
+
|
1994 |
+
Notes
|
1995 |
+
-----
|
1996 |
+
For more information, see the FITPACK_ site about this function.
|
1997 |
+
|
1998 |
+
.. _FITPACK: http://www.netlib.org/dierckx/sphere.f
|
1999 |
+
|
2000 |
+
Examples
|
2001 |
+
--------
|
2002 |
+
Suppose we have global data on a coarse grid (the input data does not
|
2003 |
+
have to be on a grid):
|
2004 |
+
|
2005 |
+
>>> from scipy.interpolate import LSQSphereBivariateSpline
|
2006 |
+
>>> import numpy as np
|
2007 |
+
>>> import matplotlib.pyplot as plt
|
2008 |
+
|
2009 |
+
>>> theta = np.linspace(0, np.pi, num=7)
|
2010 |
+
>>> phi = np.linspace(0, 2*np.pi, num=9)
|
2011 |
+
>>> data = np.empty((theta.shape[0], phi.shape[0]))
|
2012 |
+
>>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0.
|
2013 |
+
>>> data[1:-1,1], data[1:-1,-1] = 1., 1.
|
2014 |
+
>>> data[1,1:-1], data[-2,1:-1] = 1., 1.
|
2015 |
+
>>> data[2:-2,2], data[2:-2,-2] = 2., 2.
|
2016 |
+
>>> data[2,2:-2], data[-3,2:-2] = 2., 2.
|
2017 |
+
>>> data[3,3:-2] = 3.
|
2018 |
+
>>> data = np.roll(data, 4, 1)
|
2019 |
+
|
2020 |
+
We need to set up the interpolator object. Here, we must also specify the
|
2021 |
+
coordinates of the knots to use.
|
2022 |
+
|
2023 |
+
>>> lats, lons = np.meshgrid(theta, phi)
|
2024 |
+
>>> knotst, knotsp = theta.copy(), phi.copy()
|
2025 |
+
>>> knotst[0] += .0001
|
2026 |
+
>>> knotst[-1] -= .0001
|
2027 |
+
>>> knotsp[0] += .0001
|
2028 |
+
>>> knotsp[-1] -= .0001
|
2029 |
+
>>> lut = LSQSphereBivariateSpline(lats.ravel(), lons.ravel(),
|
2030 |
+
... data.T.ravel(), knotst, knotsp)
|
2031 |
+
|
2032 |
+
As a first test, we'll see what the algorithm returns when run on the
|
2033 |
+
input coordinates
|
2034 |
+
|
2035 |
+
>>> data_orig = lut(theta, phi)
|
2036 |
+
|
2037 |
+
Finally we interpolate the data to a finer grid
|
2038 |
+
|
2039 |
+
>>> fine_lats = np.linspace(0., np.pi, 70)
|
2040 |
+
>>> fine_lons = np.linspace(0., 2*np.pi, 90)
|
2041 |
+
>>> data_lsq = lut(fine_lats, fine_lons)
|
2042 |
+
|
2043 |
+
>>> fig = plt.figure()
|
2044 |
+
>>> ax1 = fig.add_subplot(131)
|
2045 |
+
>>> ax1.imshow(data, interpolation='nearest')
|
2046 |
+
>>> ax2 = fig.add_subplot(132)
|
2047 |
+
>>> ax2.imshow(data_orig, interpolation='nearest')
|
2048 |
+
>>> ax3 = fig.add_subplot(133)
|
2049 |
+
>>> ax3.imshow(data_lsq, interpolation='nearest')
|
2050 |
+
>>> plt.show()
|
2051 |
+
|
2052 |
+
"""
|
2053 |
+
|
2054 |
+
def __init__(self, theta, phi, r, tt, tp, w=None, eps=1E-16):
|
2055 |
+
|
2056 |
+
theta, phi, r = np.asarray(theta), np.asarray(phi), np.asarray(r)
|
2057 |
+
tt, tp = np.asarray(tt), np.asarray(tp)
|
2058 |
+
|
2059 |
+
if not ((0.0 <= theta).all() and (theta <= np.pi).all()):
|
2060 |
+
raise ValueError('theta should be between [0, pi]')
|
2061 |
+
if not ((0.0 <= phi).all() and (phi <= 2*np.pi).all()):
|
2062 |
+
raise ValueError('phi should be between [0, 2pi]')
|
2063 |
+
if not ((0.0 < tt).all() and (tt < np.pi).all()):
|
2064 |
+
raise ValueError('tt should be between (0, pi)')
|
2065 |
+
if not ((0.0 < tp).all() and (tp < 2*np.pi).all()):
|
2066 |
+
raise ValueError('tp should be between (0, 2pi)')
|
2067 |
+
if w is not None:
|
2068 |
+
w = np.asarray(w)
|
2069 |
+
if not (w >= 0.0).all():
|
2070 |
+
raise ValueError('w should be positive')
|
2071 |
+
if not 0.0 < eps < 1.0:
|
2072 |
+
raise ValueError('eps should be between (0, 1)')
|
2073 |
+
|
2074 |
+
nt_, np_ = 8 + len(tt), 8 + len(tp)
|
2075 |
+
tt_, tp_ = zeros((nt_,), float), zeros((np_,), float)
|
2076 |
+
tt_[4:-4], tp_[4:-4] = tt, tp
|
2077 |
+
tt_[-4:], tp_[-4:] = np.pi, 2. * np.pi
|
2078 |
+
tt_, tp_, c, fp, ier = dfitpack.spherfit_lsq(theta, phi, r, tt_, tp_,
|
2079 |
+
w=w, eps=eps)
|
2080 |
+
if ier > 0:
|
2081 |
+
message = _spherefit_messages.get(ier, 'ier=%s' % (ier))
|
2082 |
+
raise ValueError(message)
|
2083 |
+
|
2084 |
+
self.fp = fp
|
2085 |
+
self.tck = tt_, tp_, c
|
2086 |
+
self.degrees = (3, 3)
|
2087 |
+
|
2088 |
+
def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True):
|
2089 |
+
|
2090 |
+
theta = np.asarray(theta)
|
2091 |
+
phi = np.asarray(phi)
|
2092 |
+
|
2093 |
+
if phi.size > 0 and (phi.min() < 0. or phi.max() > 2. * np.pi):
|
2094 |
+
raise ValueError("requested phi out of bounds.")
|
2095 |
+
|
2096 |
+
return SphereBivariateSpline.__call__(self, theta, phi, dtheta=dtheta,
|
2097 |
+
dphi=dphi, grid=grid)
|
2098 |
+
|
2099 |
+
|
2100 |
+
_spfit_messages = _surfit_messages.copy()
|
2101 |
+
_spfit_messages[10] = """
|
2102 |
+
ERROR: on entry, the input data are controlled on validity
|
2103 |
+
the following restrictions must be satisfied.
|
2104 |
+
-1<=iopt(1)<=1, 0<=iopt(2)<=1, 0<=iopt(3)<=1,
|
2105 |
+
-1<=ider(1)<=1, 0<=ider(2)<=1, ider(2)=0 if iopt(2)=0.
|
2106 |
+
-1<=ider(3)<=1, 0<=ider(4)<=1, ider(4)=0 if iopt(3)=0.
|
2107 |
+
mu >= mumin (see above), mv >= 4, nuest >=8, nvest >= 8,
|
2108 |
+
kwrk>=5+mu+mv+nuest+nvest,
|
2109 |
+
lwrk >= 12+nuest*(mv+nvest+3)+nvest*24+4*mu+8*mv+max(nuest,mv+nvest)
|
2110 |
+
0< u(i-1)<u(i)< pi,i=2,..,mu,
|
2111 |
+
-pi<=v(1)< pi, v(1)<v(i-1)<v(i)<v(1)+2*pi, i=3,...,mv
|
2112 |
+
if iopt(1)=-1: 8<=nu<=min(nuest,mu+6+iopt(2)+iopt(3))
|
2113 |
+
0<tu(5)<tu(6)<...<tu(nu-4)< pi
|
2114 |
+
8<=nv<=min(nvest,mv+7)
|
2115 |
+
v(1)<tv(5)<tv(6)<...<tv(nv-4)<v(1)+2*pi
|
2116 |
+
the schoenberg-whitney conditions, i.e. there must be
|
2117 |
+
subset of grid coordinates uu(p) and vv(q) such that
|
2118 |
+
tu(p) < uu(p) < tu(p+4) ,p=1,...,nu-4
|
2119 |
+
(iopt(2)=1 and iopt(3)=1 also count for a uu-value
|
2120 |
+
tv(q) < vv(q) < tv(q+4) ,q=1,...,nv-4
|
2121 |
+
(vv(q) is either a value v(j) or v(j)+2*pi)
|
2122 |
+
if iopt(1)>=0: s>=0
|
2123 |
+
if s=0: nuest>=mu+6+iopt(2)+iopt(3), nvest>=mv+7
|
2124 |
+
if one of these conditions is found to be violated,control is
|
2125 |
+
immediately repassed to the calling program. in that case there is no
|
2126 |
+
approximation returned."""
|
2127 |
+
|
2128 |
+
|
2129 |
+
class RectSphereBivariateSpline(SphereBivariateSpline):
|
2130 |
+
"""
|
2131 |
+
Bivariate spline approximation over a rectangular mesh on a sphere.
|
2132 |
+
|
2133 |
+
Can be used for smoothing data.
|
2134 |
+
|
2135 |
+
.. versionadded:: 0.11.0
|
2136 |
+
|
2137 |
+
Parameters
|
2138 |
+
----------
|
2139 |
+
u : array_like
|
2140 |
+
1-D array of colatitude coordinates in strictly ascending order.
|
2141 |
+
Coordinates must be given in radians and lie within the open interval
|
2142 |
+
``(0, pi)``.
|
2143 |
+
v : array_like
|
2144 |
+
1-D array of longitude coordinates in strictly ascending order.
|
2145 |
+
Coordinates must be given in radians. First element (``v[0]``) must lie
|
2146 |
+
within the interval ``[-pi, pi)``. Last element (``v[-1]``) must satisfy
|
2147 |
+
``v[-1] <= v[0] + 2*pi``.
|
2148 |
+
r : array_like
|
2149 |
+
2-D array of data with shape ``(u.size, v.size)``.
|
2150 |
+
s : float, optional
|
2151 |
+
Positive smoothing factor defined for estimation condition
|
2152 |
+
(``s=0`` is for interpolation).
|
2153 |
+
pole_continuity : bool or (bool, bool), optional
|
2154 |
+
Order of continuity at the poles ``u=0`` (``pole_continuity[0]``) and
|
2155 |
+
``u=pi`` (``pole_continuity[1]``). The order of continuity at the pole
|
2156 |
+
will be 1 or 0 when this is True or False, respectively.
|
2157 |
+
Defaults to False.
|
2158 |
+
pole_values : float or (float, float), optional
|
2159 |
+
Data values at the poles ``u=0`` and ``u=pi``. Either the whole
|
2160 |
+
parameter or each individual element can be None. Defaults to None.
|
2161 |
+
pole_exact : bool or (bool, bool), optional
|
2162 |
+
Data value exactness at the poles ``u=0`` and ``u=pi``. If True, the
|
2163 |
+
value is considered to be the right function value, and it will be
|
2164 |
+
fitted exactly. If False, the value will be considered to be a data
|
2165 |
+
value just like the other data values. Defaults to False.
|
2166 |
+
pole_flat : bool or (bool, bool), optional
|
2167 |
+
For the poles at ``u=0`` and ``u=pi``, specify whether or not the
|
2168 |
+
approximation has vanishing derivatives. Defaults to False.
|
2169 |
+
|
2170 |
+
See Also
|
2171 |
+
--------
|
2172 |
+
BivariateSpline :
|
2173 |
+
a base class for bivariate splines.
|
2174 |
+
UnivariateSpline :
|
2175 |
+
a smooth univariate spline to fit a given set of data points.
|
2176 |
+
SmoothBivariateSpline :
|
2177 |
+
a smoothing bivariate spline through the given points
|
2178 |
+
LSQBivariateSpline :
|
2179 |
+
a bivariate spline using weighted least-squares fitting
|
2180 |
+
SmoothSphereBivariateSpline :
|
2181 |
+
a smoothing bivariate spline in spherical coordinates
|
2182 |
+
LSQSphereBivariateSpline :
|
2183 |
+
a bivariate spline in spherical coordinates using weighted
|
2184 |
+
least-squares fitting
|
2185 |
+
RectBivariateSpline :
|
2186 |
+
a bivariate spline over a rectangular mesh.
|
2187 |
+
bisplrep :
|
2188 |
+
a function to find a bivariate B-spline representation of a surface
|
2189 |
+
bisplev :
|
2190 |
+
a function to evaluate a bivariate B-spline and its derivatives
|
2191 |
+
|
2192 |
+
Notes
|
2193 |
+
-----
|
2194 |
+
Currently, only the smoothing spline approximation (``iopt[0] = 0`` and
|
2195 |
+
``iopt[0] = 1`` in the FITPACK routine) is supported. The exact
|
2196 |
+
least-squares spline approximation is not implemented yet.
|
2197 |
+
|
2198 |
+
When actually performing the interpolation, the requested `v` values must
|
2199 |
+
lie within the same length 2pi interval that the original `v` values were
|
2200 |
+
chosen from.
|
2201 |
+
|
2202 |
+
For more information, see the FITPACK_ site about this function.
|
2203 |
+
|
2204 |
+
.. _FITPACK: http://www.netlib.org/dierckx/spgrid.f
|
2205 |
+
|
2206 |
+
Examples
|
2207 |
+
--------
|
2208 |
+
Suppose we have global data on a coarse grid
|
2209 |
+
|
2210 |
+
>>> import numpy as np
|
2211 |
+
>>> lats = np.linspace(10, 170, 9) * np.pi / 180.
|
2212 |
+
>>> lons = np.linspace(0, 350, 18) * np.pi / 180.
|
2213 |
+
>>> data = np.dot(np.atleast_2d(90. - np.linspace(-80., 80., 18)).T,
|
2214 |
+
... np.atleast_2d(180. - np.abs(np.linspace(0., 350., 9)))).T
|
2215 |
+
|
2216 |
+
We want to interpolate it to a global one-degree grid
|
2217 |
+
|
2218 |
+
>>> new_lats = np.linspace(1, 180, 180) * np.pi / 180
|
2219 |
+
>>> new_lons = np.linspace(1, 360, 360) * np.pi / 180
|
2220 |
+
>>> new_lats, new_lons = np.meshgrid(new_lats, new_lons)
|
2221 |
+
|
2222 |
+
We need to set up the interpolator object
|
2223 |
+
|
2224 |
+
>>> from scipy.interpolate import RectSphereBivariateSpline
|
2225 |
+
>>> lut = RectSphereBivariateSpline(lats, lons, data)
|
2226 |
+
|
2227 |
+
Finally we interpolate the data. The `RectSphereBivariateSpline` object
|
2228 |
+
only takes 1-D arrays as input, therefore we need to do some reshaping.
|
2229 |
+
|
2230 |
+
>>> data_interp = lut.ev(new_lats.ravel(),
|
2231 |
+
... new_lons.ravel()).reshape((360, 180)).T
|
2232 |
+
|
2233 |
+
Looking at the original and the interpolated data, one can see that the
|
2234 |
+
interpolant reproduces the original data very well:
|
2235 |
+
|
2236 |
+
>>> import matplotlib.pyplot as plt
|
2237 |
+
>>> fig = plt.figure()
|
2238 |
+
>>> ax1 = fig.add_subplot(211)
|
2239 |
+
>>> ax1.imshow(data, interpolation='nearest')
|
2240 |
+
>>> ax2 = fig.add_subplot(212)
|
2241 |
+
>>> ax2.imshow(data_interp, interpolation='nearest')
|
2242 |
+
>>> plt.show()
|
2243 |
+
|
2244 |
+
Choosing the optimal value of ``s`` can be a delicate task. Recommended
|
2245 |
+
values for ``s`` depend on the accuracy of the data values. If the user
|
2246 |
+
has an idea of the statistical errors on the data, she can also find a
|
2247 |
+
proper estimate for ``s``. By assuming that, if she specifies the
|
2248 |
+
right ``s``, the interpolator will use a spline ``f(u,v)`` which exactly
|
2249 |
+
reproduces the function underlying the data, she can evaluate
|
2250 |
+
``sum((r(i,j)-s(u(i),v(j)))**2)`` to find a good estimate for this ``s``.
|
2251 |
+
For example, if she knows that the statistical errors on her
|
2252 |
+
``r(i,j)``-values are not greater than 0.1, she may expect that a good
|
2253 |
+
``s`` should have a value not larger than ``u.size * v.size * (0.1)**2``.
|
2254 |
+
|
2255 |
+
If nothing is known about the statistical error in ``r(i,j)``, ``s`` must
|
2256 |
+
be determined by trial and error. The best is then to start with a very
|
2257 |
+
large value of ``s`` (to determine the least-squares polynomial and the
|
2258 |
+
corresponding upper bound ``fp0`` for ``s``) and then to progressively
|
2259 |
+
decrease the value of ``s`` (say by a factor 10 in the beginning, i.e.
|
2260 |
+
``s = fp0 / 10, fp0 / 100, ...`` and more carefully as the approximation
|
2261 |
+
shows more detail) to obtain closer fits.
|
2262 |
+
|
2263 |
+
The interpolation results for different values of ``s`` give some insight
|
2264 |
+
into this process:
|
2265 |
+
|
2266 |
+
>>> fig2 = plt.figure()
|
2267 |
+
>>> s = [3e9, 2e9, 1e9, 1e8]
|
2268 |
+
>>> for idx, sval in enumerate(s, 1):
|
2269 |
+
... lut = RectSphereBivariateSpline(lats, lons, data, s=sval)
|
2270 |
+
... data_interp = lut.ev(new_lats.ravel(),
|
2271 |
+
... new_lons.ravel()).reshape((360, 180)).T
|
2272 |
+
... ax = fig2.add_subplot(2, 2, idx)
|
2273 |
+
... ax.imshow(data_interp, interpolation='nearest')
|
2274 |
+
... ax.set_title(f"s = {sval:g}")
|
2275 |
+
>>> plt.show()
|
2276 |
+
|
2277 |
+
"""
|
2278 |
+
|
2279 |
+
def __init__(self, u, v, r, s=0., pole_continuity=False, pole_values=None,
|
2280 |
+
pole_exact=False, pole_flat=False):
|
2281 |
+
iopt = np.array([0, 0, 0], dtype=dfitpack_int)
|
2282 |
+
ider = np.array([-1, 0, -1, 0], dtype=dfitpack_int)
|
2283 |
+
if pole_values is None:
|
2284 |
+
pole_values = (None, None)
|
2285 |
+
elif isinstance(pole_values, (float, np.float32, np.float64)):
|
2286 |
+
pole_values = (pole_values, pole_values)
|
2287 |
+
if isinstance(pole_continuity, bool):
|
2288 |
+
pole_continuity = (pole_continuity, pole_continuity)
|
2289 |
+
if isinstance(pole_exact, bool):
|
2290 |
+
pole_exact = (pole_exact, pole_exact)
|
2291 |
+
if isinstance(pole_flat, bool):
|
2292 |
+
pole_flat = (pole_flat, pole_flat)
|
2293 |
+
|
2294 |
+
r0, r1 = pole_values
|
2295 |
+
iopt[1:] = pole_continuity
|
2296 |
+
if r0 is None:
|
2297 |
+
ider[0] = -1
|
2298 |
+
else:
|
2299 |
+
ider[0] = pole_exact[0]
|
2300 |
+
|
2301 |
+
if r1 is None:
|
2302 |
+
ider[2] = -1
|
2303 |
+
else:
|
2304 |
+
ider[2] = pole_exact[1]
|
2305 |
+
|
2306 |
+
ider[1], ider[3] = pole_flat
|
2307 |
+
|
2308 |
+
u, v = np.ravel(u), np.ravel(v)
|
2309 |
+
r = np.asarray(r)
|
2310 |
+
|
2311 |
+
if not (0.0 < u[0] and u[-1] < np.pi):
|
2312 |
+
raise ValueError('u should be between (0, pi)')
|
2313 |
+
if not -np.pi <= v[0] < np.pi:
|
2314 |
+
raise ValueError('v[0] should be between [-pi, pi)')
|
2315 |
+
if not v[-1] <= v[0] + 2*np.pi:
|
2316 |
+
raise ValueError('v[-1] should be v[0] + 2pi or less ')
|
2317 |
+
|
2318 |
+
if not np.all(np.diff(u) > 0.0):
|
2319 |
+
raise ValueError('u must be strictly increasing')
|
2320 |
+
if not np.all(np.diff(v) > 0.0):
|
2321 |
+
raise ValueError('v must be strictly increasing')
|
2322 |
+
|
2323 |
+
if not u.size == r.shape[0]:
|
2324 |
+
raise ValueError('u dimension of r must have same number of '
|
2325 |
+
'elements as u')
|
2326 |
+
if not v.size == r.shape[1]:
|
2327 |
+
raise ValueError('v dimension of r must have same number of '
|
2328 |
+
'elements as v')
|
2329 |
+
|
2330 |
+
if pole_continuity[1] is False and pole_flat[1] is True:
|
2331 |
+
raise ValueError('if pole_continuity is False, so must be '
|
2332 |
+
'pole_flat')
|
2333 |
+
if pole_continuity[0] is False and pole_flat[0] is True:
|
2334 |
+
raise ValueError('if pole_continuity is False, so must be '
|
2335 |
+
'pole_flat')
|
2336 |
+
|
2337 |
+
if not s >= 0.0:
|
2338 |
+
raise ValueError('s should be positive')
|
2339 |
+
|
2340 |
+
r = np.ravel(r)
|
2341 |
+
nu, tu, nv, tv, c, fp, ier = dfitpack.regrid_smth_spher(iopt, ider,
|
2342 |
+
u.copy(),
|
2343 |
+
v.copy(),
|
2344 |
+
r.copy(),
|
2345 |
+
r0, r1, s)
|
2346 |
+
|
2347 |
+
if ier not in [0, -1, -2]:
|
2348 |
+
msg = _spfit_messages.get(ier, 'ier=%s' % (ier))
|
2349 |
+
raise ValueError(msg)
|
2350 |
+
|
2351 |
+
self.fp = fp
|
2352 |
+
self.tck = tu[:nu], tv[:nv], c[:(nu - 4) * (nv-4)]
|
2353 |
+
self.degrees = (3, 3)
|
2354 |
+
self.v0 = v[0]
|
2355 |
+
|
2356 |
+
def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True):
|
2357 |
+
|
2358 |
+
theta = np.asarray(theta)
|
2359 |
+
phi = np.asarray(phi)
|
2360 |
+
|
2361 |
+
return SphereBivariateSpline.__call__(self, theta, phi, dtheta=dtheta,
|
2362 |
+
dphi=dphi, grid=grid)
|
venv/lib/python3.10/site-packages/scipy/interpolate/_fitpack_impl.py
ADDED
@@ -0,0 +1,805 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
fitpack (dierckx in netlib) --- A Python-C wrapper to FITPACK (by P. Dierckx).
|
3 |
+
FITPACK is a collection of FORTRAN programs for curve and surface
|
4 |
+
fitting with splines and tensor product splines.
|
5 |
+
|
6 |
+
See
|
7 |
+
https://web.archive.org/web/20010524124604/http://www.cs.kuleuven.ac.be:80/cwis/research/nalag/research/topics/fitpack.html
|
8 |
+
or
|
9 |
+
http://www.netlib.org/dierckx/
|
10 |
+
|
11 |
+
Copyright 2002 Pearu Peterson all rights reserved,
|
12 |
+
Pearu Peterson <[email protected]>
|
13 |
+
Permission to use, modify, and distribute this software is given under the
|
14 |
+
terms of the SciPy (BSD style) license. See LICENSE.txt that came with
|
15 |
+
this distribution for specifics.
|
16 |
+
|
17 |
+
NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK.
|
18 |
+
|
19 |
+
TODO: Make interfaces to the following fitpack functions:
|
20 |
+
For univariate splines: cocosp, concon, fourco, insert
|
21 |
+
For bivariate splines: profil, regrid, parsur, surev
|
22 |
+
"""
|
23 |
+
|
24 |
+
__all__ = ['splrep', 'splprep', 'splev', 'splint', 'sproot', 'spalde',
|
25 |
+
'bisplrep', 'bisplev', 'insert', 'splder', 'splantider']
|
26 |
+
|
27 |
+
import warnings
|
28 |
+
import numpy as np
|
29 |
+
from . import _fitpack
|
30 |
+
from numpy import (atleast_1d, array, ones, zeros, sqrt, ravel, transpose,
|
31 |
+
empty, iinfo, asarray)
|
32 |
+
|
33 |
+
# Try to replace _fitpack interface with
|
34 |
+
# f2py-generated version
|
35 |
+
from . import dfitpack
|
36 |
+
|
37 |
+
|
38 |
+
dfitpack_int = dfitpack.types.intvar.dtype
|
39 |
+
|
40 |
+
|
41 |
+
def _int_overflow(x, exception, msg=None):
|
42 |
+
"""Cast the value to an dfitpack_int and raise an OverflowError if the value
|
43 |
+
cannot fit.
|
44 |
+
"""
|
45 |
+
if x > iinfo(dfitpack_int).max:
|
46 |
+
if msg is None:
|
47 |
+
msg = f'{x!r} cannot fit into an {dfitpack_int!r}'
|
48 |
+
raise exception(msg)
|
49 |
+
return dfitpack_int.type(x)
|
50 |
+
|
51 |
+
|
52 |
+
_iermess = {
|
53 |
+
0: ["The spline has a residual sum of squares fp such that "
|
54 |
+
"abs(fp-s)/s<=0.001", None],
|
55 |
+
-1: ["The spline is an interpolating spline (fp=0)", None],
|
56 |
+
-2: ["The spline is weighted least-squares polynomial of degree k.\n"
|
57 |
+
"fp gives the upper bound fp0 for the smoothing factor s", None],
|
58 |
+
1: ["The required storage space exceeds the available storage space.\n"
|
59 |
+
"Probable causes: data (x,y) size is too small or smoothing parameter"
|
60 |
+
"\ns is too small (fp>s).", ValueError],
|
61 |
+
2: ["A theoretically impossible result when finding a smoothing spline\n"
|
62 |
+
"with fp = s. Probable cause: s too small. (abs(fp-s)/s>0.001)",
|
63 |
+
ValueError],
|
64 |
+
3: ["The maximal number of iterations (20) allowed for finding smoothing\n"
|
65 |
+
"spline with fp=s has been reached. Probable cause: s too small.\n"
|
66 |
+
"(abs(fp-s)/s>0.001)", ValueError],
|
67 |
+
10: ["Error on input data", ValueError],
|
68 |
+
'unknown': ["An error occurred", TypeError]
|
69 |
+
}
|
70 |
+
|
71 |
+
_iermess2 = {
|
72 |
+
0: ["The spline has a residual sum of squares fp such that "
|
73 |
+
"abs(fp-s)/s<=0.001", None],
|
74 |
+
-1: ["The spline is an interpolating spline (fp=0)", None],
|
75 |
+
-2: ["The spline is weighted least-squares polynomial of degree kx and ky."
|
76 |
+
"\nfp gives the upper bound fp0 for the smoothing factor s", None],
|
77 |
+
-3: ["Warning. The coefficients of the spline have been computed as the\n"
|
78 |
+
"minimal norm least-squares solution of a rank deficient system.",
|
79 |
+
None],
|
80 |
+
1: ["The required storage space exceeds the available storage space.\n"
|
81 |
+
"Probable causes: nxest or nyest too small or s is too small. (fp>s)",
|
82 |
+
ValueError],
|
83 |
+
2: ["A theoretically impossible result when finding a smoothing spline\n"
|
84 |
+
"with fp = s. Probable causes: s too small or badly chosen eps.\n"
|
85 |
+
"(abs(fp-s)/s>0.001)", ValueError],
|
86 |
+
3: ["The maximal number of iterations (20) allowed for finding smoothing\n"
|
87 |
+
"spline with fp=s has been reached. Probable cause: s too small.\n"
|
88 |
+
"(abs(fp-s)/s>0.001)", ValueError],
|
89 |
+
4: ["No more knots can be added because the number of B-spline\n"
|
90 |
+
"coefficients already exceeds the number of data points m.\n"
|
91 |
+
"Probable causes: either s or m too small. (fp>s)", ValueError],
|
92 |
+
5: ["No more knots can be added because the additional knot would\n"
|
93 |
+
"coincide with an old one. Probable cause: s too small or too large\n"
|
94 |
+
"a weight to an inaccurate data point. (fp>s)", ValueError],
|
95 |
+
10: ["Error on input data", ValueError],
|
96 |
+
11: ["rwrk2 too small, i.e., there is not enough workspace for computing\n"
|
97 |
+
"the minimal least-squares solution of a rank deficient system of\n"
|
98 |
+
"linear equations.", ValueError],
|
99 |
+
'unknown': ["An error occurred", TypeError]
|
100 |
+
}
|
101 |
+
|
102 |
+
_parcur_cache = {'t': array([], float), 'wrk': array([], float),
|
103 |
+
'iwrk': array([], dfitpack_int), 'u': array([], float),
|
104 |
+
'ub': 0, 'ue': 1}
|
105 |
+
|
106 |
+
|
107 |
+
def splprep(x, w=None, u=None, ub=None, ue=None, k=3, task=0, s=None, t=None,
|
108 |
+
full_output=0, nest=None, per=0, quiet=1):
|
109 |
+
# see the docstring of `_fitpack_py/splprep`
|
110 |
+
if task <= 0:
|
111 |
+
_parcur_cache = {'t': array([], float), 'wrk': array([], float),
|
112 |
+
'iwrk': array([], dfitpack_int), 'u': array([], float),
|
113 |
+
'ub': 0, 'ue': 1}
|
114 |
+
x = atleast_1d(x)
|
115 |
+
idim, m = x.shape
|
116 |
+
if per:
|
117 |
+
for i in range(idim):
|
118 |
+
if x[i][0] != x[i][-1]:
|
119 |
+
if not quiet:
|
120 |
+
warnings.warn(RuntimeWarning('Setting x[%d][%d]=x[%d][0]' %
|
121 |
+
(i, m, i)),
|
122 |
+
stacklevel=2)
|
123 |
+
x[i][-1] = x[i][0]
|
124 |
+
if not 0 < idim < 11:
|
125 |
+
raise TypeError('0 < idim < 11 must hold')
|
126 |
+
if w is None:
|
127 |
+
w = ones(m, float)
|
128 |
+
else:
|
129 |
+
w = atleast_1d(w)
|
130 |
+
ipar = (u is not None)
|
131 |
+
if ipar:
|
132 |
+
_parcur_cache['u'] = u
|
133 |
+
if ub is None:
|
134 |
+
_parcur_cache['ub'] = u[0]
|
135 |
+
else:
|
136 |
+
_parcur_cache['ub'] = ub
|
137 |
+
if ue is None:
|
138 |
+
_parcur_cache['ue'] = u[-1]
|
139 |
+
else:
|
140 |
+
_parcur_cache['ue'] = ue
|
141 |
+
else:
|
142 |
+
_parcur_cache['u'] = zeros(m, float)
|
143 |
+
if not (1 <= k <= 5):
|
144 |
+
raise TypeError('1 <= k= %d <=5 must hold' % k)
|
145 |
+
if not (-1 <= task <= 1):
|
146 |
+
raise TypeError('task must be -1, 0 or 1')
|
147 |
+
if (not len(w) == m) or (ipar == 1 and (not len(u) == m)):
|
148 |
+
raise TypeError('Mismatch of input dimensions')
|
149 |
+
if s is None:
|
150 |
+
s = m - sqrt(2*m)
|
151 |
+
if t is None and task == -1:
|
152 |
+
raise TypeError('Knots must be given for task=-1')
|
153 |
+
if t is not None:
|
154 |
+
_parcur_cache['t'] = atleast_1d(t)
|
155 |
+
n = len(_parcur_cache['t'])
|
156 |
+
if task == -1 and n < 2*k + 2:
|
157 |
+
raise TypeError('There must be at least 2*k+2 knots for task=-1')
|
158 |
+
if m <= k:
|
159 |
+
raise TypeError('m > k must hold')
|
160 |
+
if nest is None:
|
161 |
+
nest = m + 2*k
|
162 |
+
|
163 |
+
if (task >= 0 and s == 0) or (nest < 0):
|
164 |
+
if per:
|
165 |
+
nest = m + 2*k
|
166 |
+
else:
|
167 |
+
nest = m + k + 1
|
168 |
+
nest = max(nest, 2*k + 3)
|
169 |
+
u = _parcur_cache['u']
|
170 |
+
ub = _parcur_cache['ub']
|
171 |
+
ue = _parcur_cache['ue']
|
172 |
+
t = _parcur_cache['t']
|
173 |
+
wrk = _parcur_cache['wrk']
|
174 |
+
iwrk = _parcur_cache['iwrk']
|
175 |
+
t, c, o = _fitpack._parcur(ravel(transpose(x)), w, u, ub, ue, k,
|
176 |
+
task, ipar, s, t, nest, wrk, iwrk, per)
|
177 |
+
_parcur_cache['u'] = o['u']
|
178 |
+
_parcur_cache['ub'] = o['ub']
|
179 |
+
_parcur_cache['ue'] = o['ue']
|
180 |
+
_parcur_cache['t'] = t
|
181 |
+
_parcur_cache['wrk'] = o['wrk']
|
182 |
+
_parcur_cache['iwrk'] = o['iwrk']
|
183 |
+
ier = o['ier']
|
184 |
+
fp = o['fp']
|
185 |
+
n = len(t)
|
186 |
+
u = o['u']
|
187 |
+
c.shape = idim, n - k - 1
|
188 |
+
tcku = [t, list(c), k], u
|
189 |
+
if ier <= 0 and not quiet:
|
190 |
+
warnings.warn(RuntimeWarning(_iermess[ier][0] +
|
191 |
+
"\tk=%d n=%d m=%d fp=%f s=%f" %
|
192 |
+
(k, len(t), m, fp, s)),
|
193 |
+
stacklevel=2)
|
194 |
+
if ier > 0 and not full_output:
|
195 |
+
if ier in [1, 2, 3]:
|
196 |
+
warnings.warn(RuntimeWarning(_iermess[ier][0]), stacklevel=2)
|
197 |
+
else:
|
198 |
+
try:
|
199 |
+
raise _iermess[ier][1](_iermess[ier][0])
|
200 |
+
except KeyError as e:
|
201 |
+
raise _iermess['unknown'][1](_iermess['unknown'][0]) from e
|
202 |
+
if full_output:
|
203 |
+
try:
|
204 |
+
return tcku, fp, ier, _iermess[ier][0]
|
205 |
+
except KeyError:
|
206 |
+
return tcku, fp, ier, _iermess['unknown'][0]
|
207 |
+
else:
|
208 |
+
return tcku
|
209 |
+
|
210 |
+
|
211 |
+
_curfit_cache = {'t': array([], float), 'wrk': array([], float),
|
212 |
+
'iwrk': array([], dfitpack_int)}
|
213 |
+
|
214 |
+
|
215 |
+
def splrep(x, y, w=None, xb=None, xe=None, k=3, task=0, s=None, t=None,
|
216 |
+
full_output=0, per=0, quiet=1):
|
217 |
+
# see the docstring of `_fitpack_py/splrep`
|
218 |
+
if task <= 0:
|
219 |
+
_curfit_cache = {}
|
220 |
+
x, y = map(atleast_1d, [x, y])
|
221 |
+
m = len(x)
|
222 |
+
if w is None:
|
223 |
+
w = ones(m, float)
|
224 |
+
if s is None:
|
225 |
+
s = 0.0
|
226 |
+
else:
|
227 |
+
w = atleast_1d(w)
|
228 |
+
if s is None:
|
229 |
+
s = m - sqrt(2*m)
|
230 |
+
if not len(w) == m:
|
231 |
+
raise TypeError('len(w)=%d is not equal to m=%d' % (len(w), m))
|
232 |
+
if (m != len(y)) or (m != len(w)):
|
233 |
+
raise TypeError('Lengths of the first three arguments (x,y,w) must '
|
234 |
+
'be equal')
|
235 |
+
if not (1 <= k <= 5):
|
236 |
+
raise TypeError('Given degree of the spline (k=%d) is not supported. '
|
237 |
+
'(1<=k<=5)' % k)
|
238 |
+
if m <= k:
|
239 |
+
raise TypeError('m > k must hold')
|
240 |
+
if xb is None:
|
241 |
+
xb = x[0]
|
242 |
+
if xe is None:
|
243 |
+
xe = x[-1]
|
244 |
+
if not (-1 <= task <= 1):
|
245 |
+
raise TypeError('task must be -1, 0 or 1')
|
246 |
+
if t is not None:
|
247 |
+
task = -1
|
248 |
+
if task == -1:
|
249 |
+
if t is None:
|
250 |
+
raise TypeError('Knots must be given for task=-1')
|
251 |
+
numknots = len(t)
|
252 |
+
_curfit_cache['t'] = empty((numknots + 2*k + 2,), float)
|
253 |
+
_curfit_cache['t'][k+1:-k-1] = t
|
254 |
+
nest = len(_curfit_cache['t'])
|
255 |
+
elif task == 0:
|
256 |
+
if per:
|
257 |
+
nest = max(m + 2*k, 2*k + 3)
|
258 |
+
else:
|
259 |
+
nest = max(m + k + 1, 2*k + 3)
|
260 |
+
t = empty((nest,), float)
|
261 |
+
_curfit_cache['t'] = t
|
262 |
+
if task <= 0:
|
263 |
+
if per:
|
264 |
+
_curfit_cache['wrk'] = empty((m*(k + 1) + nest*(8 + 5*k),), float)
|
265 |
+
else:
|
266 |
+
_curfit_cache['wrk'] = empty((m*(k + 1) + nest*(7 + 3*k),), float)
|
267 |
+
_curfit_cache['iwrk'] = empty((nest,), dfitpack_int)
|
268 |
+
try:
|
269 |
+
t = _curfit_cache['t']
|
270 |
+
wrk = _curfit_cache['wrk']
|
271 |
+
iwrk = _curfit_cache['iwrk']
|
272 |
+
except KeyError as e:
|
273 |
+
raise TypeError("must call with task=1 only after"
|
274 |
+
" call with task=0,-1") from e
|
275 |
+
if not per:
|
276 |
+
n, c, fp, ier = dfitpack.curfit(task, x, y, w, t, wrk, iwrk,
|
277 |
+
xb, xe, k, s)
|
278 |
+
else:
|
279 |
+
n, c, fp, ier = dfitpack.percur(task, x, y, w, t, wrk, iwrk, k, s)
|
280 |
+
tck = (t[:n], c[:n], k)
|
281 |
+
if ier <= 0 and not quiet:
|
282 |
+
_mess = (_iermess[ier][0] + "\tk=%d n=%d m=%d fp=%f s=%f" %
|
283 |
+
(k, len(t), m, fp, s))
|
284 |
+
warnings.warn(RuntimeWarning(_mess), stacklevel=2)
|
285 |
+
if ier > 0 and not full_output:
|
286 |
+
if ier in [1, 2, 3]:
|
287 |
+
warnings.warn(RuntimeWarning(_iermess[ier][0]), stacklevel=2)
|
288 |
+
else:
|
289 |
+
try:
|
290 |
+
raise _iermess[ier][1](_iermess[ier][0])
|
291 |
+
except KeyError as e:
|
292 |
+
raise _iermess['unknown'][1](_iermess['unknown'][0]) from e
|
293 |
+
if full_output:
|
294 |
+
try:
|
295 |
+
return tck, fp, ier, _iermess[ier][0]
|
296 |
+
except KeyError:
|
297 |
+
return tck, fp, ier, _iermess['unknown'][0]
|
298 |
+
else:
|
299 |
+
return tck
|
300 |
+
|
301 |
+
|
302 |
+
def splev(x, tck, der=0, ext=0):
|
303 |
+
# see the docstring of `_fitpack_py/splev`
|
304 |
+
t, c, k = tck
|
305 |
+
try:
|
306 |
+
c[0][0]
|
307 |
+
parametric = True
|
308 |
+
except Exception:
|
309 |
+
parametric = False
|
310 |
+
if parametric:
|
311 |
+
return list(map(lambda c, x=x, t=t, k=k, der=der:
|
312 |
+
splev(x, [t, c, k], der, ext), c))
|
313 |
+
else:
|
314 |
+
if not (0 <= der <= k):
|
315 |
+
raise ValueError("0<=der=%d<=k=%d must hold" % (der, k))
|
316 |
+
if ext not in (0, 1, 2, 3):
|
317 |
+
raise ValueError("ext = %s not in (0, 1, 2, 3) " % ext)
|
318 |
+
|
319 |
+
x = asarray(x)
|
320 |
+
shape = x.shape
|
321 |
+
x = atleast_1d(x).ravel()
|
322 |
+
if der == 0:
|
323 |
+
y, ier = dfitpack.splev(t, c, k, x, ext)
|
324 |
+
else:
|
325 |
+
y, ier = dfitpack.splder(t, c, k, x, der, ext)
|
326 |
+
|
327 |
+
if ier == 10:
|
328 |
+
raise ValueError("Invalid input data")
|
329 |
+
if ier == 1:
|
330 |
+
raise ValueError("Found x value not in the domain")
|
331 |
+
if ier:
|
332 |
+
raise TypeError("An error occurred")
|
333 |
+
|
334 |
+
return y.reshape(shape)
|
335 |
+
|
336 |
+
|
337 |
+
def splint(a, b, tck, full_output=0):
|
338 |
+
# see the docstring of `_fitpack_py/splint`
|
339 |
+
t, c, k = tck
|
340 |
+
try:
|
341 |
+
c[0][0]
|
342 |
+
parametric = True
|
343 |
+
except Exception:
|
344 |
+
parametric = False
|
345 |
+
if parametric:
|
346 |
+
return list(map(lambda c, a=a, b=b, t=t, k=k:
|
347 |
+
splint(a, b, [t, c, k]), c))
|
348 |
+
else:
|
349 |
+
aint, wrk = dfitpack.splint(t, c, k, a, b)
|
350 |
+
if full_output:
|
351 |
+
return aint, wrk
|
352 |
+
else:
|
353 |
+
return aint
|
354 |
+
|
355 |
+
|
356 |
+
def sproot(tck, mest=10):
|
357 |
+
# see the docstring of `_fitpack_py/sproot`
|
358 |
+
t, c, k = tck
|
359 |
+
if k != 3:
|
360 |
+
raise ValueError("sproot works only for cubic (k=3) splines")
|
361 |
+
try:
|
362 |
+
c[0][0]
|
363 |
+
parametric = True
|
364 |
+
except Exception:
|
365 |
+
parametric = False
|
366 |
+
if parametric:
|
367 |
+
return list(map(lambda c, t=t, k=k, mest=mest:
|
368 |
+
sproot([t, c, k], mest), c))
|
369 |
+
else:
|
370 |
+
if len(t) < 8:
|
371 |
+
raise TypeError("The number of knots %d>=8" % len(t))
|
372 |
+
z, m, ier = dfitpack.sproot(t, c, mest)
|
373 |
+
if ier == 10:
|
374 |
+
raise TypeError("Invalid input data. "
|
375 |
+
"t1<=..<=t4<t5<..<tn-3<=..<=tn must hold.")
|
376 |
+
if ier == 0:
|
377 |
+
return z[:m]
|
378 |
+
if ier == 1:
|
379 |
+
warnings.warn(RuntimeWarning("The number of zeros exceeds mest"),
|
380 |
+
stacklevel=2)
|
381 |
+
return z[:m]
|
382 |
+
raise TypeError("Unknown error")
|
383 |
+
|
384 |
+
|
385 |
+
def spalde(x, tck):
|
386 |
+
# see the docstring of `_fitpack_py/spalde`
|
387 |
+
t, c, k = tck
|
388 |
+
try:
|
389 |
+
c[0][0]
|
390 |
+
parametric = True
|
391 |
+
except Exception:
|
392 |
+
parametric = False
|
393 |
+
if parametric:
|
394 |
+
return list(map(lambda c, x=x, t=t, k=k:
|
395 |
+
spalde(x, [t, c, k]), c))
|
396 |
+
else:
|
397 |
+
x = atleast_1d(x)
|
398 |
+
if len(x) > 1:
|
399 |
+
return list(map(lambda x, tck=tck: spalde(x, tck), x))
|
400 |
+
d, ier = dfitpack.spalde(t, c, k+1, x[0])
|
401 |
+
if ier == 0:
|
402 |
+
return d
|
403 |
+
if ier == 10:
|
404 |
+
raise TypeError("Invalid input data. t(k)<=x<=t(n-k+1) must hold.")
|
405 |
+
raise TypeError("Unknown error")
|
406 |
+
|
407 |
+
# def _curfit(x,y,w=None,xb=None,xe=None,k=3,task=0,s=None,t=None,
|
408 |
+
# full_output=0,nest=None,per=0,quiet=1):
|
409 |
+
|
410 |
+
|
411 |
+
_surfit_cache = {'tx': array([], float), 'ty': array([], float),
|
412 |
+
'wrk': array([], float), 'iwrk': array([], dfitpack_int)}
|
413 |
+
|
414 |
+
|
415 |
+
def bisplrep(x, y, z, w=None, xb=None, xe=None, yb=None, ye=None,
|
416 |
+
kx=3, ky=3, task=0, s=None, eps=1e-16, tx=None, ty=None,
|
417 |
+
full_output=0, nxest=None, nyest=None, quiet=1):
|
418 |
+
"""
|
419 |
+
Find a bivariate B-spline representation of a surface.
|
420 |
+
|
421 |
+
Given a set of data points (x[i], y[i], z[i]) representing a surface
|
422 |
+
z=f(x,y), compute a B-spline representation of the surface. Based on
|
423 |
+
the routine SURFIT from FITPACK.
|
424 |
+
|
425 |
+
Parameters
|
426 |
+
----------
|
427 |
+
x, y, z : ndarray
|
428 |
+
Rank-1 arrays of data points.
|
429 |
+
w : ndarray, optional
|
430 |
+
Rank-1 array of weights. By default ``w=np.ones(len(x))``.
|
431 |
+
xb, xe : float, optional
|
432 |
+
End points of approximation interval in `x`.
|
433 |
+
By default ``xb = x.min(), xe=x.max()``.
|
434 |
+
yb, ye : float, optional
|
435 |
+
End points of approximation interval in `y`.
|
436 |
+
By default ``yb=y.min(), ye = y.max()``.
|
437 |
+
kx, ky : int, optional
|
438 |
+
The degrees of the spline (1 <= kx, ky <= 5).
|
439 |
+
Third order (kx=ky=3) is recommended.
|
440 |
+
task : int, optional
|
441 |
+
If task=0, find knots in x and y and coefficients for a given
|
442 |
+
smoothing factor, s.
|
443 |
+
If task=1, find knots and coefficients for another value of the
|
444 |
+
smoothing factor, s. bisplrep must have been previously called
|
445 |
+
with task=0 or task=1.
|
446 |
+
If task=-1, find coefficients for a given set of knots tx, ty.
|
447 |
+
s : float, optional
|
448 |
+
A non-negative smoothing factor. If weights correspond
|
449 |
+
to the inverse of the standard-deviation of the errors in z,
|
450 |
+
then a good s-value should be found in the range
|
451 |
+
``(m-sqrt(2*m),m+sqrt(2*m))`` where m=len(x).
|
452 |
+
eps : float, optional
|
453 |
+
A threshold for determining the effective rank of an
|
454 |
+
over-determined linear system of equations (0 < eps < 1).
|
455 |
+
`eps` is not likely to need changing.
|
456 |
+
tx, ty : ndarray, optional
|
457 |
+
Rank-1 arrays of the knots of the spline for task=-1
|
458 |
+
full_output : int, optional
|
459 |
+
Non-zero to return optional outputs.
|
460 |
+
nxest, nyest : int, optional
|
461 |
+
Over-estimates of the total number of knots. If None then
|
462 |
+
``nxest = max(kx+sqrt(m/2),2*kx+3)``,
|
463 |
+
``nyest = max(ky+sqrt(m/2),2*ky+3)``.
|
464 |
+
quiet : int, optional
|
465 |
+
Non-zero to suppress printing of messages.
|
466 |
+
|
467 |
+
Returns
|
468 |
+
-------
|
469 |
+
tck : array_like
|
470 |
+
A list [tx, ty, c, kx, ky] containing the knots (tx, ty) and
|
471 |
+
coefficients (c) of the bivariate B-spline representation of the
|
472 |
+
surface along with the degree of the spline.
|
473 |
+
fp : ndarray
|
474 |
+
The weighted sum of squared residuals of the spline approximation.
|
475 |
+
ier : int
|
476 |
+
An integer flag about splrep success. Success is indicated if
|
477 |
+
ier<=0. If ier in [1,2,3] an error occurred but was not raised.
|
478 |
+
Otherwise an error is raised.
|
479 |
+
msg : str
|
480 |
+
A message corresponding to the integer flag, ier.
|
481 |
+
|
482 |
+
See Also
|
483 |
+
--------
|
484 |
+
splprep, splrep, splint, sproot, splev
|
485 |
+
UnivariateSpline, BivariateSpline
|
486 |
+
|
487 |
+
Notes
|
488 |
+
-----
|
489 |
+
See `bisplev` to evaluate the value of the B-spline given its tck
|
490 |
+
representation.
|
491 |
+
|
492 |
+
If the input data is such that input dimensions have incommensurate
|
493 |
+
units and differ by many orders of magnitude, the interpolant may have
|
494 |
+
numerical artifacts. Consider rescaling the data before interpolation.
|
495 |
+
|
496 |
+
References
|
497 |
+
----------
|
498 |
+
.. [1] Dierckx P.:An algorithm for surface fitting with spline functions
|
499 |
+
Ima J. Numer. Anal. 1 (1981) 267-283.
|
500 |
+
.. [2] Dierckx P.:An algorithm for surface fitting with spline functions
|
501 |
+
report tw50, Dept. Computer Science,K.U.Leuven, 1980.
|
502 |
+
.. [3] Dierckx P.:Curve and surface fitting with splines, Monographs on
|
503 |
+
Numerical Analysis, Oxford University Press, 1993.
|
504 |
+
|
505 |
+
Examples
|
506 |
+
--------
|
507 |
+
Examples are given :ref:`in the tutorial <tutorial-interpolate_2d_spline>`.
|
508 |
+
|
509 |
+
"""
|
510 |
+
x, y, z = map(ravel, [x, y, z]) # ensure 1-d arrays.
|
511 |
+
m = len(x)
|
512 |
+
if not (m == len(y) == len(z)):
|
513 |
+
raise TypeError('len(x)==len(y)==len(z) must hold.')
|
514 |
+
if w is None:
|
515 |
+
w = ones(m, float)
|
516 |
+
else:
|
517 |
+
w = atleast_1d(w)
|
518 |
+
if not len(w) == m:
|
519 |
+
raise TypeError('len(w)=%d is not equal to m=%d' % (len(w), m))
|
520 |
+
if xb is None:
|
521 |
+
xb = x.min()
|
522 |
+
if xe is None:
|
523 |
+
xe = x.max()
|
524 |
+
if yb is None:
|
525 |
+
yb = y.min()
|
526 |
+
if ye is None:
|
527 |
+
ye = y.max()
|
528 |
+
if not (-1 <= task <= 1):
|
529 |
+
raise TypeError('task must be -1, 0 or 1')
|
530 |
+
if s is None:
|
531 |
+
s = m - sqrt(2*m)
|
532 |
+
if tx is None and task == -1:
|
533 |
+
raise TypeError('Knots_x must be given for task=-1')
|
534 |
+
if tx is not None:
|
535 |
+
_surfit_cache['tx'] = atleast_1d(tx)
|
536 |
+
nx = len(_surfit_cache['tx'])
|
537 |
+
if ty is None and task == -1:
|
538 |
+
raise TypeError('Knots_y must be given for task=-1')
|
539 |
+
if ty is not None:
|
540 |
+
_surfit_cache['ty'] = atleast_1d(ty)
|
541 |
+
ny = len(_surfit_cache['ty'])
|
542 |
+
if task == -1 and nx < 2*kx+2:
|
543 |
+
raise TypeError('There must be at least 2*kx+2 knots_x for task=-1')
|
544 |
+
if task == -1 and ny < 2*ky+2:
|
545 |
+
raise TypeError('There must be at least 2*ky+2 knots_x for task=-1')
|
546 |
+
if not ((1 <= kx <= 5) and (1 <= ky <= 5)):
|
547 |
+
raise TypeError('Given degree of the spline (kx,ky=%d,%d) is not '
|
548 |
+
'supported. (1<=k<=5)' % (kx, ky))
|
549 |
+
if m < (kx + 1)*(ky + 1):
|
550 |
+
raise TypeError('m >= (kx+1)(ky+1) must hold')
|
551 |
+
if nxest is None:
|
552 |
+
nxest = int(kx + sqrt(m/2))
|
553 |
+
if nyest is None:
|
554 |
+
nyest = int(ky + sqrt(m/2))
|
555 |
+
nxest, nyest = max(nxest, 2*kx + 3), max(nyest, 2*ky + 3)
|
556 |
+
if task >= 0 and s == 0:
|
557 |
+
nxest = int(kx + sqrt(3*m))
|
558 |
+
nyest = int(ky + sqrt(3*m))
|
559 |
+
if task == -1:
|
560 |
+
_surfit_cache['tx'] = atleast_1d(tx)
|
561 |
+
_surfit_cache['ty'] = atleast_1d(ty)
|
562 |
+
tx, ty = _surfit_cache['tx'], _surfit_cache['ty']
|
563 |
+
wrk = _surfit_cache['wrk']
|
564 |
+
u = nxest - kx - 1
|
565 |
+
v = nyest - ky - 1
|
566 |
+
km = max(kx, ky) + 1
|
567 |
+
ne = max(nxest, nyest)
|
568 |
+
bx, by = kx*v + ky + 1, ky*u + kx + 1
|
569 |
+
b1, b2 = bx, bx + v - ky
|
570 |
+
if bx > by:
|
571 |
+
b1, b2 = by, by + u - kx
|
572 |
+
msg = "Too many data points to interpolate"
|
573 |
+
lwrk1 = _int_overflow(u*v*(2 + b1 + b2) +
|
574 |
+
2*(u + v + km*(m + ne) + ne - kx - ky) + b2 + 1,
|
575 |
+
OverflowError,
|
576 |
+
msg=msg)
|
577 |
+
lwrk2 = _int_overflow(u*v*(b2 + 1) + b2, OverflowError, msg=msg)
|
578 |
+
tx, ty, c, o = _fitpack._surfit(x, y, z, w, xb, xe, yb, ye, kx, ky,
|
579 |
+
task, s, eps, tx, ty, nxest, nyest,
|
580 |
+
wrk, lwrk1, lwrk2)
|
581 |
+
_curfit_cache['tx'] = tx
|
582 |
+
_curfit_cache['ty'] = ty
|
583 |
+
_curfit_cache['wrk'] = o['wrk']
|
584 |
+
ier, fp = o['ier'], o['fp']
|
585 |
+
tck = [tx, ty, c, kx, ky]
|
586 |
+
|
587 |
+
ierm = min(11, max(-3, ier))
|
588 |
+
if ierm <= 0 and not quiet:
|
589 |
+
_mess = (_iermess2[ierm][0] +
|
590 |
+
"\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f" %
|
591 |
+
(kx, ky, len(tx), len(ty), m, fp, s))
|
592 |
+
warnings.warn(RuntimeWarning(_mess), stacklevel=2)
|
593 |
+
if ierm > 0 and not full_output:
|
594 |
+
if ier in [1, 2, 3, 4, 5]:
|
595 |
+
_mess = ("\n\tkx,ky=%d,%d nx,ny=%d,%d m=%d fp=%f s=%f" %
|
596 |
+
(kx, ky, len(tx), len(ty), m, fp, s))
|
597 |
+
warnings.warn(RuntimeWarning(_iermess2[ierm][0] + _mess), stacklevel=2)
|
598 |
+
else:
|
599 |
+
try:
|
600 |
+
raise _iermess2[ierm][1](_iermess2[ierm][0])
|
601 |
+
except KeyError as e:
|
602 |
+
raise _iermess2['unknown'][1](_iermess2['unknown'][0]) from e
|
603 |
+
if full_output:
|
604 |
+
try:
|
605 |
+
return tck, fp, ier, _iermess2[ierm][0]
|
606 |
+
except KeyError:
|
607 |
+
return tck, fp, ier, _iermess2['unknown'][0]
|
608 |
+
else:
|
609 |
+
return tck
|
610 |
+
|
611 |
+
|
612 |
+
def bisplev(x, y, tck, dx=0, dy=0):
|
613 |
+
"""
|
614 |
+
Evaluate a bivariate B-spline and its derivatives.
|
615 |
+
|
616 |
+
Return a rank-2 array of spline function values (or spline derivative
|
617 |
+
values) at points given by the cross-product of the rank-1 arrays `x` and
|
618 |
+
`y`. In special cases, return an array or just a float if either `x` or
|
619 |
+
`y` or both are floats. Based on BISPEV and PARDER from FITPACK.
|
620 |
+
|
621 |
+
Parameters
|
622 |
+
----------
|
623 |
+
x, y : ndarray
|
624 |
+
Rank-1 arrays specifying the domain over which to evaluate the
|
625 |
+
spline or its derivative.
|
626 |
+
tck : tuple
|
627 |
+
A sequence of length 5 returned by `bisplrep` containing the knot
|
628 |
+
locations, the coefficients, and the degree of the spline:
|
629 |
+
[tx, ty, c, kx, ky].
|
630 |
+
dx, dy : int, optional
|
631 |
+
The orders of the partial derivatives in `x` and `y` respectively.
|
632 |
+
|
633 |
+
Returns
|
634 |
+
-------
|
635 |
+
vals : ndarray
|
636 |
+
The B-spline or its derivative evaluated over the set formed by
|
637 |
+
the cross-product of `x` and `y`.
|
638 |
+
|
639 |
+
See Also
|
640 |
+
--------
|
641 |
+
splprep, splrep, splint, sproot, splev
|
642 |
+
UnivariateSpline, BivariateSpline
|
643 |
+
|
644 |
+
Notes
|
645 |
+
-----
|
646 |
+
See `bisplrep` to generate the `tck` representation.
|
647 |
+
|
648 |
+
References
|
649 |
+
----------
|
650 |
+
.. [1] Dierckx P. : An algorithm for surface fitting
|
651 |
+
with spline functions
|
652 |
+
Ima J. Numer. Anal. 1 (1981) 267-283.
|
653 |
+
.. [2] Dierckx P. : An algorithm for surface fitting
|
654 |
+
with spline functions
|
655 |
+
report tw50, Dept. Computer Science,K.U.Leuven, 1980.
|
656 |
+
.. [3] Dierckx P. : Curve and surface fitting with splines,
|
657 |
+
Monographs on Numerical Analysis, Oxford University Press, 1993.
|
658 |
+
|
659 |
+
Examples
|
660 |
+
--------
|
661 |
+
Examples are given :ref:`in the tutorial <tutorial-interpolate_2d_spline>`.
|
662 |
+
|
663 |
+
"""
|
664 |
+
tx, ty, c, kx, ky = tck
|
665 |
+
if not (0 <= dx < kx):
|
666 |
+
raise ValueError("0 <= dx = %d < kx = %d must hold" % (dx, kx))
|
667 |
+
if not (0 <= dy < ky):
|
668 |
+
raise ValueError("0 <= dy = %d < ky = %d must hold" % (dy, ky))
|
669 |
+
x, y = map(atleast_1d, [x, y])
|
670 |
+
if (len(x.shape) != 1) or (len(y.shape) != 1):
|
671 |
+
raise ValueError("First two entries should be rank-1 arrays.")
|
672 |
+
|
673 |
+
msg = "Too many data points to interpolate."
|
674 |
+
|
675 |
+
_int_overflow(x.size * y.size, MemoryError, msg=msg)
|
676 |
+
|
677 |
+
if dx != 0 or dy != 0:
|
678 |
+
_int_overflow((tx.size - kx - 1)*(ty.size - ky - 1),
|
679 |
+
MemoryError, msg=msg)
|
680 |
+
z, ier = dfitpack.parder(tx, ty, c, kx, ky, dx, dy, x, y)
|
681 |
+
else:
|
682 |
+
z, ier = dfitpack.bispev(tx, ty, c, kx, ky, x, y)
|
683 |
+
|
684 |
+
if ier == 10:
|
685 |
+
raise ValueError("Invalid input data")
|
686 |
+
if ier:
|
687 |
+
raise TypeError("An error occurred")
|
688 |
+
z.shape = len(x), len(y)
|
689 |
+
if len(z) > 1:
|
690 |
+
return z
|
691 |
+
if len(z[0]) > 1:
|
692 |
+
return z[0]
|
693 |
+
return z[0][0]
|
694 |
+
|
695 |
+
|
696 |
+
def dblint(xa, xb, ya, yb, tck):
|
697 |
+
"""Evaluate the integral of a spline over area [xa,xb] x [ya,yb].
|
698 |
+
|
699 |
+
Parameters
|
700 |
+
----------
|
701 |
+
xa, xb : float
|
702 |
+
The end-points of the x integration interval.
|
703 |
+
ya, yb : float
|
704 |
+
The end-points of the y integration interval.
|
705 |
+
tck : list [tx, ty, c, kx, ky]
|
706 |
+
A sequence of length 5 returned by bisplrep containing the knot
|
707 |
+
locations tx, ty, the coefficients c, and the degrees kx, ky
|
708 |
+
of the spline.
|
709 |
+
|
710 |
+
Returns
|
711 |
+
-------
|
712 |
+
integ : float
|
713 |
+
The value of the resulting integral.
|
714 |
+
"""
|
715 |
+
tx, ty, c, kx, ky = tck
|
716 |
+
return dfitpack.dblint(tx, ty, c, kx, ky, xa, xb, ya, yb)
|
717 |
+
|
718 |
+
|
719 |
+
def insert(x, tck, m=1, per=0):
|
720 |
+
# see the docstring of `_fitpack_py/insert`
|
721 |
+
t, c, k = tck
|
722 |
+
try:
|
723 |
+
c[0][0]
|
724 |
+
parametric = True
|
725 |
+
except Exception:
|
726 |
+
parametric = False
|
727 |
+
if parametric:
|
728 |
+
cc = []
|
729 |
+
for c_vals in c:
|
730 |
+
tt, cc_val, kk = insert(x, [t, c_vals, k], m)
|
731 |
+
cc.append(cc_val)
|
732 |
+
return (tt, cc, kk)
|
733 |
+
else:
|
734 |
+
tt, cc, ier = _fitpack._insert(per, t, c, k, x, m)
|
735 |
+
if ier == 10:
|
736 |
+
raise ValueError("Invalid input data")
|
737 |
+
if ier:
|
738 |
+
raise TypeError("An error occurred")
|
739 |
+
return (tt, cc, k)
|
740 |
+
|
741 |
+
|
742 |
+
def splder(tck, n=1):
|
743 |
+
# see the docstring of `_fitpack_py/splder`
|
744 |
+
if n < 0:
|
745 |
+
return splantider(tck, -n)
|
746 |
+
|
747 |
+
t, c, k = tck
|
748 |
+
|
749 |
+
if n > k:
|
750 |
+
raise ValueError(f"Order of derivative (n = {n!r}) must be <= "
|
751 |
+
f"order of spline (k = {tck[2]!r})")
|
752 |
+
|
753 |
+
# Extra axes for the trailing dims of the `c` array:
|
754 |
+
sh = (slice(None),) + ((None,)*len(c.shape[1:]))
|
755 |
+
|
756 |
+
with np.errstate(invalid='raise', divide='raise'):
|
757 |
+
try:
|
758 |
+
for j in range(n):
|
759 |
+
# See e.g. Schumaker, Spline Functions: Basic Theory, Chapter 5
|
760 |
+
|
761 |
+
# Compute the denominator in the differentiation formula.
|
762 |
+
# (and append trailing dims, if necessary)
|
763 |
+
dt = t[k+1:-1] - t[1:-k-1]
|
764 |
+
dt = dt[sh]
|
765 |
+
# Compute the new coefficients
|
766 |
+
c = (c[1:-1-k] - c[:-2-k]) * k / dt
|
767 |
+
# Pad coefficient array to same size as knots (FITPACK
|
768 |
+
# convention)
|
769 |
+
c = np.r_[c, np.zeros((k,) + c.shape[1:])]
|
770 |
+
# Adjust knots
|
771 |
+
t = t[1:-1]
|
772 |
+
k -= 1
|
773 |
+
except FloatingPointError as e:
|
774 |
+
raise ValueError(("The spline has internal repeated knots "
|
775 |
+
"and is not differentiable %d times") % n) from e
|
776 |
+
|
777 |
+
return t, c, k
|
778 |
+
|
779 |
+
|
780 |
+
def splantider(tck, n=1):
|
781 |
+
# see the docstring of `_fitpack_py/splantider`
|
782 |
+
if n < 0:
|
783 |
+
return splder(tck, -n)
|
784 |
+
|
785 |
+
t, c, k = tck
|
786 |
+
|
787 |
+
# Extra axes for the trailing dims of the `c` array:
|
788 |
+
sh = (slice(None),) + (None,)*len(c.shape[1:])
|
789 |
+
|
790 |
+
for j in range(n):
|
791 |
+
# This is the inverse set of operations to splder.
|
792 |
+
|
793 |
+
# Compute the multiplier in the antiderivative formula.
|
794 |
+
dt = t[k+1:] - t[:-k-1]
|
795 |
+
dt = dt[sh]
|
796 |
+
# Compute the new coefficients
|
797 |
+
c = np.cumsum(c[:-k-1] * dt, axis=0) / (k + 1)
|
798 |
+
c = np.r_[np.zeros((1,) + c.shape[1:]),
|
799 |
+
c,
|
800 |
+
[c[-1]] * (k+2)]
|
801 |
+
# New knots
|
802 |
+
t = np.r_[t[0], t, t[-1]]
|
803 |
+
k += 1
|
804 |
+
|
805 |
+
return t, c, k
|
venv/lib/python3.10/site-packages/scipy/interpolate/_fitpack_py.py
ADDED
@@ -0,0 +1,796 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = ['splrep', 'splprep', 'splev', 'splint', 'sproot', 'spalde',
|
2 |
+
'bisplrep', 'bisplev', 'insert', 'splder', 'splantider']
|
3 |
+
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# These are in the API for fitpack even if not used in fitpack.py itself.
|
8 |
+
from ._fitpack_impl import bisplrep, bisplev, dblint # noqa: F401
|
9 |
+
from . import _fitpack_impl as _impl
|
10 |
+
from ._bsplines import BSpline
|
11 |
+
|
12 |
+
|
13 |
+
def splprep(x, w=None, u=None, ub=None, ue=None, k=3, task=0, s=None, t=None,
|
14 |
+
full_output=0, nest=None, per=0, quiet=1):
|
15 |
+
"""
|
16 |
+
Find the B-spline representation of an N-D curve.
|
17 |
+
|
18 |
+
Given a list of N rank-1 arrays, `x`, which represent a curve in
|
19 |
+
N-dimensional space parametrized by `u`, find a smooth approximating
|
20 |
+
spline curve g(`u`). Uses the FORTRAN routine parcur from FITPACK.
|
21 |
+
|
22 |
+
Parameters
|
23 |
+
----------
|
24 |
+
x : array_like
|
25 |
+
A list of sample vector arrays representing the curve.
|
26 |
+
w : array_like, optional
|
27 |
+
Strictly positive rank-1 array of weights the same length as `x[0]`.
|
28 |
+
The weights are used in computing the weighted least-squares spline
|
29 |
+
fit. If the errors in the `x` values have standard-deviation given by
|
30 |
+
the vector d, then `w` should be 1/d. Default is ``ones(len(x[0]))``.
|
31 |
+
u : array_like, optional
|
32 |
+
An array of parameter values. If not given, these values are
|
33 |
+
calculated automatically as ``M = len(x[0])``, where
|
34 |
+
|
35 |
+
v[0] = 0
|
36 |
+
|
37 |
+
v[i] = v[i-1] + distance(`x[i]`, `x[i-1]`)
|
38 |
+
|
39 |
+
u[i] = v[i] / v[M-1]
|
40 |
+
|
41 |
+
ub, ue : int, optional
|
42 |
+
The end-points of the parameters interval. Defaults to
|
43 |
+
u[0] and u[-1].
|
44 |
+
k : int, optional
|
45 |
+
Degree of the spline. Cubic splines are recommended.
|
46 |
+
Even values of `k` should be avoided especially with a small s-value.
|
47 |
+
``1 <= k <= 5``, default is 3.
|
48 |
+
task : int, optional
|
49 |
+
If task==0 (default), find t and c for a given smoothing factor, s.
|
50 |
+
If task==1, find t and c for another value of the smoothing factor, s.
|
51 |
+
There must have been a previous call with task=0 or task=1
|
52 |
+
for the same set of data.
|
53 |
+
If task=-1 find the weighted least square spline for a given set of
|
54 |
+
knots, t.
|
55 |
+
s : float, optional
|
56 |
+
A smoothing condition. The amount of smoothness is determined by
|
57 |
+
satisfying the conditions: ``sum((w * (y - g))**2,axis=0) <= s``,
|
58 |
+
where g(x) is the smoothed interpolation of (x,y). The user can
|
59 |
+
use `s` to control the trade-off between closeness and smoothness
|
60 |
+
of fit. Larger `s` means more smoothing while smaller values of `s`
|
61 |
+
indicate less smoothing. Recommended values of `s` depend on the
|
62 |
+
weights, w. If the weights represent the inverse of the
|
63 |
+
standard-deviation of y, then a good `s` value should be found in
|
64 |
+
the range ``(m-sqrt(2*m),m+sqrt(2*m))``, where m is the number of
|
65 |
+
data points in x, y, and w.
|
66 |
+
t : array, optional
|
67 |
+
The knots needed for ``task=-1``.
|
68 |
+
There must be at least ``2*k+2`` knots.
|
69 |
+
full_output : int, optional
|
70 |
+
If non-zero, then return optional outputs.
|
71 |
+
nest : int, optional
|
72 |
+
An over-estimate of the total number of knots of the spline to
|
73 |
+
help in determining the storage space. By default nest=m/2.
|
74 |
+
Always large enough is nest=m+k+1.
|
75 |
+
per : int, optional
|
76 |
+
If non-zero, data points are considered periodic with period
|
77 |
+
``x[m-1] - x[0]`` and a smooth periodic spline approximation is
|
78 |
+
returned. Values of ``y[m-1]`` and ``w[m-1]`` are not used.
|
79 |
+
quiet : int, optional
|
80 |
+
Non-zero to suppress messages.
|
81 |
+
|
82 |
+
Returns
|
83 |
+
-------
|
84 |
+
tck : tuple
|
85 |
+
A tuple, ``(t,c,k)`` containing the vector of knots, the B-spline
|
86 |
+
coefficients, and the degree of the spline.
|
87 |
+
u : array
|
88 |
+
An array of the values of the parameter.
|
89 |
+
fp : float
|
90 |
+
The weighted sum of squared residuals of the spline approximation.
|
91 |
+
ier : int
|
92 |
+
An integer flag about splrep success. Success is indicated
|
93 |
+
if ier<=0. If ier in [1,2,3] an error occurred but was not raised.
|
94 |
+
Otherwise an error is raised.
|
95 |
+
msg : str
|
96 |
+
A message corresponding to the integer flag, ier.
|
97 |
+
|
98 |
+
See Also
|
99 |
+
--------
|
100 |
+
splrep, splev, sproot, spalde, splint,
|
101 |
+
bisplrep, bisplev
|
102 |
+
UnivariateSpline, BivariateSpline
|
103 |
+
BSpline
|
104 |
+
make_interp_spline
|
105 |
+
|
106 |
+
Notes
|
107 |
+
-----
|
108 |
+
See `splev` for evaluation of the spline and its derivatives.
|
109 |
+
The number of dimensions N must be smaller than 11.
|
110 |
+
|
111 |
+
The number of coefficients in the `c` array is ``k+1`` less than the number
|
112 |
+
of knots, ``len(t)``. This is in contrast with `splrep`, which zero-pads
|
113 |
+
the array of coefficients to have the same length as the array of knots.
|
114 |
+
These additional coefficients are ignored by evaluation routines, `splev`
|
115 |
+
and `BSpline`.
|
116 |
+
|
117 |
+
References
|
118 |
+
----------
|
119 |
+
.. [1] P. Dierckx, "Algorithms for smoothing data with periodic and
|
120 |
+
parametric splines, Computer Graphics and Image Processing",
|
121 |
+
20 (1982) 171-184.
|
122 |
+
.. [2] P. Dierckx, "Algorithms for smoothing data with periodic and
|
123 |
+
parametric splines", report tw55, Dept. Computer Science,
|
124 |
+
K.U.Leuven, 1981.
|
125 |
+
.. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs on
|
126 |
+
Numerical Analysis, Oxford University Press, 1993.
|
127 |
+
|
128 |
+
Examples
|
129 |
+
--------
|
130 |
+
Generate a discretization of a limacon curve in the polar coordinates:
|
131 |
+
|
132 |
+
>>> import numpy as np
|
133 |
+
>>> phi = np.linspace(0, 2.*np.pi, 40)
|
134 |
+
>>> r = 0.5 + np.cos(phi) # polar coords
|
135 |
+
>>> x, y = r * np.cos(phi), r * np.sin(phi) # convert to cartesian
|
136 |
+
|
137 |
+
And interpolate:
|
138 |
+
|
139 |
+
>>> from scipy.interpolate import splprep, splev
|
140 |
+
>>> tck, u = splprep([x, y], s=0)
|
141 |
+
>>> new_points = splev(u, tck)
|
142 |
+
|
143 |
+
Notice that (i) we force interpolation by using `s=0`,
|
144 |
+
(ii) the parameterization, ``u``, is generated automatically.
|
145 |
+
Now plot the result:
|
146 |
+
|
147 |
+
>>> import matplotlib.pyplot as plt
|
148 |
+
>>> fig, ax = plt.subplots()
|
149 |
+
>>> ax.plot(x, y, 'ro')
|
150 |
+
>>> ax.plot(new_points[0], new_points[1], 'r-')
|
151 |
+
>>> plt.show()
|
152 |
+
|
153 |
+
"""
|
154 |
+
|
155 |
+
res = _impl.splprep(x, w, u, ub, ue, k, task, s, t, full_output, nest, per,
|
156 |
+
quiet)
|
157 |
+
return res
|
158 |
+
|
159 |
+
|
160 |
+
def splrep(x, y, w=None, xb=None, xe=None, k=3, task=0, s=None, t=None,
|
161 |
+
full_output=0, per=0, quiet=1):
|
162 |
+
"""
|
163 |
+
Find the B-spline representation of a 1-D curve.
|
164 |
+
|
165 |
+
Given the set of data points ``(x[i], y[i])`` determine a smooth spline
|
166 |
+
approximation of degree k on the interval ``xb <= x <= xe``.
|
167 |
+
|
168 |
+
Parameters
|
169 |
+
----------
|
170 |
+
x, y : array_like
|
171 |
+
The data points defining a curve ``y = f(x)``.
|
172 |
+
w : array_like, optional
|
173 |
+
Strictly positive rank-1 array of weights the same length as `x` and `y`.
|
174 |
+
The weights are used in computing the weighted least-squares spline
|
175 |
+
fit. If the errors in the `y` values have standard-deviation given by the
|
176 |
+
vector ``d``, then `w` should be ``1/d``. Default is ``ones(len(x))``.
|
177 |
+
xb, xe : float, optional
|
178 |
+
The interval to fit. If None, these default to ``x[0]`` and ``x[-1]``
|
179 |
+
respectively.
|
180 |
+
k : int, optional
|
181 |
+
The degree of the spline fit. It is recommended to use cubic splines.
|
182 |
+
Even values of `k` should be avoided especially with small `s` values.
|
183 |
+
``1 <= k <= 5``.
|
184 |
+
task : {1, 0, -1}, optional
|
185 |
+
If ``task==0``, find ``t`` and ``c`` for a given smoothing factor, `s`.
|
186 |
+
|
187 |
+
If ``task==1`` find ``t`` and ``c`` for another value of the smoothing factor,
|
188 |
+
`s`. There must have been a previous call with ``task=0`` or ``task=1`` for
|
189 |
+
the same set of data (``t`` will be stored an used internally)
|
190 |
+
|
191 |
+
If ``task=-1`` find the weighted least square spline for a given set of
|
192 |
+
knots, ``t``. These should be interior knots as knots on the ends will be
|
193 |
+
added automatically.
|
194 |
+
s : float, optional
|
195 |
+
A smoothing condition. The amount of smoothness is determined by
|
196 |
+
satisfying the conditions: ``sum((w * (y - g))**2,axis=0) <= s`` where ``g(x)``
|
197 |
+
is the smoothed interpolation of ``(x,y)``. The user can use `s` to control
|
198 |
+
the tradeoff between closeness and smoothness of fit. Larger `s` means
|
199 |
+
more smoothing while smaller values of `s` indicate less smoothing.
|
200 |
+
Recommended values of `s` depend on the weights, `w`. If the weights
|
201 |
+
represent the inverse of the standard-deviation of `y`, then a good `s`
|
202 |
+
value should be found in the range ``(m-sqrt(2*m),m+sqrt(2*m))`` where ``m`` is
|
203 |
+
the number of datapoints in `x`, `y`, and `w`. default : ``s=m-sqrt(2*m)`` if
|
204 |
+
weights are supplied. ``s = 0.0`` (interpolating) if no weights are
|
205 |
+
supplied.
|
206 |
+
t : array_like, optional
|
207 |
+
The knots needed for ``task=-1``. If given then task is automatically set
|
208 |
+
to ``-1``.
|
209 |
+
full_output : bool, optional
|
210 |
+
If non-zero, then return optional outputs.
|
211 |
+
per : bool, optional
|
212 |
+
If non-zero, data points are considered periodic with period ``x[m-1]`` -
|
213 |
+
``x[0]`` and a smooth periodic spline approximation is returned. Values of
|
214 |
+
``y[m-1]`` and ``w[m-1]`` are not used.
|
215 |
+
The default is zero, corresponding to boundary condition 'not-a-knot'.
|
216 |
+
quiet : bool, optional
|
217 |
+
Non-zero to suppress messages.
|
218 |
+
|
219 |
+
Returns
|
220 |
+
-------
|
221 |
+
tck : tuple
|
222 |
+
A tuple ``(t,c,k)`` containing the vector of knots, the B-spline
|
223 |
+
coefficients, and the degree of the spline.
|
224 |
+
fp : array, optional
|
225 |
+
The weighted sum of squared residuals of the spline approximation.
|
226 |
+
ier : int, optional
|
227 |
+
An integer flag about splrep success. Success is indicated if ``ier<=0``.
|
228 |
+
If ``ier in [1,2,3]``, an error occurred but was not raised. Otherwise an
|
229 |
+
error is raised.
|
230 |
+
msg : str, optional
|
231 |
+
A message corresponding to the integer flag, `ier`.
|
232 |
+
|
233 |
+
See Also
|
234 |
+
--------
|
235 |
+
UnivariateSpline, BivariateSpline
|
236 |
+
splprep, splev, sproot, spalde, splint
|
237 |
+
bisplrep, bisplev
|
238 |
+
BSpline
|
239 |
+
make_interp_spline
|
240 |
+
|
241 |
+
Notes
|
242 |
+
-----
|
243 |
+
See `splev` for evaluation of the spline and its derivatives. Uses the
|
244 |
+
FORTRAN routine ``curfit`` from FITPACK.
|
245 |
+
|
246 |
+
The user is responsible for assuring that the values of `x` are unique.
|
247 |
+
Otherwise, `splrep` will not return sensible results.
|
248 |
+
|
249 |
+
If provided, knots `t` must satisfy the Schoenberg-Whitney conditions,
|
250 |
+
i.e., there must be a subset of data points ``x[j]`` such that
|
251 |
+
``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``.
|
252 |
+
|
253 |
+
This routine zero-pads the coefficients array ``c`` to have the same length
|
254 |
+
as the array of knots ``t`` (the trailing ``k + 1`` coefficients are ignored
|
255 |
+
by the evaluation routines, `splev` and `BSpline`.) This is in contrast with
|
256 |
+
`splprep`, which does not zero-pad the coefficients.
|
257 |
+
|
258 |
+
The default boundary condition is 'not-a-knot', i.e. the first and second
|
259 |
+
segment at a curve end are the same polynomial. More boundary conditions are
|
260 |
+
available in `CubicSpline`.
|
261 |
+
|
262 |
+
References
|
263 |
+
----------
|
264 |
+
Based on algorithms described in [1]_, [2]_, [3]_, and [4]_:
|
265 |
+
|
266 |
+
.. [1] P. Dierckx, "An algorithm for smoothing, differentiation and
|
267 |
+
integration of experimental data using spline functions",
|
268 |
+
J.Comp.Appl.Maths 1 (1975) 165-184.
|
269 |
+
.. [2] P. Dierckx, "A fast algorithm for smoothing data on a rectangular
|
270 |
+
grid while using spline functions", SIAM J.Numer.Anal. 19 (1982)
|
271 |
+
1286-1304.
|
272 |
+
.. [3] P. Dierckx, "An improved algorithm for curve fitting with spline
|
273 |
+
functions", report tw54, Dept. Computer Science,K.U. Leuven, 1981.
|
274 |
+
.. [4] P. Dierckx, "Curve and surface fitting with splines", Monographs on
|
275 |
+
Numerical Analysis, Oxford University Press, 1993.
|
276 |
+
|
277 |
+
Examples
|
278 |
+
--------
|
279 |
+
You can interpolate 1-D points with a B-spline curve.
|
280 |
+
Further examples are given in
|
281 |
+
:ref:`in the tutorial <tutorial-interpolate_splXXX>`.
|
282 |
+
|
283 |
+
>>> import numpy as np
|
284 |
+
>>> import matplotlib.pyplot as plt
|
285 |
+
>>> from scipy.interpolate import splev, splrep
|
286 |
+
>>> x = np.linspace(0, 10, 10)
|
287 |
+
>>> y = np.sin(x)
|
288 |
+
>>> spl = splrep(x, y)
|
289 |
+
>>> x2 = np.linspace(0, 10, 200)
|
290 |
+
>>> y2 = splev(x2, spl)
|
291 |
+
>>> plt.plot(x, y, 'o', x2, y2)
|
292 |
+
>>> plt.show()
|
293 |
+
|
294 |
+
"""
|
295 |
+
res = _impl.splrep(x, y, w, xb, xe, k, task, s, t, full_output, per, quiet)
|
296 |
+
return res
|
297 |
+
|
298 |
+
|
299 |
+
def splev(x, tck, der=0, ext=0):
|
300 |
+
"""
|
301 |
+
Evaluate a B-spline or its derivatives.
|
302 |
+
|
303 |
+
Given the knots and coefficients of a B-spline representation, evaluate
|
304 |
+
the value of the smoothing polynomial and its derivatives. This is a
|
305 |
+
wrapper around the FORTRAN routines splev and splder of FITPACK.
|
306 |
+
|
307 |
+
Parameters
|
308 |
+
----------
|
309 |
+
x : array_like
|
310 |
+
An array of points at which to return the value of the smoothed
|
311 |
+
spline or its derivatives. If `tck` was returned from `splprep`,
|
312 |
+
then the parameter values, u should be given.
|
313 |
+
tck : 3-tuple or a BSpline object
|
314 |
+
If a tuple, then it should be a sequence of length 3 returned by
|
315 |
+
`splrep` or `splprep` containing the knots, coefficients, and degree
|
316 |
+
of the spline. (Also see Notes.)
|
317 |
+
der : int, optional
|
318 |
+
The order of derivative of the spline to compute (must be less than
|
319 |
+
or equal to k, the degree of the spline).
|
320 |
+
ext : int, optional
|
321 |
+
Controls the value returned for elements of ``x`` not in the
|
322 |
+
interval defined by the knot sequence.
|
323 |
+
|
324 |
+
* if ext=0, return the extrapolated value.
|
325 |
+
* if ext=1, return 0
|
326 |
+
* if ext=2, raise a ValueError
|
327 |
+
* if ext=3, return the boundary value.
|
328 |
+
|
329 |
+
The default value is 0.
|
330 |
+
|
331 |
+
Returns
|
332 |
+
-------
|
333 |
+
y : ndarray or list of ndarrays
|
334 |
+
An array of values representing the spline function evaluated at
|
335 |
+
the points in `x`. If `tck` was returned from `splprep`, then this
|
336 |
+
is a list of arrays representing the curve in an N-D space.
|
337 |
+
|
338 |
+
See Also
|
339 |
+
--------
|
340 |
+
splprep, splrep, sproot, spalde, splint
|
341 |
+
bisplrep, bisplev
|
342 |
+
BSpline
|
343 |
+
|
344 |
+
Notes
|
345 |
+
-----
|
346 |
+
Manipulating the tck-tuples directly is not recommended. In new code,
|
347 |
+
prefer using `BSpline` objects.
|
348 |
+
|
349 |
+
References
|
350 |
+
----------
|
351 |
+
.. [1] C. de Boor, "On calculating with b-splines", J. Approximation
|
352 |
+
Theory, 6, p.50-62, 1972.
|
353 |
+
.. [2] M. G. Cox, "The numerical evaluation of b-splines", J. Inst. Maths
|
354 |
+
Applics, 10, p.134-149, 1972.
|
355 |
+
.. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs
|
356 |
+
on Numerical Analysis, Oxford University Press, 1993.
|
357 |
+
|
358 |
+
Examples
|
359 |
+
--------
|
360 |
+
Examples are given :ref:`in the tutorial <tutorial-interpolate_splXXX>`.
|
361 |
+
|
362 |
+
"""
|
363 |
+
if isinstance(tck, BSpline):
|
364 |
+
if tck.c.ndim > 1:
|
365 |
+
mesg = ("Calling splev() with BSpline objects with c.ndim > 1 is "
|
366 |
+
"not allowed. Use BSpline.__call__(x) instead.")
|
367 |
+
raise ValueError(mesg)
|
368 |
+
|
369 |
+
# remap the out-of-bounds behavior
|
370 |
+
try:
|
371 |
+
extrapolate = {0: True, }[ext]
|
372 |
+
except KeyError as e:
|
373 |
+
raise ValueError("Extrapolation mode %s is not supported "
|
374 |
+
"by BSpline." % ext) from e
|
375 |
+
|
376 |
+
return tck(x, der, extrapolate=extrapolate)
|
377 |
+
else:
|
378 |
+
return _impl.splev(x, tck, der, ext)
|
379 |
+
|
380 |
+
|
381 |
+
def splint(a, b, tck, full_output=0):
|
382 |
+
"""
|
383 |
+
Evaluate the definite integral of a B-spline between two given points.
|
384 |
+
|
385 |
+
Parameters
|
386 |
+
----------
|
387 |
+
a, b : float
|
388 |
+
The end-points of the integration interval.
|
389 |
+
tck : tuple or a BSpline instance
|
390 |
+
If a tuple, then it should be a sequence of length 3, containing the
|
391 |
+
vector of knots, the B-spline coefficients, and the degree of the
|
392 |
+
spline (see `splev`).
|
393 |
+
full_output : int, optional
|
394 |
+
Non-zero to return optional output.
|
395 |
+
|
396 |
+
Returns
|
397 |
+
-------
|
398 |
+
integral : float
|
399 |
+
The resulting integral.
|
400 |
+
wrk : ndarray
|
401 |
+
An array containing the integrals of the normalized B-splines
|
402 |
+
defined on the set of knots.
|
403 |
+
(Only returned if `full_output` is non-zero)
|
404 |
+
|
405 |
+
See Also
|
406 |
+
--------
|
407 |
+
splprep, splrep, sproot, spalde, splev
|
408 |
+
bisplrep, bisplev
|
409 |
+
BSpline
|
410 |
+
|
411 |
+
Notes
|
412 |
+
-----
|
413 |
+
`splint` silently assumes that the spline function is zero outside the data
|
414 |
+
interval (`a`, `b`).
|
415 |
+
|
416 |
+
Manipulating the tck-tuples directly is not recommended. In new code,
|
417 |
+
prefer using the `BSpline` objects.
|
418 |
+
|
419 |
+
References
|
420 |
+
----------
|
421 |
+
.. [1] P.W. Gaffney, The calculation of indefinite integrals of b-splines",
|
422 |
+
J. Inst. Maths Applics, 17, p.37-41, 1976.
|
423 |
+
.. [2] P. Dierckx, "Curve and surface fitting with splines", Monographs
|
424 |
+
on Numerical Analysis, Oxford University Press, 1993.
|
425 |
+
|
426 |
+
Examples
|
427 |
+
--------
|
428 |
+
Examples are given :ref:`in the tutorial <tutorial-interpolate_splXXX>`.
|
429 |
+
|
430 |
+
"""
|
431 |
+
if isinstance(tck, BSpline):
|
432 |
+
if tck.c.ndim > 1:
|
433 |
+
mesg = ("Calling splint() with BSpline objects with c.ndim > 1 is "
|
434 |
+
"not allowed. Use BSpline.integrate() instead.")
|
435 |
+
raise ValueError(mesg)
|
436 |
+
|
437 |
+
if full_output != 0:
|
438 |
+
mesg = ("full_output = %s is not supported. Proceeding as if "
|
439 |
+
"full_output = 0" % full_output)
|
440 |
+
|
441 |
+
return tck.integrate(a, b, extrapolate=False)
|
442 |
+
else:
|
443 |
+
return _impl.splint(a, b, tck, full_output)
|
444 |
+
|
445 |
+
|
446 |
+
def sproot(tck, mest=10):
|
447 |
+
"""
|
448 |
+
Find the roots of a cubic B-spline.
|
449 |
+
|
450 |
+
Given the knots (>=8) and coefficients of a cubic B-spline return the
|
451 |
+
roots of the spline.
|
452 |
+
|
453 |
+
Parameters
|
454 |
+
----------
|
455 |
+
tck : tuple or a BSpline object
|
456 |
+
If a tuple, then it should be a sequence of length 3, containing the
|
457 |
+
vector of knots, the B-spline coefficients, and the degree of the
|
458 |
+
spline.
|
459 |
+
The number of knots must be >= 8, and the degree must be 3.
|
460 |
+
The knots must be a montonically increasing sequence.
|
461 |
+
mest : int, optional
|
462 |
+
An estimate of the number of zeros (Default is 10).
|
463 |
+
|
464 |
+
Returns
|
465 |
+
-------
|
466 |
+
zeros : ndarray
|
467 |
+
An array giving the roots of the spline.
|
468 |
+
|
469 |
+
See Also
|
470 |
+
--------
|
471 |
+
splprep, splrep, splint, spalde, splev
|
472 |
+
bisplrep, bisplev
|
473 |
+
BSpline
|
474 |
+
|
475 |
+
Notes
|
476 |
+
-----
|
477 |
+
Manipulating the tck-tuples directly is not recommended. In new code,
|
478 |
+
prefer using the `BSpline` objects.
|
479 |
+
|
480 |
+
References
|
481 |
+
----------
|
482 |
+
.. [1] C. de Boor, "On calculating with b-splines", J. Approximation
|
483 |
+
Theory, 6, p.50-62, 1972.
|
484 |
+
.. [2] M. G. Cox, "The numerical evaluation of b-splines", J. Inst. Maths
|
485 |
+
Applics, 10, p.134-149, 1972.
|
486 |
+
.. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs
|
487 |
+
on Numerical Analysis, Oxford University Press, 1993.
|
488 |
+
|
489 |
+
Examples
|
490 |
+
--------
|
491 |
+
|
492 |
+
For some data, this method may miss a root. This happens when one of
|
493 |
+
the spline knots (which FITPACK places automatically) happens to
|
494 |
+
coincide with the true root. A workaround is to convert to `PPoly`,
|
495 |
+
which uses a different root-finding algorithm.
|
496 |
+
|
497 |
+
For example,
|
498 |
+
|
499 |
+
>>> x = [1.96, 1.97, 1.98, 1.99, 2.00, 2.01, 2.02, 2.03, 2.04, 2.05]
|
500 |
+
>>> y = [-6.365470e-03, -4.790580e-03, -3.204320e-03, -1.607270e-03,
|
501 |
+
... 4.440892e-16, 1.616930e-03, 3.243000e-03, 4.877670e-03,
|
502 |
+
... 6.520430e-03, 8.170770e-03]
|
503 |
+
>>> from scipy.interpolate import splrep, sproot, PPoly
|
504 |
+
>>> tck = splrep(x, y, s=0)
|
505 |
+
>>> sproot(tck)
|
506 |
+
array([], dtype=float64)
|
507 |
+
|
508 |
+
Converting to a PPoly object does find the roots at `x=2`:
|
509 |
+
|
510 |
+
>>> ppoly = PPoly.from_spline(tck)
|
511 |
+
>>> ppoly.roots(extrapolate=False)
|
512 |
+
array([2.])
|
513 |
+
|
514 |
+
|
515 |
+
Further examples are given :ref:`in the tutorial
|
516 |
+
<tutorial-interpolate_splXXX>`.
|
517 |
+
|
518 |
+
"""
|
519 |
+
if isinstance(tck, BSpline):
|
520 |
+
if tck.c.ndim > 1:
|
521 |
+
mesg = ("Calling sproot() with BSpline objects with c.ndim > 1 is "
|
522 |
+
"not allowed.")
|
523 |
+
raise ValueError(mesg)
|
524 |
+
|
525 |
+
t, c, k = tck.tck
|
526 |
+
|
527 |
+
# _impl.sproot expects the interpolation axis to be last, so roll it.
|
528 |
+
# NB: This transpose is a no-op if c is 1D.
|
529 |
+
sh = tuple(range(c.ndim))
|
530 |
+
c = c.transpose(sh[1:] + (0,))
|
531 |
+
return _impl.sproot((t, c, k), mest)
|
532 |
+
else:
|
533 |
+
return _impl.sproot(tck, mest)
|
534 |
+
|
535 |
+
|
536 |
+
def spalde(x, tck):
|
537 |
+
"""
|
538 |
+
Evaluate all derivatives of a B-spline.
|
539 |
+
|
540 |
+
Given the knots and coefficients of a cubic B-spline compute all
|
541 |
+
derivatives up to order k at a point (or set of points).
|
542 |
+
|
543 |
+
Parameters
|
544 |
+
----------
|
545 |
+
x : array_like
|
546 |
+
A point or a set of points at which to evaluate the derivatives.
|
547 |
+
Note that ``t(k) <= x <= t(n-k+1)`` must hold for each `x`.
|
548 |
+
tck : tuple
|
549 |
+
A tuple (t,c,k) containing the vector of knots,
|
550 |
+
the B-spline coefficients, and the degree of the spline.
|
551 |
+
|
552 |
+
Returns
|
553 |
+
-------
|
554 |
+
results : {ndarray, list of ndarrays}
|
555 |
+
An array (or a list of arrays) containing all derivatives
|
556 |
+
up to order k inclusive for each point `x`.
|
557 |
+
|
558 |
+
See Also
|
559 |
+
--------
|
560 |
+
splprep, splrep, splint, sproot, splev, bisplrep, bisplev,
|
561 |
+
UnivariateSpline, BivariateSpline
|
562 |
+
|
563 |
+
References
|
564 |
+
----------
|
565 |
+
.. [1] de Boor C : On calculating with b-splines, J. Approximation Theory
|
566 |
+
6 (1972) 50-62.
|
567 |
+
.. [2] Cox M.G. : The numerical evaluation of b-splines, J. Inst. Maths
|
568 |
+
applics 10 (1972) 134-149.
|
569 |
+
.. [3] Dierckx P. : Curve and surface fitting with splines, Monographs on
|
570 |
+
Numerical Analysis, Oxford University Press, 1993.
|
571 |
+
|
572 |
+
"""
|
573 |
+
if isinstance(tck, BSpline):
|
574 |
+
raise TypeError("spalde does not accept BSpline instances.")
|
575 |
+
else:
|
576 |
+
return _impl.spalde(x, tck)
|
577 |
+
|
578 |
+
|
579 |
+
def insert(x, tck, m=1, per=0):
|
580 |
+
"""
|
581 |
+
Insert knots into a B-spline.
|
582 |
+
|
583 |
+
Given the knots and coefficients of a B-spline representation, create a
|
584 |
+
new B-spline with a knot inserted `m` times at point `x`.
|
585 |
+
This is a wrapper around the FORTRAN routine insert of FITPACK.
|
586 |
+
|
587 |
+
Parameters
|
588 |
+
----------
|
589 |
+
x (u) : float
|
590 |
+
A knot value at which to insert a new knot. If `tck` was returned
|
591 |
+
from ``splprep``, then the parameter values, u should be given.
|
592 |
+
tck : a `BSpline` instance or a tuple
|
593 |
+
If tuple, then it is expected to be a tuple (t,c,k) containing
|
594 |
+
the vector of knots, the B-spline coefficients, and the degree of
|
595 |
+
the spline.
|
596 |
+
m : int, optional
|
597 |
+
The number of times to insert the given knot (its multiplicity).
|
598 |
+
Default is 1.
|
599 |
+
per : int, optional
|
600 |
+
If non-zero, the input spline is considered periodic.
|
601 |
+
|
602 |
+
Returns
|
603 |
+
-------
|
604 |
+
BSpline instance or a tuple
|
605 |
+
A new B-spline with knots t, coefficients c, and degree k.
|
606 |
+
``t(k+1) <= x <= t(n-k)``, where k is the degree of the spline.
|
607 |
+
In case of a periodic spline (``per != 0``) there must be
|
608 |
+
either at least k interior knots t(j) satisfying ``t(k+1)<t(j)<=x``
|
609 |
+
or at least k interior knots t(j) satisfying ``x<=t(j)<t(n-k)``.
|
610 |
+
A tuple is returned iff the input argument `tck` is a tuple, otherwise
|
611 |
+
a BSpline object is constructed and returned.
|
612 |
+
|
613 |
+
Notes
|
614 |
+
-----
|
615 |
+
Based on algorithms from [1]_ and [2]_.
|
616 |
+
|
617 |
+
Manipulating the tck-tuples directly is not recommended. In new code,
|
618 |
+
prefer using the `BSpline` objects, in particular `BSpline.insert_knot`
|
619 |
+
method.
|
620 |
+
|
621 |
+
See Also
|
622 |
+
--------
|
623 |
+
BSpline.insert_knot
|
624 |
+
|
625 |
+
References
|
626 |
+
----------
|
627 |
+
.. [1] W. Boehm, "Inserting new knots into b-spline curves.",
|
628 |
+
Computer Aided Design, 12, p.199-201, 1980.
|
629 |
+
.. [2] P. Dierckx, "Curve and surface fitting with splines, Monographs on
|
630 |
+
Numerical Analysis", Oxford University Press, 1993.
|
631 |
+
|
632 |
+
Examples
|
633 |
+
--------
|
634 |
+
You can insert knots into a B-spline.
|
635 |
+
|
636 |
+
>>> from scipy.interpolate import splrep, insert
|
637 |
+
>>> import numpy as np
|
638 |
+
>>> x = np.linspace(0, 10, 5)
|
639 |
+
>>> y = np.sin(x)
|
640 |
+
>>> tck = splrep(x, y)
|
641 |
+
>>> tck[0]
|
642 |
+
array([ 0., 0., 0., 0., 5., 10., 10., 10., 10.])
|
643 |
+
|
644 |
+
A knot is inserted:
|
645 |
+
|
646 |
+
>>> tck_inserted = insert(3, tck)
|
647 |
+
>>> tck_inserted[0]
|
648 |
+
array([ 0., 0., 0., 0., 3., 5., 10., 10., 10., 10.])
|
649 |
+
|
650 |
+
Some knots are inserted:
|
651 |
+
|
652 |
+
>>> tck_inserted2 = insert(8, tck, m=3)
|
653 |
+
>>> tck_inserted2[0]
|
654 |
+
array([ 0., 0., 0., 0., 5., 8., 8., 8., 10., 10., 10., 10.])
|
655 |
+
|
656 |
+
"""
|
657 |
+
if isinstance(tck, BSpline):
|
658 |
+
|
659 |
+
t, c, k = tck.tck
|
660 |
+
|
661 |
+
# FITPACK expects the interpolation axis to be last, so roll it over
|
662 |
+
# NB: if c array is 1D, transposes are no-ops
|
663 |
+
sh = tuple(range(c.ndim))
|
664 |
+
c = c.transpose(sh[1:] + (0,))
|
665 |
+
t_, c_, k_ = _impl.insert(x, (t, c, k), m, per)
|
666 |
+
|
667 |
+
# and roll the last axis back
|
668 |
+
c_ = np.asarray(c_)
|
669 |
+
c_ = c_.transpose((sh[-1],) + sh[:-1])
|
670 |
+
return BSpline(t_, c_, k_)
|
671 |
+
else:
|
672 |
+
return _impl.insert(x, tck, m, per)
|
673 |
+
|
674 |
+
|
675 |
+
def splder(tck, n=1):
|
676 |
+
"""
|
677 |
+
Compute the spline representation of the derivative of a given spline
|
678 |
+
|
679 |
+
Parameters
|
680 |
+
----------
|
681 |
+
tck : BSpline instance or a tuple of (t, c, k)
|
682 |
+
Spline whose derivative to compute
|
683 |
+
n : int, optional
|
684 |
+
Order of derivative to evaluate. Default: 1
|
685 |
+
|
686 |
+
Returns
|
687 |
+
-------
|
688 |
+
`BSpline` instance or tuple
|
689 |
+
Spline of order k2=k-n representing the derivative
|
690 |
+
of the input spline.
|
691 |
+
A tuple is returned iff the input argument `tck` is a tuple, otherwise
|
692 |
+
a BSpline object is constructed and returned.
|
693 |
+
|
694 |
+
See Also
|
695 |
+
--------
|
696 |
+
splantider, splev, spalde
|
697 |
+
BSpline
|
698 |
+
|
699 |
+
Notes
|
700 |
+
-----
|
701 |
+
|
702 |
+
.. versionadded:: 0.13.0
|
703 |
+
|
704 |
+
Examples
|
705 |
+
--------
|
706 |
+
This can be used for finding maxima of a curve:
|
707 |
+
|
708 |
+
>>> from scipy.interpolate import splrep, splder, sproot
|
709 |
+
>>> import numpy as np
|
710 |
+
>>> x = np.linspace(0, 10, 70)
|
711 |
+
>>> y = np.sin(x)
|
712 |
+
>>> spl = splrep(x, y, k=4)
|
713 |
+
|
714 |
+
Now, differentiate the spline and find the zeros of the
|
715 |
+
derivative. (NB: `sproot` only works for order 3 splines, so we
|
716 |
+
fit an order 4 spline):
|
717 |
+
|
718 |
+
>>> dspl = splder(spl)
|
719 |
+
>>> sproot(dspl) / np.pi
|
720 |
+
array([ 0.50000001, 1.5 , 2.49999998])
|
721 |
+
|
722 |
+
This agrees well with roots :math:`\\pi/2 + n\\pi` of
|
723 |
+
:math:`\\cos(x) = \\sin'(x)`.
|
724 |
+
|
725 |
+
"""
|
726 |
+
if isinstance(tck, BSpline):
|
727 |
+
return tck.derivative(n)
|
728 |
+
else:
|
729 |
+
return _impl.splder(tck, n)
|
730 |
+
|
731 |
+
|
732 |
+
def splantider(tck, n=1):
|
733 |
+
"""
|
734 |
+
Compute the spline for the antiderivative (integral) of a given spline.
|
735 |
+
|
736 |
+
Parameters
|
737 |
+
----------
|
738 |
+
tck : BSpline instance or a tuple of (t, c, k)
|
739 |
+
Spline whose antiderivative to compute
|
740 |
+
n : int, optional
|
741 |
+
Order of antiderivative to evaluate. Default: 1
|
742 |
+
|
743 |
+
Returns
|
744 |
+
-------
|
745 |
+
BSpline instance or a tuple of (t2, c2, k2)
|
746 |
+
Spline of order k2=k+n representing the antiderivative of the input
|
747 |
+
spline.
|
748 |
+
A tuple is returned iff the input argument `tck` is a tuple, otherwise
|
749 |
+
a BSpline object is constructed and returned.
|
750 |
+
|
751 |
+
See Also
|
752 |
+
--------
|
753 |
+
splder, splev, spalde
|
754 |
+
BSpline
|
755 |
+
|
756 |
+
Notes
|
757 |
+
-----
|
758 |
+
The `splder` function is the inverse operation of this function.
|
759 |
+
Namely, ``splder(splantider(tck))`` is identical to `tck`, modulo
|
760 |
+
rounding error.
|
761 |
+
|
762 |
+
.. versionadded:: 0.13.0
|
763 |
+
|
764 |
+
Examples
|
765 |
+
--------
|
766 |
+
>>> from scipy.interpolate import splrep, splder, splantider, splev
|
767 |
+
>>> import numpy as np
|
768 |
+
>>> x = np.linspace(0, np.pi/2, 70)
|
769 |
+
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
|
770 |
+
>>> spl = splrep(x, y)
|
771 |
+
|
772 |
+
The derivative is the inverse operation of the antiderivative,
|
773 |
+
although some floating point error accumulates:
|
774 |
+
|
775 |
+
>>> splev(1.7, spl), splev(1.7, splder(splantider(spl)))
|
776 |
+
(array(2.1565429877197317), array(2.1565429877201865))
|
777 |
+
|
778 |
+
Antiderivative can be used to evaluate definite integrals:
|
779 |
+
|
780 |
+
>>> ispl = splantider(spl)
|
781 |
+
>>> splev(np.pi/2, ispl) - splev(0, ispl)
|
782 |
+
2.2572053588768486
|
783 |
+
|
784 |
+
This is indeed an approximation to the complete elliptic integral
|
785 |
+
:math:`K(m) = \\int_0^{\\pi/2} [1 - m\\sin^2 x]^{-1/2} dx`:
|
786 |
+
|
787 |
+
>>> from scipy.special import ellipk
|
788 |
+
>>> ellipk(0.8)
|
789 |
+
2.2572053268208538
|
790 |
+
|
791 |
+
"""
|
792 |
+
if isinstance(tck, BSpline):
|
793 |
+
return tck.antiderivative(n)
|
794 |
+
else:
|
795 |
+
return _impl.splantider(tck, n)
|
796 |
+
|
venv/lib/python3.10/site-packages/scipy/interpolate/_interpolate.py
ADDED
@@ -0,0 +1,2473 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = ['interp1d', 'interp2d', 'lagrange', 'PPoly', 'BPoly', 'NdPPoly']
|
2 |
+
|
3 |
+
from math import prod
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from numpy import (array, transpose, searchsorted, atleast_1d, atleast_2d,
|
8 |
+
ravel, poly1d, asarray, intp)
|
9 |
+
|
10 |
+
import scipy.special as spec
|
11 |
+
from scipy._lib._util import copy_if_needed
|
12 |
+
from scipy.special import comb
|
13 |
+
|
14 |
+
from . import _fitpack_py
|
15 |
+
from . import dfitpack
|
16 |
+
from ._polyint import _Interpolator1D
|
17 |
+
from . import _ppoly
|
18 |
+
from .interpnd import _ndim_coords_from_arrays
|
19 |
+
from ._bsplines import make_interp_spline, BSpline
|
20 |
+
|
21 |
+
|
22 |
+
def lagrange(x, w):
|
23 |
+
r"""
|
24 |
+
Return a Lagrange interpolating polynomial.
|
25 |
+
|
26 |
+
Given two 1-D arrays `x` and `w,` returns the Lagrange interpolating
|
27 |
+
polynomial through the points ``(x, w)``.
|
28 |
+
|
29 |
+
Warning: This implementation is numerically unstable. Do not expect to
|
30 |
+
be able to use more than about 20 points even if they are chosen optimally.
|
31 |
+
|
32 |
+
Parameters
|
33 |
+
----------
|
34 |
+
x : array_like
|
35 |
+
`x` represents the x-coordinates of a set of datapoints.
|
36 |
+
w : array_like
|
37 |
+
`w` represents the y-coordinates of a set of datapoints, i.e., f(`x`).
|
38 |
+
|
39 |
+
Returns
|
40 |
+
-------
|
41 |
+
lagrange : `numpy.poly1d` instance
|
42 |
+
The Lagrange interpolating polynomial.
|
43 |
+
|
44 |
+
Examples
|
45 |
+
--------
|
46 |
+
Interpolate :math:`f(x) = x^3` by 3 points.
|
47 |
+
|
48 |
+
>>> import numpy as np
|
49 |
+
>>> from scipy.interpolate import lagrange
|
50 |
+
>>> x = np.array([0, 1, 2])
|
51 |
+
>>> y = x**3
|
52 |
+
>>> poly = lagrange(x, y)
|
53 |
+
|
54 |
+
Since there are only 3 points, Lagrange polynomial has degree 2. Explicitly,
|
55 |
+
it is given by
|
56 |
+
|
57 |
+
.. math::
|
58 |
+
|
59 |
+
\begin{aligned}
|
60 |
+
L(x) &= 1\times \frac{x (x - 2)}{-1} + 8\times \frac{x (x-1)}{2} \\
|
61 |
+
&= x (-2 + 3x)
|
62 |
+
\end{aligned}
|
63 |
+
|
64 |
+
>>> from numpy.polynomial.polynomial import Polynomial
|
65 |
+
>>> Polynomial(poly.coef[::-1]).coef
|
66 |
+
array([ 0., -2., 3.])
|
67 |
+
|
68 |
+
>>> import matplotlib.pyplot as plt
|
69 |
+
>>> x_new = np.arange(0, 2.1, 0.1)
|
70 |
+
>>> plt.scatter(x, y, label='data')
|
71 |
+
>>> plt.plot(x_new, Polynomial(poly.coef[::-1])(x_new), label='Polynomial')
|
72 |
+
>>> plt.plot(x_new, 3*x_new**2 - 2*x_new + 0*x_new,
|
73 |
+
... label=r"$3 x^2 - 2 x$", linestyle='-.')
|
74 |
+
>>> plt.legend()
|
75 |
+
>>> plt.show()
|
76 |
+
|
77 |
+
"""
|
78 |
+
|
79 |
+
M = len(x)
|
80 |
+
p = poly1d(0.0)
|
81 |
+
for j in range(M):
|
82 |
+
pt = poly1d(w[j])
|
83 |
+
for k in range(M):
|
84 |
+
if k == j:
|
85 |
+
continue
|
86 |
+
fac = x[j]-x[k]
|
87 |
+
pt *= poly1d([1.0, -x[k]])/fac
|
88 |
+
p += pt
|
89 |
+
return p
|
90 |
+
|
91 |
+
|
92 |
+
# !! Need to find argument for keeping initialize. If it isn't
|
93 |
+
# !! found, get rid of it!
|
94 |
+
|
95 |
+
|
96 |
+
dep_mesg = """\
|
97 |
+
`interp2d` is deprecated in SciPy 1.10 and will be removed in SciPy 1.14.0.
|
98 |
+
|
99 |
+
For legacy code, nearly bug-for-bug compatible replacements are
|
100 |
+
`RectBivariateSpline` on regular grids, and `bisplrep`/`bisplev` for
|
101 |
+
scattered 2D data.
|
102 |
+
|
103 |
+
In new code, for regular grids use `RegularGridInterpolator` instead.
|
104 |
+
For scattered data, prefer `LinearNDInterpolator` or
|
105 |
+
`CloughTocher2DInterpolator`.
|
106 |
+
|
107 |
+
For more details see
|
108 |
+
`https://scipy.github.io/devdocs/notebooks/interp_transition_guide.html`
|
109 |
+
"""
|
110 |
+
|
111 |
+
class interp2d:
|
112 |
+
"""
|
113 |
+
interp2d(x, y, z, kind='linear', copy=True, bounds_error=False,
|
114 |
+
fill_value=None)
|
115 |
+
|
116 |
+
.. deprecated:: 1.10.0
|
117 |
+
|
118 |
+
`interp2d` is deprecated in SciPy 1.10 and will be removed in SciPy
|
119 |
+
1.14.0.
|
120 |
+
|
121 |
+
For legacy code, nearly bug-for-bug compatible replacements are
|
122 |
+
`RectBivariateSpline` on regular grids, and `bisplrep`/`bisplev` for
|
123 |
+
scattered 2D data.
|
124 |
+
|
125 |
+
In new code, for regular grids use `RegularGridInterpolator` instead.
|
126 |
+
For scattered data, prefer `LinearNDInterpolator` or
|
127 |
+
`CloughTocher2DInterpolator`.
|
128 |
+
|
129 |
+
For more details see
|
130 |
+
`https://scipy.github.io/devdocs/notebooks/interp_transition_guide.html
|
131 |
+
<https://scipy.github.io/devdocs/notebooks/interp_transition_guide.html>`_
|
132 |
+
|
133 |
+
|
134 |
+
Interpolate over a 2-D grid.
|
135 |
+
|
136 |
+
`x`, `y` and `z` are arrays of values used to approximate some function
|
137 |
+
f: ``z = f(x, y)`` which returns a scalar value `z`. This class returns a
|
138 |
+
function whose call method uses spline interpolation to find the value
|
139 |
+
of new points.
|
140 |
+
|
141 |
+
If `x` and `y` represent a regular grid, consider using
|
142 |
+
`RectBivariateSpline`.
|
143 |
+
|
144 |
+
If `z` is a vector value, consider using `interpn`.
|
145 |
+
|
146 |
+
Note that calling `interp2d` with NaNs present in input values, or with
|
147 |
+
decreasing values in `x` an `y` results in undefined behaviour.
|
148 |
+
|
149 |
+
Methods
|
150 |
+
-------
|
151 |
+
__call__
|
152 |
+
|
153 |
+
Parameters
|
154 |
+
----------
|
155 |
+
x, y : array_like
|
156 |
+
Arrays defining the data point coordinates.
|
157 |
+
The data point coordinates need to be sorted by increasing order.
|
158 |
+
|
159 |
+
If the points lie on a regular grid, `x` can specify the column
|
160 |
+
coordinates and `y` the row coordinates, for example::
|
161 |
+
|
162 |
+
>>> x = [0,1,2]; y = [0,3]; z = [[1,2,3], [4,5,6]]
|
163 |
+
|
164 |
+
Otherwise, `x` and `y` must specify the full coordinates for each
|
165 |
+
point, for example::
|
166 |
+
|
167 |
+
>>> x = [0,1,2,0,1,2]; y = [0,0,0,3,3,3]; z = [1,4,2,5,3,6]
|
168 |
+
|
169 |
+
If `x` and `y` are multidimensional, they are flattened before use.
|
170 |
+
z : array_like
|
171 |
+
The values of the function to interpolate at the data points. If
|
172 |
+
`z` is a multidimensional array, it is flattened before use assuming
|
173 |
+
Fortran-ordering (order='F'). The length of a flattened `z` array
|
174 |
+
is either len(`x`)*len(`y`) if `x` and `y` specify the column and
|
175 |
+
row coordinates or ``len(z) == len(x) == len(y)`` if `x` and `y`
|
176 |
+
specify coordinates for each point.
|
177 |
+
kind : {'linear', 'cubic', 'quintic'}, optional
|
178 |
+
The kind of spline interpolation to use. Default is 'linear'.
|
179 |
+
copy : bool, optional
|
180 |
+
If True, the class makes internal copies of x, y and z.
|
181 |
+
If False, references may be used. The default is to copy.
|
182 |
+
bounds_error : bool, optional
|
183 |
+
If True, when interpolated values are requested outside of the
|
184 |
+
domain of the input data (x,y), a ValueError is raised.
|
185 |
+
If False, then `fill_value` is used.
|
186 |
+
fill_value : number, optional
|
187 |
+
If provided, the value to use for points outside of the
|
188 |
+
interpolation domain. If omitted (None), values outside
|
189 |
+
the domain are extrapolated via nearest-neighbor extrapolation.
|
190 |
+
|
191 |
+
See Also
|
192 |
+
--------
|
193 |
+
RectBivariateSpline :
|
194 |
+
Much faster 2-D interpolation if your input data is on a grid
|
195 |
+
bisplrep, bisplev :
|
196 |
+
Spline interpolation based on FITPACK
|
197 |
+
BivariateSpline : a more recent wrapper of the FITPACK routines
|
198 |
+
interp1d : 1-D version of this function
|
199 |
+
RegularGridInterpolator : interpolation on a regular or rectilinear grid
|
200 |
+
in arbitrary dimensions.
|
201 |
+
interpn : Multidimensional interpolation on regular grids (wraps
|
202 |
+
`RegularGridInterpolator` and `RectBivariateSpline`).
|
203 |
+
|
204 |
+
Notes
|
205 |
+
-----
|
206 |
+
The minimum number of data points required along the interpolation
|
207 |
+
axis is ``(k+1)**2``, with k=1 for linear, k=3 for cubic and k=5 for
|
208 |
+
quintic interpolation.
|
209 |
+
|
210 |
+
The interpolator is constructed by `bisplrep`, with a smoothing factor
|
211 |
+
of 0. If more control over smoothing is needed, `bisplrep` should be
|
212 |
+
used directly.
|
213 |
+
|
214 |
+
The coordinates of the data points to interpolate `xnew` and `ynew`
|
215 |
+
have to be sorted by ascending order.
|
216 |
+
`interp2d` is legacy and is not
|
217 |
+
recommended for use in new code. New code should use
|
218 |
+
`RegularGridInterpolator` instead.
|
219 |
+
|
220 |
+
Examples
|
221 |
+
--------
|
222 |
+
Construct a 2-D grid and interpolate on it:
|
223 |
+
|
224 |
+
>>> import numpy as np
|
225 |
+
>>> from scipy import interpolate
|
226 |
+
>>> x = np.arange(-5.01, 5.01, 0.25)
|
227 |
+
>>> y = np.arange(-5.01, 5.01, 0.25)
|
228 |
+
>>> xx, yy = np.meshgrid(x, y)
|
229 |
+
>>> z = np.sin(xx**2+yy**2)
|
230 |
+
>>> f = interpolate.interp2d(x, y, z, kind='cubic')
|
231 |
+
|
232 |
+
Now use the obtained interpolation function and plot the result:
|
233 |
+
|
234 |
+
>>> import matplotlib.pyplot as plt
|
235 |
+
>>> xnew = np.arange(-5.01, 5.01, 1e-2)
|
236 |
+
>>> ynew = np.arange(-5.01, 5.01, 1e-2)
|
237 |
+
>>> znew = f(xnew, ynew)
|
238 |
+
>>> plt.plot(x, z[0, :], 'ro-', xnew, znew[0, :], 'b-')
|
239 |
+
>>> plt.show()
|
240 |
+
"""
|
241 |
+
|
242 |
+
def __init__(self, x, y, z, kind='linear', copy=True, bounds_error=False,
|
243 |
+
fill_value=None):
|
244 |
+
warnings.warn(dep_mesg, DeprecationWarning, stacklevel=2)
|
245 |
+
|
246 |
+
x = ravel(x)
|
247 |
+
y = ravel(y)
|
248 |
+
z = asarray(z)
|
249 |
+
|
250 |
+
rectangular_grid = (z.size == len(x) * len(y))
|
251 |
+
if rectangular_grid:
|
252 |
+
if z.ndim == 2:
|
253 |
+
if z.shape != (len(y), len(x)):
|
254 |
+
raise ValueError("When on a regular grid with x.size = m "
|
255 |
+
"and y.size = n, if z.ndim == 2, then z "
|
256 |
+
"must have shape (n, m)")
|
257 |
+
if not np.all(x[1:] >= x[:-1]):
|
258 |
+
j = np.argsort(x)
|
259 |
+
x = x[j]
|
260 |
+
z = z[:, j]
|
261 |
+
if not np.all(y[1:] >= y[:-1]):
|
262 |
+
j = np.argsort(y)
|
263 |
+
y = y[j]
|
264 |
+
z = z[j, :]
|
265 |
+
z = ravel(z.T)
|
266 |
+
else:
|
267 |
+
z = ravel(z)
|
268 |
+
if len(x) != len(y):
|
269 |
+
raise ValueError(
|
270 |
+
"x and y must have equal lengths for non rectangular grid")
|
271 |
+
if len(z) != len(x):
|
272 |
+
raise ValueError(
|
273 |
+
"Invalid length for input z for non rectangular grid")
|
274 |
+
|
275 |
+
interpolation_types = {'linear': 1, 'cubic': 3, 'quintic': 5}
|
276 |
+
try:
|
277 |
+
kx = ky = interpolation_types[kind]
|
278 |
+
except KeyError as e:
|
279 |
+
raise ValueError(
|
280 |
+
f"Unsupported interpolation type {repr(kind)}, must be "
|
281 |
+
f"either of {', '.join(map(repr, interpolation_types))}."
|
282 |
+
) from e
|
283 |
+
|
284 |
+
if not rectangular_grid:
|
285 |
+
# TODO: surfit is really not meant for interpolation!
|
286 |
+
self.tck = _fitpack_py.bisplrep(x, y, z, kx=kx, ky=ky, s=0.0)
|
287 |
+
else:
|
288 |
+
nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth(
|
289 |
+
x, y, z, None, None, None, None,
|
290 |
+
kx=kx, ky=ky, s=0.0)
|
291 |
+
self.tck = (tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)],
|
292 |
+
kx, ky)
|
293 |
+
|
294 |
+
self.bounds_error = bounds_error
|
295 |
+
self.fill_value = fill_value
|
296 |
+
self.x, self.y, self.z = (array(a, copy=copy) for a in (x, y, z))
|
297 |
+
|
298 |
+
self.x_min, self.x_max = np.amin(x), np.amax(x)
|
299 |
+
self.y_min, self.y_max = np.amin(y), np.amax(y)
|
300 |
+
|
301 |
+
def __call__(self, x, y, dx=0, dy=0, assume_sorted=False):
|
302 |
+
"""Interpolate the function.
|
303 |
+
|
304 |
+
Parameters
|
305 |
+
----------
|
306 |
+
x : 1-D array
|
307 |
+
x-coordinates of the mesh on which to interpolate.
|
308 |
+
y : 1-D array
|
309 |
+
y-coordinates of the mesh on which to interpolate.
|
310 |
+
dx : int >= 0, < kx
|
311 |
+
Order of partial derivatives in x.
|
312 |
+
dy : int >= 0, < ky
|
313 |
+
Order of partial derivatives in y.
|
314 |
+
assume_sorted : bool, optional
|
315 |
+
If False, values of `x` and `y` can be in any order and they are
|
316 |
+
sorted first.
|
317 |
+
If True, `x` and `y` have to be arrays of monotonically
|
318 |
+
increasing values.
|
319 |
+
|
320 |
+
Returns
|
321 |
+
-------
|
322 |
+
z : 2-D array with shape (len(y), len(x))
|
323 |
+
The interpolated values.
|
324 |
+
"""
|
325 |
+
warnings.warn(dep_mesg, DeprecationWarning, stacklevel=2)
|
326 |
+
|
327 |
+
x = atleast_1d(x)
|
328 |
+
y = atleast_1d(y)
|
329 |
+
|
330 |
+
if x.ndim != 1 or y.ndim != 1:
|
331 |
+
raise ValueError("x and y should both be 1-D arrays")
|
332 |
+
|
333 |
+
if not assume_sorted:
|
334 |
+
x = np.sort(x, kind="mergesort")
|
335 |
+
y = np.sort(y, kind="mergesort")
|
336 |
+
|
337 |
+
if self.bounds_error or self.fill_value is not None:
|
338 |
+
out_of_bounds_x = (x < self.x_min) | (x > self.x_max)
|
339 |
+
out_of_bounds_y = (y < self.y_min) | (y > self.y_max)
|
340 |
+
|
341 |
+
any_out_of_bounds_x = np.any(out_of_bounds_x)
|
342 |
+
any_out_of_bounds_y = np.any(out_of_bounds_y)
|
343 |
+
|
344 |
+
if self.bounds_error and (any_out_of_bounds_x or any_out_of_bounds_y):
|
345 |
+
raise ValueError(
|
346 |
+
f"Values out of range; x must be in {(self.x_min, self.x_max)!r}, "
|
347 |
+
f"y in {(self.y_min, self.y_max)!r}"
|
348 |
+
)
|
349 |
+
|
350 |
+
z = _fitpack_py.bisplev(x, y, self.tck, dx, dy)
|
351 |
+
z = atleast_2d(z)
|
352 |
+
z = transpose(z)
|
353 |
+
|
354 |
+
if self.fill_value is not None:
|
355 |
+
if any_out_of_bounds_x:
|
356 |
+
z[:, out_of_bounds_x] = self.fill_value
|
357 |
+
if any_out_of_bounds_y:
|
358 |
+
z[out_of_bounds_y, :] = self.fill_value
|
359 |
+
|
360 |
+
if len(z) == 1:
|
361 |
+
z = z[0]
|
362 |
+
return array(z)
|
363 |
+
|
364 |
+
|
365 |
+
def _check_broadcast_up_to(arr_from, shape_to, name):
|
366 |
+
"""Helper to check that arr_from broadcasts up to shape_to"""
|
367 |
+
shape_from = arr_from.shape
|
368 |
+
if len(shape_to) >= len(shape_from):
|
369 |
+
for t, f in zip(shape_to[::-1], shape_from[::-1]):
|
370 |
+
if f != 1 and f != t:
|
371 |
+
break
|
372 |
+
else: # all checks pass, do the upcasting that we need later
|
373 |
+
if arr_from.size != 1 and arr_from.shape != shape_to:
|
374 |
+
arr_from = np.ones(shape_to, arr_from.dtype) * arr_from
|
375 |
+
return arr_from.ravel()
|
376 |
+
# at least one check failed
|
377 |
+
raise ValueError(f'{name} argument must be able to broadcast up '
|
378 |
+
f'to shape {shape_to} but had shape {shape_from}')
|
379 |
+
|
380 |
+
|
381 |
+
def _do_extrapolate(fill_value):
|
382 |
+
"""Helper to check if fill_value == "extrapolate" without warnings"""
|
383 |
+
return (isinstance(fill_value, str) and
|
384 |
+
fill_value == 'extrapolate')
|
385 |
+
|
386 |
+
|
387 |
+
class interp1d(_Interpolator1D):
|
388 |
+
"""
|
389 |
+
Interpolate a 1-D function.
|
390 |
+
|
391 |
+
.. legacy:: class
|
392 |
+
|
393 |
+
For a guide to the intended replacements for `interp1d` see
|
394 |
+
:ref:`tutorial-interpolate_1Dsection`.
|
395 |
+
|
396 |
+
`x` and `y` are arrays of values used to approximate some function f:
|
397 |
+
``y = f(x)``. This class returns a function whose call method uses
|
398 |
+
interpolation to find the value of new points.
|
399 |
+
|
400 |
+
Parameters
|
401 |
+
----------
|
402 |
+
x : (npoints, ) array_like
|
403 |
+
A 1-D array of real values.
|
404 |
+
y : (..., npoints, ...) array_like
|
405 |
+
A N-D array of real values. The length of `y` along the interpolation
|
406 |
+
axis must be equal to the length of `x`. Use the ``axis`` parameter
|
407 |
+
to select correct axis. Unlike other interpolators, the default
|
408 |
+
interpolation axis is the last axis of `y`.
|
409 |
+
kind : str or int, optional
|
410 |
+
Specifies the kind of interpolation as a string or as an integer
|
411 |
+
specifying the order of the spline interpolator to use.
|
412 |
+
The string has to be one of 'linear', 'nearest', 'nearest-up', 'zero',
|
413 |
+
'slinear', 'quadratic', 'cubic', 'previous', or 'next'. 'zero',
|
414 |
+
'slinear', 'quadratic' and 'cubic' refer to a spline interpolation of
|
415 |
+
zeroth, first, second or third order; 'previous' and 'next' simply
|
416 |
+
return the previous or next value of the point; 'nearest-up' and
|
417 |
+
'nearest' differ when interpolating half-integers (e.g. 0.5, 1.5)
|
418 |
+
in that 'nearest-up' rounds up and 'nearest' rounds down. Default
|
419 |
+
is 'linear'.
|
420 |
+
axis : int, optional
|
421 |
+
Axis in the ``y`` array corresponding to the x-coordinate values. Unlike
|
422 |
+
other interpolators, defaults to ``axis=-1``.
|
423 |
+
copy : bool, optional
|
424 |
+
If ``True``, the class makes internal copies of x and y. If ``False``,
|
425 |
+
references to ``x`` and ``y`` are used if possible. The default is to copy.
|
426 |
+
bounds_error : bool, optional
|
427 |
+
If True, a ValueError is raised any time interpolation is attempted on
|
428 |
+
a value outside of the range of x (where extrapolation is
|
429 |
+
necessary). If False, out of bounds values are assigned `fill_value`.
|
430 |
+
By default, an error is raised unless ``fill_value="extrapolate"``.
|
431 |
+
fill_value : array-like or (array-like, array_like) or "extrapolate", optional
|
432 |
+
- if a ndarray (or float), this value will be used to fill in for
|
433 |
+
requested points outside of the data range. If not provided, then
|
434 |
+
the default is NaN. The array-like must broadcast properly to the
|
435 |
+
dimensions of the non-interpolation axes.
|
436 |
+
- If a two-element tuple, then the first element is used as a
|
437 |
+
fill value for ``x_new < x[0]`` and the second element is used for
|
438 |
+
``x_new > x[-1]``. Anything that is not a 2-element tuple (e.g.,
|
439 |
+
list or ndarray, regardless of shape) is taken to be a single
|
440 |
+
array-like argument meant to be used for both bounds as
|
441 |
+
``below, above = fill_value, fill_value``. Using a two-element tuple
|
442 |
+
or ndarray requires ``bounds_error=False``.
|
443 |
+
|
444 |
+
.. versionadded:: 0.17.0
|
445 |
+
- If "extrapolate", then points outside the data range will be
|
446 |
+
extrapolated.
|
447 |
+
|
448 |
+
.. versionadded:: 0.17.0
|
449 |
+
assume_sorted : bool, optional
|
450 |
+
If False, values of `x` can be in any order and they are sorted first.
|
451 |
+
If True, `x` has to be an array of monotonically increasing values.
|
452 |
+
|
453 |
+
Attributes
|
454 |
+
----------
|
455 |
+
fill_value
|
456 |
+
|
457 |
+
Methods
|
458 |
+
-------
|
459 |
+
__call__
|
460 |
+
|
461 |
+
See Also
|
462 |
+
--------
|
463 |
+
splrep, splev
|
464 |
+
Spline interpolation/smoothing based on FITPACK.
|
465 |
+
UnivariateSpline : An object-oriented wrapper of the FITPACK routines.
|
466 |
+
interp2d : 2-D interpolation
|
467 |
+
|
468 |
+
Notes
|
469 |
+
-----
|
470 |
+
Calling `interp1d` with NaNs present in input values results in
|
471 |
+
undefined behaviour.
|
472 |
+
|
473 |
+
Input values `x` and `y` must be convertible to `float` values like
|
474 |
+
`int` or `float`.
|
475 |
+
|
476 |
+
If the values in `x` are not unique, the resulting behavior is
|
477 |
+
undefined and specific to the choice of `kind`, i.e., changing
|
478 |
+
`kind` will change the behavior for duplicates.
|
479 |
+
|
480 |
+
|
481 |
+
Examples
|
482 |
+
--------
|
483 |
+
>>> import numpy as np
|
484 |
+
>>> import matplotlib.pyplot as plt
|
485 |
+
>>> from scipy import interpolate
|
486 |
+
>>> x = np.arange(0, 10)
|
487 |
+
>>> y = np.exp(-x/3.0)
|
488 |
+
>>> f = interpolate.interp1d(x, y)
|
489 |
+
|
490 |
+
>>> xnew = np.arange(0, 9, 0.1)
|
491 |
+
>>> ynew = f(xnew) # use interpolation function returned by `interp1d`
|
492 |
+
>>> plt.plot(x, y, 'o', xnew, ynew, '-')
|
493 |
+
>>> plt.show()
|
494 |
+
"""
|
495 |
+
|
496 |
+
def __init__(self, x, y, kind='linear', axis=-1,
|
497 |
+
copy=True, bounds_error=None, fill_value=np.nan,
|
498 |
+
assume_sorted=False):
|
499 |
+
""" Initialize a 1-D linear interpolation class."""
|
500 |
+
_Interpolator1D.__init__(self, x, y, axis=axis)
|
501 |
+
|
502 |
+
self.bounds_error = bounds_error # used by fill_value setter
|
503 |
+
|
504 |
+
# `copy` keyword semantics changed in NumPy 2.0, once that is
|
505 |
+
# the minimum version this can use `copy=None`.
|
506 |
+
self.copy = copy
|
507 |
+
if not copy:
|
508 |
+
self.copy = copy_if_needed
|
509 |
+
|
510 |
+
if kind in ['zero', 'slinear', 'quadratic', 'cubic']:
|
511 |
+
order = {'zero': 0, 'slinear': 1,
|
512 |
+
'quadratic': 2, 'cubic': 3}[kind]
|
513 |
+
kind = 'spline'
|
514 |
+
elif isinstance(kind, int):
|
515 |
+
order = kind
|
516 |
+
kind = 'spline'
|
517 |
+
elif kind not in ('linear', 'nearest', 'nearest-up', 'previous',
|
518 |
+
'next'):
|
519 |
+
raise NotImplementedError("%s is unsupported: Use fitpack "
|
520 |
+
"routines for other types." % kind)
|
521 |
+
x = array(x, copy=self.copy)
|
522 |
+
y = array(y, copy=self.copy)
|
523 |
+
|
524 |
+
if not assume_sorted:
|
525 |
+
ind = np.argsort(x, kind="mergesort")
|
526 |
+
x = x[ind]
|
527 |
+
y = np.take(y, ind, axis=axis)
|
528 |
+
|
529 |
+
if x.ndim != 1:
|
530 |
+
raise ValueError("the x array must have exactly one dimension.")
|
531 |
+
if y.ndim == 0:
|
532 |
+
raise ValueError("the y array must have at least one dimension.")
|
533 |
+
|
534 |
+
# Force-cast y to a floating-point type, if it's not yet one
|
535 |
+
if not issubclass(y.dtype.type, np.inexact):
|
536 |
+
y = y.astype(np.float64)
|
537 |
+
|
538 |
+
# Backward compatibility
|
539 |
+
self.axis = axis % y.ndim
|
540 |
+
|
541 |
+
# Interpolation goes internally along the first axis
|
542 |
+
self.y = y
|
543 |
+
self._y = self._reshape_yi(self.y)
|
544 |
+
self.x = x
|
545 |
+
del y, x # clean up namespace to prevent misuse; use attributes
|
546 |
+
self._kind = kind
|
547 |
+
|
548 |
+
# Adjust to interpolation kind; store reference to *unbound*
|
549 |
+
# interpolation methods, in order to avoid circular references to self
|
550 |
+
# stored in the bound instance methods, and therefore delayed garbage
|
551 |
+
# collection. See: https://docs.python.org/reference/datamodel.html
|
552 |
+
if kind in ('linear', 'nearest', 'nearest-up', 'previous', 'next'):
|
553 |
+
# Make a "view" of the y array that is rotated to the interpolation
|
554 |
+
# axis.
|
555 |
+
minval = 1
|
556 |
+
if kind == 'nearest':
|
557 |
+
# Do division before addition to prevent possible integer
|
558 |
+
# overflow
|
559 |
+
self._side = 'left'
|
560 |
+
self.x_bds = self.x / 2.0
|
561 |
+
self.x_bds = self.x_bds[1:] + self.x_bds[:-1]
|
562 |
+
|
563 |
+
self._call = self.__class__._call_nearest
|
564 |
+
elif kind == 'nearest-up':
|
565 |
+
# Do division before addition to prevent possible integer
|
566 |
+
# overflow
|
567 |
+
self._side = 'right'
|
568 |
+
self.x_bds = self.x / 2.0
|
569 |
+
self.x_bds = self.x_bds[1:] + self.x_bds[:-1]
|
570 |
+
|
571 |
+
self._call = self.__class__._call_nearest
|
572 |
+
elif kind == 'previous':
|
573 |
+
# Side for np.searchsorted and index for clipping
|
574 |
+
self._side = 'left'
|
575 |
+
self._ind = 0
|
576 |
+
# Move x by one floating point value to the left
|
577 |
+
self._x_shift = np.nextafter(self.x, -np.inf)
|
578 |
+
self._call = self.__class__._call_previousnext
|
579 |
+
if _do_extrapolate(fill_value):
|
580 |
+
self._check_and_update_bounds_error_for_extrapolation()
|
581 |
+
# assume y is sorted by x ascending order here.
|
582 |
+
fill_value = (np.nan, np.take(self.y, -1, axis))
|
583 |
+
elif kind == 'next':
|
584 |
+
self._side = 'right'
|
585 |
+
self._ind = 1
|
586 |
+
# Move x by one floating point value to the right
|
587 |
+
self._x_shift = np.nextafter(self.x, np.inf)
|
588 |
+
self._call = self.__class__._call_previousnext
|
589 |
+
if _do_extrapolate(fill_value):
|
590 |
+
self._check_and_update_bounds_error_for_extrapolation()
|
591 |
+
# assume y is sorted by x ascending order here.
|
592 |
+
fill_value = (np.take(self.y, 0, axis), np.nan)
|
593 |
+
else:
|
594 |
+
# Check if we can delegate to numpy.interp (2x-10x faster).
|
595 |
+
np_dtypes = (np.dtype(np.float64), np.dtype(int))
|
596 |
+
cond = self.x.dtype in np_dtypes and self.y.dtype in np_dtypes
|
597 |
+
cond = cond and self.y.ndim == 1
|
598 |
+
cond = cond and not _do_extrapolate(fill_value)
|
599 |
+
|
600 |
+
if cond:
|
601 |
+
self._call = self.__class__._call_linear_np
|
602 |
+
else:
|
603 |
+
self._call = self.__class__._call_linear
|
604 |
+
else:
|
605 |
+
minval = order + 1
|
606 |
+
|
607 |
+
rewrite_nan = False
|
608 |
+
xx, yy = self.x, self._y
|
609 |
+
if order > 1:
|
610 |
+
# Quadratic or cubic spline. If input contains even a single
|
611 |
+
# nan, then the output is all nans. We cannot just feed data
|
612 |
+
# with nans to make_interp_spline because it calls LAPACK.
|
613 |
+
# So, we make up a bogus x and y with no nans and use it
|
614 |
+
# to get the correct shape of the output, which we then fill
|
615 |
+
# with nans.
|
616 |
+
# For slinear or zero order spline, we just pass nans through.
|
617 |
+
mask = np.isnan(self.x)
|
618 |
+
if mask.any():
|
619 |
+
sx = self.x[~mask]
|
620 |
+
if sx.size == 0:
|
621 |
+
raise ValueError("`x` array is all-nan")
|
622 |
+
xx = np.linspace(np.nanmin(self.x),
|
623 |
+
np.nanmax(self.x),
|
624 |
+
len(self.x))
|
625 |
+
rewrite_nan = True
|
626 |
+
if np.isnan(self._y).any():
|
627 |
+
yy = np.ones_like(self._y)
|
628 |
+
rewrite_nan = True
|
629 |
+
|
630 |
+
self._spline = make_interp_spline(xx, yy, k=order,
|
631 |
+
check_finite=False)
|
632 |
+
if rewrite_nan:
|
633 |
+
self._call = self.__class__._call_nan_spline
|
634 |
+
else:
|
635 |
+
self._call = self.__class__._call_spline
|
636 |
+
|
637 |
+
if len(self.x) < minval:
|
638 |
+
raise ValueError("x and y arrays must have at "
|
639 |
+
"least %d entries" % minval)
|
640 |
+
|
641 |
+
self.fill_value = fill_value # calls the setter, can modify bounds_err
|
642 |
+
|
643 |
+
@property
|
644 |
+
def fill_value(self):
|
645 |
+
"""The fill value."""
|
646 |
+
# backwards compat: mimic a public attribute
|
647 |
+
return self._fill_value_orig
|
648 |
+
|
649 |
+
@fill_value.setter
|
650 |
+
def fill_value(self, fill_value):
|
651 |
+
# extrapolation only works for nearest neighbor and linear methods
|
652 |
+
if _do_extrapolate(fill_value):
|
653 |
+
self._check_and_update_bounds_error_for_extrapolation()
|
654 |
+
self._extrapolate = True
|
655 |
+
else:
|
656 |
+
broadcast_shape = (self.y.shape[:self.axis] +
|
657 |
+
self.y.shape[self.axis + 1:])
|
658 |
+
if len(broadcast_shape) == 0:
|
659 |
+
broadcast_shape = (1,)
|
660 |
+
# it's either a pair (_below_range, _above_range) or a single value
|
661 |
+
# for both above and below range
|
662 |
+
if isinstance(fill_value, tuple) and len(fill_value) == 2:
|
663 |
+
below_above = [np.asarray(fill_value[0]),
|
664 |
+
np.asarray(fill_value[1])]
|
665 |
+
names = ('fill_value (below)', 'fill_value (above)')
|
666 |
+
for ii in range(2):
|
667 |
+
below_above[ii] = _check_broadcast_up_to(
|
668 |
+
below_above[ii], broadcast_shape, names[ii])
|
669 |
+
else:
|
670 |
+
fill_value = np.asarray(fill_value)
|
671 |
+
below_above = [_check_broadcast_up_to(
|
672 |
+
fill_value, broadcast_shape, 'fill_value')] * 2
|
673 |
+
self._fill_value_below, self._fill_value_above = below_above
|
674 |
+
self._extrapolate = False
|
675 |
+
if self.bounds_error is None:
|
676 |
+
self.bounds_error = True
|
677 |
+
# backwards compat: fill_value was a public attr; make it writeable
|
678 |
+
self._fill_value_orig = fill_value
|
679 |
+
|
680 |
+
def _check_and_update_bounds_error_for_extrapolation(self):
|
681 |
+
if self.bounds_error:
|
682 |
+
raise ValueError("Cannot extrapolate and raise "
|
683 |
+
"at the same time.")
|
684 |
+
self.bounds_error = False
|
685 |
+
|
686 |
+
def _call_linear_np(self, x_new):
|
687 |
+
# Note that out-of-bounds values are taken care of in self._evaluate
|
688 |
+
return np.interp(x_new, self.x, self.y)
|
689 |
+
|
690 |
+
def _call_linear(self, x_new):
|
691 |
+
# 2. Find where in the original data, the values to interpolate
|
692 |
+
# would be inserted.
|
693 |
+
# Note: If x_new[n] == x[m], then m is returned by searchsorted.
|
694 |
+
x_new_indices = searchsorted(self.x, x_new)
|
695 |
+
|
696 |
+
# 3. Clip x_new_indices so that they are within the range of
|
697 |
+
# self.x indices and at least 1. Removes mis-interpolation
|
698 |
+
# of x_new[n] = x[0]
|
699 |
+
x_new_indices = x_new_indices.clip(1, len(self.x)-1).astype(int)
|
700 |
+
|
701 |
+
# 4. Calculate the slope of regions that each x_new value falls in.
|
702 |
+
lo = x_new_indices - 1
|
703 |
+
hi = x_new_indices
|
704 |
+
|
705 |
+
x_lo = self.x[lo]
|
706 |
+
x_hi = self.x[hi]
|
707 |
+
y_lo = self._y[lo]
|
708 |
+
y_hi = self._y[hi]
|
709 |
+
|
710 |
+
# Note that the following two expressions rely on the specifics of the
|
711 |
+
# broadcasting semantics.
|
712 |
+
slope = (y_hi - y_lo) / (x_hi - x_lo)[:, None]
|
713 |
+
|
714 |
+
# 5. Calculate the actual value for each entry in x_new.
|
715 |
+
y_new = slope*(x_new - x_lo)[:, None] + y_lo
|
716 |
+
|
717 |
+
return y_new
|
718 |
+
|
719 |
+
def _call_nearest(self, x_new):
|
720 |
+
""" Find nearest neighbor interpolated y_new = f(x_new)."""
|
721 |
+
|
722 |
+
# 2. Find where in the averaged data the values to interpolate
|
723 |
+
# would be inserted.
|
724 |
+
# Note: use side='left' (right) to searchsorted() to define the
|
725 |
+
# halfway point to be nearest to the left (right) neighbor
|
726 |
+
x_new_indices = searchsorted(self.x_bds, x_new, side=self._side)
|
727 |
+
|
728 |
+
# 3. Clip x_new_indices so that they are within the range of x indices.
|
729 |
+
x_new_indices = x_new_indices.clip(0, len(self.x)-1).astype(intp)
|
730 |
+
|
731 |
+
# 4. Calculate the actual value for each entry in x_new.
|
732 |
+
y_new = self._y[x_new_indices]
|
733 |
+
|
734 |
+
return y_new
|
735 |
+
|
736 |
+
def _call_previousnext(self, x_new):
|
737 |
+
"""Use previous/next neighbor of x_new, y_new = f(x_new)."""
|
738 |
+
|
739 |
+
# 1. Get index of left/right value
|
740 |
+
x_new_indices = searchsorted(self._x_shift, x_new, side=self._side)
|
741 |
+
|
742 |
+
# 2. Clip x_new_indices so that they are within the range of x indices.
|
743 |
+
x_new_indices = x_new_indices.clip(1-self._ind,
|
744 |
+
len(self.x)-self._ind).astype(intp)
|
745 |
+
|
746 |
+
# 3. Calculate the actual value for each entry in x_new.
|
747 |
+
y_new = self._y[x_new_indices+self._ind-1]
|
748 |
+
|
749 |
+
return y_new
|
750 |
+
|
751 |
+
def _call_spline(self, x_new):
|
752 |
+
return self._spline(x_new)
|
753 |
+
|
754 |
+
def _call_nan_spline(self, x_new):
|
755 |
+
out = self._spline(x_new)
|
756 |
+
out[...] = np.nan
|
757 |
+
return out
|
758 |
+
|
759 |
+
def _evaluate(self, x_new):
|
760 |
+
# 1. Handle values in x_new that are outside of x. Throw error,
|
761 |
+
# or return a list of mask array indicating the outofbounds values.
|
762 |
+
# The behavior is set by the bounds_error variable.
|
763 |
+
x_new = asarray(x_new)
|
764 |
+
y_new = self._call(self, x_new)
|
765 |
+
if not self._extrapolate:
|
766 |
+
below_bounds, above_bounds = self._check_bounds(x_new)
|
767 |
+
if len(y_new) > 0:
|
768 |
+
# Note fill_value must be broadcast up to the proper size
|
769 |
+
# and flattened to work here
|
770 |
+
y_new[below_bounds] = self._fill_value_below
|
771 |
+
y_new[above_bounds] = self._fill_value_above
|
772 |
+
return y_new
|
773 |
+
|
774 |
+
def _check_bounds(self, x_new):
|
775 |
+
"""Check the inputs for being in the bounds of the interpolated data.
|
776 |
+
|
777 |
+
Parameters
|
778 |
+
----------
|
779 |
+
x_new : array
|
780 |
+
|
781 |
+
Returns
|
782 |
+
-------
|
783 |
+
out_of_bounds : bool array
|
784 |
+
The mask on x_new of values that are out of the bounds.
|
785 |
+
"""
|
786 |
+
|
787 |
+
# If self.bounds_error is True, we raise an error if any x_new values
|
788 |
+
# fall outside the range of x. Otherwise, we return an array indicating
|
789 |
+
# which values are outside the boundary region.
|
790 |
+
below_bounds = x_new < self.x[0]
|
791 |
+
above_bounds = x_new > self.x[-1]
|
792 |
+
|
793 |
+
if self.bounds_error and below_bounds.any():
|
794 |
+
below_bounds_value = x_new[np.argmax(below_bounds)]
|
795 |
+
raise ValueError(f"A value ({below_bounds_value}) in x_new is below "
|
796 |
+
f"the interpolation range's minimum value ({self.x[0]}).")
|
797 |
+
if self.bounds_error and above_bounds.any():
|
798 |
+
above_bounds_value = x_new[np.argmax(above_bounds)]
|
799 |
+
raise ValueError(f"A value ({above_bounds_value}) in x_new is above "
|
800 |
+
f"the interpolation range's maximum value ({self.x[-1]}).")
|
801 |
+
|
802 |
+
# !! Should we emit a warning if some values are out of bounds?
|
803 |
+
# !! matlab does not.
|
804 |
+
return below_bounds, above_bounds
|
805 |
+
|
806 |
+
|
807 |
+
class _PPolyBase:
|
808 |
+
"""Base class for piecewise polynomials."""
|
809 |
+
__slots__ = ('c', 'x', 'extrapolate', 'axis')
|
810 |
+
|
811 |
+
def __init__(self, c, x, extrapolate=None, axis=0):
|
812 |
+
self.c = np.asarray(c)
|
813 |
+
self.x = np.ascontiguousarray(x, dtype=np.float64)
|
814 |
+
|
815 |
+
if extrapolate is None:
|
816 |
+
extrapolate = True
|
817 |
+
elif extrapolate != 'periodic':
|
818 |
+
extrapolate = bool(extrapolate)
|
819 |
+
self.extrapolate = extrapolate
|
820 |
+
|
821 |
+
if self.c.ndim < 2:
|
822 |
+
raise ValueError("Coefficients array must be at least "
|
823 |
+
"2-dimensional.")
|
824 |
+
|
825 |
+
if not (0 <= axis < self.c.ndim - 1):
|
826 |
+
raise ValueError(f"axis={axis} must be between 0 and {self.c.ndim-1}")
|
827 |
+
|
828 |
+
self.axis = axis
|
829 |
+
if axis != 0:
|
830 |
+
# move the interpolation axis to be the first one in self.c
|
831 |
+
# More specifically, the target shape for self.c is (k, m, ...),
|
832 |
+
# and axis !=0 means that we have c.shape (..., k, m, ...)
|
833 |
+
# ^
|
834 |
+
# axis
|
835 |
+
# So we roll two of them.
|
836 |
+
self.c = np.moveaxis(self.c, axis+1, 0)
|
837 |
+
self.c = np.moveaxis(self.c, axis+1, 0)
|
838 |
+
|
839 |
+
if self.x.ndim != 1:
|
840 |
+
raise ValueError("x must be 1-dimensional")
|
841 |
+
if self.x.size < 2:
|
842 |
+
raise ValueError("at least 2 breakpoints are needed")
|
843 |
+
if self.c.ndim < 2:
|
844 |
+
raise ValueError("c must have at least 2 dimensions")
|
845 |
+
if self.c.shape[0] == 0:
|
846 |
+
raise ValueError("polynomial must be at least of order 0")
|
847 |
+
if self.c.shape[1] != self.x.size-1:
|
848 |
+
raise ValueError("number of coefficients != len(x)-1")
|
849 |
+
dx = np.diff(self.x)
|
850 |
+
if not (np.all(dx >= 0) or np.all(dx <= 0)):
|
851 |
+
raise ValueError("`x` must be strictly increasing or decreasing.")
|
852 |
+
|
853 |
+
dtype = self._get_dtype(self.c.dtype)
|
854 |
+
self.c = np.ascontiguousarray(self.c, dtype=dtype)
|
855 |
+
|
856 |
+
def _get_dtype(self, dtype):
|
857 |
+
if np.issubdtype(dtype, np.complexfloating) \
|
858 |
+
or np.issubdtype(self.c.dtype, np.complexfloating):
|
859 |
+
return np.complex128
|
860 |
+
else:
|
861 |
+
return np.float64
|
862 |
+
|
863 |
+
@classmethod
|
864 |
+
def construct_fast(cls, c, x, extrapolate=None, axis=0):
|
865 |
+
"""
|
866 |
+
Construct the piecewise polynomial without making checks.
|
867 |
+
|
868 |
+
Takes the same parameters as the constructor. Input arguments
|
869 |
+
``c`` and ``x`` must be arrays of the correct shape and type. The
|
870 |
+
``c`` array can only be of dtypes float and complex, and ``x``
|
871 |
+
array must have dtype float.
|
872 |
+
"""
|
873 |
+
self = object.__new__(cls)
|
874 |
+
self.c = c
|
875 |
+
self.x = x
|
876 |
+
self.axis = axis
|
877 |
+
if extrapolate is None:
|
878 |
+
extrapolate = True
|
879 |
+
self.extrapolate = extrapolate
|
880 |
+
return self
|
881 |
+
|
882 |
+
def _ensure_c_contiguous(self):
|
883 |
+
"""
|
884 |
+
c and x may be modified by the user. The Cython code expects
|
885 |
+
that they are C contiguous.
|
886 |
+
"""
|
887 |
+
if not self.x.flags.c_contiguous:
|
888 |
+
self.x = self.x.copy()
|
889 |
+
if not self.c.flags.c_contiguous:
|
890 |
+
self.c = self.c.copy()
|
891 |
+
|
892 |
+
def extend(self, c, x):
|
893 |
+
"""
|
894 |
+
Add additional breakpoints and coefficients to the polynomial.
|
895 |
+
|
896 |
+
Parameters
|
897 |
+
----------
|
898 |
+
c : ndarray, size (k, m, ...)
|
899 |
+
Additional coefficients for polynomials in intervals. Note that
|
900 |
+
the first additional interval will be formed using one of the
|
901 |
+
``self.x`` end points.
|
902 |
+
x : ndarray, size (m,)
|
903 |
+
Additional breakpoints. Must be sorted in the same order as
|
904 |
+
``self.x`` and either to the right or to the left of the current
|
905 |
+
breakpoints.
|
906 |
+
"""
|
907 |
+
|
908 |
+
c = np.asarray(c)
|
909 |
+
x = np.asarray(x)
|
910 |
+
|
911 |
+
if c.ndim < 2:
|
912 |
+
raise ValueError("invalid dimensions for c")
|
913 |
+
if x.ndim != 1:
|
914 |
+
raise ValueError("invalid dimensions for x")
|
915 |
+
if x.shape[0] != c.shape[1]:
|
916 |
+
raise ValueError(f"Shapes of x {x.shape} and c {c.shape} are incompatible")
|
917 |
+
if c.shape[2:] != self.c.shape[2:] or c.ndim != self.c.ndim:
|
918 |
+
raise ValueError("Shapes of c {} and self.c {} are incompatible"
|
919 |
+
.format(c.shape, self.c.shape))
|
920 |
+
|
921 |
+
if c.size == 0:
|
922 |
+
return
|
923 |
+
|
924 |
+
dx = np.diff(x)
|
925 |
+
if not (np.all(dx >= 0) or np.all(dx <= 0)):
|
926 |
+
raise ValueError("`x` is not sorted.")
|
927 |
+
|
928 |
+
if self.x[-1] >= self.x[0]:
|
929 |
+
if not x[-1] >= x[0]:
|
930 |
+
raise ValueError("`x` is in the different order "
|
931 |
+
"than `self.x`.")
|
932 |
+
|
933 |
+
if x[0] >= self.x[-1]:
|
934 |
+
action = 'append'
|
935 |
+
elif x[-1] <= self.x[0]:
|
936 |
+
action = 'prepend'
|
937 |
+
else:
|
938 |
+
raise ValueError("`x` is neither on the left or on the right "
|
939 |
+
"from `self.x`.")
|
940 |
+
else:
|
941 |
+
if not x[-1] <= x[0]:
|
942 |
+
raise ValueError("`x` is in the different order "
|
943 |
+
"than `self.x`.")
|
944 |
+
|
945 |
+
if x[0] <= self.x[-1]:
|
946 |
+
action = 'append'
|
947 |
+
elif x[-1] >= self.x[0]:
|
948 |
+
action = 'prepend'
|
949 |
+
else:
|
950 |
+
raise ValueError("`x` is neither on the left or on the right "
|
951 |
+
"from `self.x`.")
|
952 |
+
|
953 |
+
dtype = self._get_dtype(c.dtype)
|
954 |
+
|
955 |
+
k2 = max(c.shape[0], self.c.shape[0])
|
956 |
+
c2 = np.zeros((k2, self.c.shape[1] + c.shape[1]) + self.c.shape[2:],
|
957 |
+
dtype=dtype)
|
958 |
+
|
959 |
+
if action == 'append':
|
960 |
+
c2[k2-self.c.shape[0]:, :self.c.shape[1]] = self.c
|
961 |
+
c2[k2-c.shape[0]:, self.c.shape[1]:] = c
|
962 |
+
self.x = np.r_[self.x, x]
|
963 |
+
elif action == 'prepend':
|
964 |
+
c2[k2-self.c.shape[0]:, :c.shape[1]] = c
|
965 |
+
c2[k2-c.shape[0]:, c.shape[1]:] = self.c
|
966 |
+
self.x = np.r_[x, self.x]
|
967 |
+
|
968 |
+
self.c = c2
|
969 |
+
|
970 |
+
def __call__(self, x, nu=0, extrapolate=None):
|
971 |
+
"""
|
972 |
+
Evaluate the piecewise polynomial or its derivative.
|
973 |
+
|
974 |
+
Parameters
|
975 |
+
----------
|
976 |
+
x : array_like
|
977 |
+
Points to evaluate the interpolant at.
|
978 |
+
nu : int, optional
|
979 |
+
Order of derivative to evaluate. Must be non-negative.
|
980 |
+
extrapolate : {bool, 'periodic', None}, optional
|
981 |
+
If bool, determines whether to extrapolate to out-of-bounds points
|
982 |
+
based on first and last intervals, or to return NaNs.
|
983 |
+
If 'periodic', periodic extrapolation is used.
|
984 |
+
If None (default), use `self.extrapolate`.
|
985 |
+
|
986 |
+
Returns
|
987 |
+
-------
|
988 |
+
y : array_like
|
989 |
+
Interpolated values. Shape is determined by replacing
|
990 |
+
the interpolation axis in the original array with the shape of x.
|
991 |
+
|
992 |
+
Notes
|
993 |
+
-----
|
994 |
+
Derivatives are evaluated piecewise for each polynomial
|
995 |
+
segment, even if the polynomial is not differentiable at the
|
996 |
+
breakpoints. The polynomial intervals are considered half-open,
|
997 |
+
``[a, b)``, except for the last interval which is closed
|
998 |
+
``[a, b]``.
|
999 |
+
"""
|
1000 |
+
if extrapolate is None:
|
1001 |
+
extrapolate = self.extrapolate
|
1002 |
+
x = np.asarray(x)
|
1003 |
+
x_shape, x_ndim = x.shape, x.ndim
|
1004 |
+
x = np.ascontiguousarray(x.ravel(), dtype=np.float64)
|
1005 |
+
|
1006 |
+
# With periodic extrapolation we map x to the segment
|
1007 |
+
# [self.x[0], self.x[-1]].
|
1008 |
+
if extrapolate == 'periodic':
|
1009 |
+
x = self.x[0] + (x - self.x[0]) % (self.x[-1] - self.x[0])
|
1010 |
+
extrapolate = False
|
1011 |
+
|
1012 |
+
out = np.empty((len(x), prod(self.c.shape[2:])), dtype=self.c.dtype)
|
1013 |
+
self._ensure_c_contiguous()
|
1014 |
+
self._evaluate(x, nu, extrapolate, out)
|
1015 |
+
out = out.reshape(x_shape + self.c.shape[2:])
|
1016 |
+
if self.axis != 0:
|
1017 |
+
# transpose to move the calculated values to the interpolation axis
|
1018 |
+
l = list(range(out.ndim))
|
1019 |
+
l = l[x_ndim:x_ndim+self.axis] + l[:x_ndim] + l[x_ndim+self.axis:]
|
1020 |
+
out = out.transpose(l)
|
1021 |
+
return out
|
1022 |
+
|
1023 |
+
|
1024 |
+
class PPoly(_PPolyBase):
|
1025 |
+
"""
|
1026 |
+
Piecewise polynomial in terms of coefficients and breakpoints
|
1027 |
+
|
1028 |
+
The polynomial between ``x[i]`` and ``x[i + 1]`` is written in the
|
1029 |
+
local power basis::
|
1030 |
+
|
1031 |
+
S = sum(c[m, i] * (xp - x[i])**(k-m) for m in range(k+1))
|
1032 |
+
|
1033 |
+
where ``k`` is the degree of the polynomial.
|
1034 |
+
|
1035 |
+
Parameters
|
1036 |
+
----------
|
1037 |
+
c : ndarray, shape (k, m, ...)
|
1038 |
+
Polynomial coefficients, order `k` and `m` intervals.
|
1039 |
+
x : ndarray, shape (m+1,)
|
1040 |
+
Polynomial breakpoints. Must be sorted in either increasing or
|
1041 |
+
decreasing order.
|
1042 |
+
extrapolate : bool or 'periodic', optional
|
1043 |
+
If bool, determines whether to extrapolate to out-of-bounds points
|
1044 |
+
based on first and last intervals, or to return NaNs. If 'periodic',
|
1045 |
+
periodic extrapolation is used. Default is True.
|
1046 |
+
axis : int, optional
|
1047 |
+
Interpolation axis. Default is zero.
|
1048 |
+
|
1049 |
+
Attributes
|
1050 |
+
----------
|
1051 |
+
x : ndarray
|
1052 |
+
Breakpoints.
|
1053 |
+
c : ndarray
|
1054 |
+
Coefficients of the polynomials. They are reshaped
|
1055 |
+
to a 3-D array with the last dimension representing
|
1056 |
+
the trailing dimensions of the original coefficient array.
|
1057 |
+
axis : int
|
1058 |
+
Interpolation axis.
|
1059 |
+
|
1060 |
+
Methods
|
1061 |
+
-------
|
1062 |
+
__call__
|
1063 |
+
derivative
|
1064 |
+
antiderivative
|
1065 |
+
integrate
|
1066 |
+
solve
|
1067 |
+
roots
|
1068 |
+
extend
|
1069 |
+
from_spline
|
1070 |
+
from_bernstein_basis
|
1071 |
+
construct_fast
|
1072 |
+
|
1073 |
+
See also
|
1074 |
+
--------
|
1075 |
+
BPoly : piecewise polynomials in the Bernstein basis
|
1076 |
+
|
1077 |
+
Notes
|
1078 |
+
-----
|
1079 |
+
High-order polynomials in the power basis can be numerically
|
1080 |
+
unstable. Precision problems can start to appear for orders
|
1081 |
+
larger than 20-30.
|
1082 |
+
"""
|
1083 |
+
|
1084 |
+
def _evaluate(self, x, nu, extrapolate, out):
|
1085 |
+
_ppoly.evaluate(self.c.reshape(self.c.shape[0], self.c.shape[1], -1),
|
1086 |
+
self.x, x, nu, bool(extrapolate), out)
|
1087 |
+
|
1088 |
+
def derivative(self, nu=1):
|
1089 |
+
"""
|
1090 |
+
Construct a new piecewise polynomial representing the derivative.
|
1091 |
+
|
1092 |
+
Parameters
|
1093 |
+
----------
|
1094 |
+
nu : int, optional
|
1095 |
+
Order of derivative to evaluate. Default is 1, i.e., compute the
|
1096 |
+
first derivative. If negative, the antiderivative is returned.
|
1097 |
+
|
1098 |
+
Returns
|
1099 |
+
-------
|
1100 |
+
pp : PPoly
|
1101 |
+
Piecewise polynomial of order k2 = k - n representing the derivative
|
1102 |
+
of this polynomial.
|
1103 |
+
|
1104 |
+
Notes
|
1105 |
+
-----
|
1106 |
+
Derivatives are evaluated piecewise for each polynomial
|
1107 |
+
segment, even if the polynomial is not differentiable at the
|
1108 |
+
breakpoints. The polynomial intervals are considered half-open,
|
1109 |
+
``[a, b)``, except for the last interval which is closed
|
1110 |
+
``[a, b]``.
|
1111 |
+
"""
|
1112 |
+
if nu < 0:
|
1113 |
+
return self.antiderivative(-nu)
|
1114 |
+
|
1115 |
+
# reduce order
|
1116 |
+
if nu == 0:
|
1117 |
+
c2 = self.c.copy()
|
1118 |
+
else:
|
1119 |
+
c2 = self.c[:-nu, :].copy()
|
1120 |
+
|
1121 |
+
if c2.shape[0] == 0:
|
1122 |
+
# derivative of order 0 is zero
|
1123 |
+
c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype)
|
1124 |
+
|
1125 |
+
# multiply by the correct rising factorials
|
1126 |
+
factor = spec.poch(np.arange(c2.shape[0], 0, -1), nu)
|
1127 |
+
c2 *= factor[(slice(None),) + (None,)*(c2.ndim-1)]
|
1128 |
+
|
1129 |
+
# construct a compatible polynomial
|
1130 |
+
return self.construct_fast(c2, self.x, self.extrapolate, self.axis)
|
1131 |
+
|
1132 |
+
def antiderivative(self, nu=1):
|
1133 |
+
"""
|
1134 |
+
Construct a new piecewise polynomial representing the antiderivative.
|
1135 |
+
|
1136 |
+
Antiderivative is also the indefinite integral of the function,
|
1137 |
+
and derivative is its inverse operation.
|
1138 |
+
|
1139 |
+
Parameters
|
1140 |
+
----------
|
1141 |
+
nu : int, optional
|
1142 |
+
Order of antiderivative to evaluate. Default is 1, i.e., compute
|
1143 |
+
the first integral. If negative, the derivative is returned.
|
1144 |
+
|
1145 |
+
Returns
|
1146 |
+
-------
|
1147 |
+
pp : PPoly
|
1148 |
+
Piecewise polynomial of order k2 = k + n representing
|
1149 |
+
the antiderivative of this polynomial.
|
1150 |
+
|
1151 |
+
Notes
|
1152 |
+
-----
|
1153 |
+
The antiderivative returned by this function is continuous and
|
1154 |
+
continuously differentiable to order n-1, up to floating point
|
1155 |
+
rounding error.
|
1156 |
+
|
1157 |
+
If antiderivative is computed and ``self.extrapolate='periodic'``,
|
1158 |
+
it will be set to False for the returned instance. This is done because
|
1159 |
+
the antiderivative is no longer periodic and its correct evaluation
|
1160 |
+
outside of the initially given x interval is difficult.
|
1161 |
+
"""
|
1162 |
+
if nu <= 0:
|
1163 |
+
return self.derivative(-nu)
|
1164 |
+
|
1165 |
+
c = np.zeros((self.c.shape[0] + nu, self.c.shape[1]) + self.c.shape[2:],
|
1166 |
+
dtype=self.c.dtype)
|
1167 |
+
c[:-nu] = self.c
|
1168 |
+
|
1169 |
+
# divide by the correct rising factorials
|
1170 |
+
factor = spec.poch(np.arange(self.c.shape[0], 0, -1), nu)
|
1171 |
+
c[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)]
|
1172 |
+
|
1173 |
+
# fix continuity of added degrees of freedom
|
1174 |
+
self._ensure_c_contiguous()
|
1175 |
+
_ppoly.fix_continuity(c.reshape(c.shape[0], c.shape[1], -1),
|
1176 |
+
self.x, nu - 1)
|
1177 |
+
|
1178 |
+
if self.extrapolate == 'periodic':
|
1179 |
+
extrapolate = False
|
1180 |
+
else:
|
1181 |
+
extrapolate = self.extrapolate
|
1182 |
+
|
1183 |
+
# construct a compatible polynomial
|
1184 |
+
return self.construct_fast(c, self.x, extrapolate, self.axis)
|
1185 |
+
|
1186 |
+
def integrate(self, a, b, extrapolate=None):
|
1187 |
+
"""
|
1188 |
+
Compute a definite integral over a piecewise polynomial.
|
1189 |
+
|
1190 |
+
Parameters
|
1191 |
+
----------
|
1192 |
+
a : float
|
1193 |
+
Lower integration bound
|
1194 |
+
b : float
|
1195 |
+
Upper integration bound
|
1196 |
+
extrapolate : {bool, 'periodic', None}, optional
|
1197 |
+
If bool, determines whether to extrapolate to out-of-bounds points
|
1198 |
+
based on first and last intervals, or to return NaNs.
|
1199 |
+
If 'periodic', periodic extrapolation is used.
|
1200 |
+
If None (default), use `self.extrapolate`.
|
1201 |
+
|
1202 |
+
Returns
|
1203 |
+
-------
|
1204 |
+
ig : array_like
|
1205 |
+
Definite integral of the piecewise polynomial over [a, b]
|
1206 |
+
"""
|
1207 |
+
if extrapolate is None:
|
1208 |
+
extrapolate = self.extrapolate
|
1209 |
+
|
1210 |
+
# Swap integration bounds if needed
|
1211 |
+
sign = 1
|
1212 |
+
if b < a:
|
1213 |
+
a, b = b, a
|
1214 |
+
sign = -1
|
1215 |
+
|
1216 |
+
range_int = np.empty((prod(self.c.shape[2:]),), dtype=self.c.dtype)
|
1217 |
+
self._ensure_c_contiguous()
|
1218 |
+
|
1219 |
+
# Compute the integral.
|
1220 |
+
if extrapolate == 'periodic':
|
1221 |
+
# Split the integral into the part over period (can be several
|
1222 |
+
# of them) and the remaining part.
|
1223 |
+
|
1224 |
+
xs, xe = self.x[0], self.x[-1]
|
1225 |
+
period = xe - xs
|
1226 |
+
interval = b - a
|
1227 |
+
n_periods, left = divmod(interval, period)
|
1228 |
+
|
1229 |
+
if n_periods > 0:
|
1230 |
+
_ppoly.integrate(
|
1231 |
+
self.c.reshape(self.c.shape[0], self.c.shape[1], -1),
|
1232 |
+
self.x, xs, xe, False, out=range_int)
|
1233 |
+
range_int *= n_periods
|
1234 |
+
else:
|
1235 |
+
range_int.fill(0)
|
1236 |
+
|
1237 |
+
# Map a to [xs, xe], b is always a + left.
|
1238 |
+
a = xs + (a - xs) % period
|
1239 |
+
b = a + left
|
1240 |
+
|
1241 |
+
# If b <= xe then we need to integrate over [a, b], otherwise
|
1242 |
+
# over [a, xe] and from xs to what is remained.
|
1243 |
+
remainder_int = np.empty_like(range_int)
|
1244 |
+
if b <= xe:
|
1245 |
+
_ppoly.integrate(
|
1246 |
+
self.c.reshape(self.c.shape[0], self.c.shape[1], -1),
|
1247 |
+
self.x, a, b, False, out=remainder_int)
|
1248 |
+
range_int += remainder_int
|
1249 |
+
else:
|
1250 |
+
_ppoly.integrate(
|
1251 |
+
self.c.reshape(self.c.shape[0], self.c.shape[1], -1),
|
1252 |
+
self.x, a, xe, False, out=remainder_int)
|
1253 |
+
range_int += remainder_int
|
1254 |
+
|
1255 |
+
_ppoly.integrate(
|
1256 |
+
self.c.reshape(self.c.shape[0], self.c.shape[1], -1),
|
1257 |
+
self.x, xs, xs + left + a - xe, False, out=remainder_int)
|
1258 |
+
range_int += remainder_int
|
1259 |
+
else:
|
1260 |
+
_ppoly.integrate(
|
1261 |
+
self.c.reshape(self.c.shape[0], self.c.shape[1], -1),
|
1262 |
+
self.x, a, b, bool(extrapolate), out=range_int)
|
1263 |
+
|
1264 |
+
# Return
|
1265 |
+
range_int *= sign
|
1266 |
+
return range_int.reshape(self.c.shape[2:])
|
1267 |
+
|
1268 |
+
def solve(self, y=0., discontinuity=True, extrapolate=None):
|
1269 |
+
"""
|
1270 |
+
Find real solutions of the equation ``pp(x) == y``.
|
1271 |
+
|
1272 |
+
Parameters
|
1273 |
+
----------
|
1274 |
+
y : float, optional
|
1275 |
+
Right-hand side. Default is zero.
|
1276 |
+
discontinuity : bool, optional
|
1277 |
+
Whether to report sign changes across discontinuities at
|
1278 |
+
breakpoints as roots.
|
1279 |
+
extrapolate : {bool, 'periodic', None}, optional
|
1280 |
+
If bool, determines whether to return roots from the polynomial
|
1281 |
+
extrapolated based on first and last intervals, 'periodic' works
|
1282 |
+
the same as False. If None (default), use `self.extrapolate`.
|
1283 |
+
|
1284 |
+
Returns
|
1285 |
+
-------
|
1286 |
+
roots : ndarray
|
1287 |
+
Roots of the polynomial(s).
|
1288 |
+
|
1289 |
+
If the PPoly object describes multiple polynomials, the
|
1290 |
+
return value is an object array whose each element is an
|
1291 |
+
ndarray containing the roots.
|
1292 |
+
|
1293 |
+
Notes
|
1294 |
+
-----
|
1295 |
+
This routine works only on real-valued polynomials.
|
1296 |
+
|
1297 |
+
If the piecewise polynomial contains sections that are
|
1298 |
+
identically zero, the root list will contain the start point
|
1299 |
+
of the corresponding interval, followed by a ``nan`` value.
|
1300 |
+
|
1301 |
+
If the polynomial is discontinuous across a breakpoint, and
|
1302 |
+
there is a sign change across the breakpoint, this is reported
|
1303 |
+
if the `discont` parameter is True.
|
1304 |
+
|
1305 |
+
Examples
|
1306 |
+
--------
|
1307 |
+
|
1308 |
+
Finding roots of ``[x**2 - 1, (x - 1)**2]`` defined on intervals
|
1309 |
+
``[-2, 1], [1, 2]``:
|
1310 |
+
|
1311 |
+
>>> import numpy as np
|
1312 |
+
>>> from scipy.interpolate import PPoly
|
1313 |
+
>>> pp = PPoly(np.array([[1, -4, 3], [1, 0, 0]]).T, [-2, 1, 2])
|
1314 |
+
>>> pp.solve()
|
1315 |
+
array([-1., 1.])
|
1316 |
+
"""
|
1317 |
+
if extrapolate is None:
|
1318 |
+
extrapolate = self.extrapolate
|
1319 |
+
|
1320 |
+
self._ensure_c_contiguous()
|
1321 |
+
|
1322 |
+
if np.issubdtype(self.c.dtype, np.complexfloating):
|
1323 |
+
raise ValueError("Root finding is only for "
|
1324 |
+
"real-valued polynomials")
|
1325 |
+
|
1326 |
+
y = float(y)
|
1327 |
+
r = _ppoly.real_roots(self.c.reshape(self.c.shape[0], self.c.shape[1], -1),
|
1328 |
+
self.x, y, bool(discontinuity),
|
1329 |
+
bool(extrapolate))
|
1330 |
+
if self.c.ndim == 2:
|
1331 |
+
return r[0]
|
1332 |
+
else:
|
1333 |
+
r2 = np.empty(prod(self.c.shape[2:]), dtype=object)
|
1334 |
+
# this for-loop is equivalent to ``r2[...] = r``, but that's broken
|
1335 |
+
# in NumPy 1.6.0
|
1336 |
+
for ii, root in enumerate(r):
|
1337 |
+
r2[ii] = root
|
1338 |
+
|
1339 |
+
return r2.reshape(self.c.shape[2:])
|
1340 |
+
|
1341 |
+
def roots(self, discontinuity=True, extrapolate=None):
|
1342 |
+
"""
|
1343 |
+
Find real roots of the piecewise polynomial.
|
1344 |
+
|
1345 |
+
Parameters
|
1346 |
+
----------
|
1347 |
+
discontinuity : bool, optional
|
1348 |
+
Whether to report sign changes across discontinuities at
|
1349 |
+
breakpoints as roots.
|
1350 |
+
extrapolate : {bool, 'periodic', None}, optional
|
1351 |
+
If bool, determines whether to return roots from the polynomial
|
1352 |
+
extrapolated based on first and last intervals, 'periodic' works
|
1353 |
+
the same as False. If None (default), use `self.extrapolate`.
|
1354 |
+
|
1355 |
+
Returns
|
1356 |
+
-------
|
1357 |
+
roots : ndarray
|
1358 |
+
Roots of the polynomial(s).
|
1359 |
+
|
1360 |
+
If the PPoly object describes multiple polynomials, the
|
1361 |
+
return value is an object array whose each element is an
|
1362 |
+
ndarray containing the roots.
|
1363 |
+
|
1364 |
+
See Also
|
1365 |
+
--------
|
1366 |
+
PPoly.solve
|
1367 |
+
"""
|
1368 |
+
return self.solve(0, discontinuity, extrapolate)
|
1369 |
+
|
1370 |
+
@classmethod
|
1371 |
+
def from_spline(cls, tck, extrapolate=None):
|
1372 |
+
"""
|
1373 |
+
Construct a piecewise polynomial from a spline
|
1374 |
+
|
1375 |
+
Parameters
|
1376 |
+
----------
|
1377 |
+
tck
|
1378 |
+
A spline, as returned by `splrep` or a BSpline object.
|
1379 |
+
extrapolate : bool or 'periodic', optional
|
1380 |
+
If bool, determines whether to extrapolate to out-of-bounds points
|
1381 |
+
based on first and last intervals, or to return NaNs.
|
1382 |
+
If 'periodic', periodic extrapolation is used. Default is True.
|
1383 |
+
|
1384 |
+
Examples
|
1385 |
+
--------
|
1386 |
+
Construct an interpolating spline and convert it to a `PPoly` instance
|
1387 |
+
|
1388 |
+
>>> import numpy as np
|
1389 |
+
>>> from scipy.interpolate import splrep, PPoly
|
1390 |
+
>>> x = np.linspace(0, 1, 11)
|
1391 |
+
>>> y = np.sin(2*np.pi*x)
|
1392 |
+
>>> tck = splrep(x, y, s=0)
|
1393 |
+
>>> p = PPoly.from_spline(tck)
|
1394 |
+
>>> isinstance(p, PPoly)
|
1395 |
+
True
|
1396 |
+
|
1397 |
+
Note that this function only supports 1D splines out of the box.
|
1398 |
+
|
1399 |
+
If the ``tck`` object represents a parametric spline (e.g. constructed
|
1400 |
+
by `splprep` or a `BSpline` with ``c.ndim > 1``), you will need to loop
|
1401 |
+
over the dimensions manually.
|
1402 |
+
|
1403 |
+
>>> from scipy.interpolate import splprep, splev
|
1404 |
+
>>> t = np.linspace(0, 1, 11)
|
1405 |
+
>>> x = np.sin(2*np.pi*t)
|
1406 |
+
>>> y = np.cos(2*np.pi*t)
|
1407 |
+
>>> (t, c, k), u = splprep([x, y], s=0)
|
1408 |
+
|
1409 |
+
Note that ``c`` is a list of two arrays of length 11.
|
1410 |
+
|
1411 |
+
>>> unew = np.arange(0, 1.01, 0.01)
|
1412 |
+
>>> out = splev(unew, (t, c, k))
|
1413 |
+
|
1414 |
+
To convert this spline to the power basis, we convert each
|
1415 |
+
component of the list of b-spline coefficients, ``c``, into the
|
1416 |
+
corresponding cubic polynomial.
|
1417 |
+
|
1418 |
+
>>> polys = [PPoly.from_spline((t, cj, k)) for cj in c]
|
1419 |
+
>>> polys[0].c.shape
|
1420 |
+
(4, 14)
|
1421 |
+
|
1422 |
+
Note that the coefficients of the polynomials `polys` are in the
|
1423 |
+
power basis and their dimensions reflect just that: here 4 is the order
|
1424 |
+
(degree+1), and 14 is the number of intervals---which is nothing but
|
1425 |
+
the length of the knot array of the original `tck` minus one.
|
1426 |
+
|
1427 |
+
Optionally, we can stack the components into a single `PPoly` along
|
1428 |
+
the third dimension:
|
1429 |
+
|
1430 |
+
>>> cc = np.dstack([p.c for p in polys]) # has shape = (4, 14, 2)
|
1431 |
+
>>> poly = PPoly(cc, polys[0].x)
|
1432 |
+
>>> np.allclose(poly(unew).T, # note the transpose to match `splev`
|
1433 |
+
... out, atol=1e-15)
|
1434 |
+
True
|
1435 |
+
|
1436 |
+
"""
|
1437 |
+
if isinstance(tck, BSpline):
|
1438 |
+
t, c, k = tck.tck
|
1439 |
+
if extrapolate is None:
|
1440 |
+
extrapolate = tck.extrapolate
|
1441 |
+
else:
|
1442 |
+
t, c, k = tck
|
1443 |
+
|
1444 |
+
cvals = np.empty((k + 1, len(t)-1), dtype=c.dtype)
|
1445 |
+
for m in range(k, -1, -1):
|
1446 |
+
y = _fitpack_py.splev(t[:-1], tck, der=m)
|
1447 |
+
cvals[k - m, :] = y/spec.gamma(m+1)
|
1448 |
+
|
1449 |
+
return cls.construct_fast(cvals, t, extrapolate)
|
1450 |
+
|
1451 |
+
@classmethod
|
1452 |
+
def from_bernstein_basis(cls, bp, extrapolate=None):
|
1453 |
+
"""
|
1454 |
+
Construct a piecewise polynomial in the power basis
|
1455 |
+
from a polynomial in Bernstein basis.
|
1456 |
+
|
1457 |
+
Parameters
|
1458 |
+
----------
|
1459 |
+
bp : BPoly
|
1460 |
+
A Bernstein basis polynomial, as created by BPoly
|
1461 |
+
extrapolate : bool or 'periodic', optional
|
1462 |
+
If bool, determines whether to extrapolate to out-of-bounds points
|
1463 |
+
based on first and last intervals, or to return NaNs.
|
1464 |
+
If 'periodic', periodic extrapolation is used. Default is True.
|
1465 |
+
"""
|
1466 |
+
if not isinstance(bp, BPoly):
|
1467 |
+
raise TypeError(".from_bernstein_basis only accepts BPoly instances. "
|
1468 |
+
"Got %s instead." % type(bp))
|
1469 |
+
|
1470 |
+
dx = np.diff(bp.x)
|
1471 |
+
k = bp.c.shape[0] - 1 # polynomial order
|
1472 |
+
|
1473 |
+
rest = (None,)*(bp.c.ndim-2)
|
1474 |
+
|
1475 |
+
c = np.zeros_like(bp.c)
|
1476 |
+
for a in range(k+1):
|
1477 |
+
factor = (-1)**a * comb(k, a) * bp.c[a]
|
1478 |
+
for s in range(a, k+1):
|
1479 |
+
val = comb(k-a, s-a) * (-1)**s
|
1480 |
+
c[k-s] += factor * val / dx[(slice(None),)+rest]**s
|
1481 |
+
|
1482 |
+
if extrapolate is None:
|
1483 |
+
extrapolate = bp.extrapolate
|
1484 |
+
|
1485 |
+
return cls.construct_fast(c, bp.x, extrapolate, bp.axis)
|
1486 |
+
|
1487 |
+
|
1488 |
+
class BPoly(_PPolyBase):
|
1489 |
+
"""Piecewise polynomial in terms of coefficients and breakpoints.
|
1490 |
+
|
1491 |
+
The polynomial between ``x[i]`` and ``x[i + 1]`` is written in the
|
1492 |
+
Bernstein polynomial basis::
|
1493 |
+
|
1494 |
+
S = sum(c[a, i] * b(a, k; x) for a in range(k+1)),
|
1495 |
+
|
1496 |
+
where ``k`` is the degree of the polynomial, and::
|
1497 |
+
|
1498 |
+
b(a, k; x) = binom(k, a) * t**a * (1 - t)**(k - a),
|
1499 |
+
|
1500 |
+
with ``t = (x - x[i]) / (x[i+1] - x[i])`` and ``binom`` is the binomial
|
1501 |
+
coefficient.
|
1502 |
+
|
1503 |
+
Parameters
|
1504 |
+
----------
|
1505 |
+
c : ndarray, shape (k, m, ...)
|
1506 |
+
Polynomial coefficients, order `k` and `m` intervals
|
1507 |
+
x : ndarray, shape (m+1,)
|
1508 |
+
Polynomial breakpoints. Must be sorted in either increasing or
|
1509 |
+
decreasing order.
|
1510 |
+
extrapolate : bool, optional
|
1511 |
+
If bool, determines whether to extrapolate to out-of-bounds points
|
1512 |
+
based on first and last intervals, or to return NaNs. If 'periodic',
|
1513 |
+
periodic extrapolation is used. Default is True.
|
1514 |
+
axis : int, optional
|
1515 |
+
Interpolation axis. Default is zero.
|
1516 |
+
|
1517 |
+
Attributes
|
1518 |
+
----------
|
1519 |
+
x : ndarray
|
1520 |
+
Breakpoints.
|
1521 |
+
c : ndarray
|
1522 |
+
Coefficients of the polynomials. They are reshaped
|
1523 |
+
to a 3-D array with the last dimension representing
|
1524 |
+
the trailing dimensions of the original coefficient array.
|
1525 |
+
axis : int
|
1526 |
+
Interpolation axis.
|
1527 |
+
|
1528 |
+
Methods
|
1529 |
+
-------
|
1530 |
+
__call__
|
1531 |
+
extend
|
1532 |
+
derivative
|
1533 |
+
antiderivative
|
1534 |
+
integrate
|
1535 |
+
construct_fast
|
1536 |
+
from_power_basis
|
1537 |
+
from_derivatives
|
1538 |
+
|
1539 |
+
See also
|
1540 |
+
--------
|
1541 |
+
PPoly : piecewise polynomials in the power basis
|
1542 |
+
|
1543 |
+
Notes
|
1544 |
+
-----
|
1545 |
+
Properties of Bernstein polynomials are well documented in the literature,
|
1546 |
+
see for example [1]_ [2]_ [3]_.
|
1547 |
+
|
1548 |
+
References
|
1549 |
+
----------
|
1550 |
+
.. [1] https://en.wikipedia.org/wiki/Bernstein_polynomial
|
1551 |
+
|
1552 |
+
.. [2] Kenneth I. Joy, Bernstein polynomials,
|
1553 |
+
http://www.idav.ucdavis.edu/education/CAGDNotes/Bernstein-Polynomials.pdf
|
1554 |
+
|
1555 |
+
.. [3] E. H. Doha, A. H. Bhrawy, and M. A. Saker, Boundary Value Problems,
|
1556 |
+
vol 2011, article ID 829546, :doi:`10.1155/2011/829543`.
|
1557 |
+
|
1558 |
+
Examples
|
1559 |
+
--------
|
1560 |
+
>>> from scipy.interpolate import BPoly
|
1561 |
+
>>> x = [0, 1]
|
1562 |
+
>>> c = [[1], [2], [3]]
|
1563 |
+
>>> bp = BPoly(c, x)
|
1564 |
+
|
1565 |
+
This creates a 2nd order polynomial
|
1566 |
+
|
1567 |
+
.. math::
|
1568 |
+
|
1569 |
+
B(x) = 1 \\times b_{0, 2}(x) + 2 \\times b_{1, 2}(x) + 3
|
1570 |
+
\\times b_{2, 2}(x) \\\\
|
1571 |
+
= 1 \\times (1-x)^2 + 2 \\times 2 x (1 - x) + 3 \\times x^2
|
1572 |
+
|
1573 |
+
""" # noqa: E501
|
1574 |
+
|
1575 |
+
def _evaluate(self, x, nu, extrapolate, out):
|
1576 |
+
_ppoly.evaluate_bernstein(
|
1577 |
+
self.c.reshape(self.c.shape[0], self.c.shape[1], -1),
|
1578 |
+
self.x, x, nu, bool(extrapolate), out)
|
1579 |
+
|
1580 |
+
def derivative(self, nu=1):
|
1581 |
+
"""
|
1582 |
+
Construct a new piecewise polynomial representing the derivative.
|
1583 |
+
|
1584 |
+
Parameters
|
1585 |
+
----------
|
1586 |
+
nu : int, optional
|
1587 |
+
Order of derivative to evaluate. Default is 1, i.e., compute the
|
1588 |
+
first derivative. If negative, the antiderivative is returned.
|
1589 |
+
|
1590 |
+
Returns
|
1591 |
+
-------
|
1592 |
+
bp : BPoly
|
1593 |
+
Piecewise polynomial of order k - nu representing the derivative of
|
1594 |
+
this polynomial.
|
1595 |
+
|
1596 |
+
"""
|
1597 |
+
if nu < 0:
|
1598 |
+
return self.antiderivative(-nu)
|
1599 |
+
|
1600 |
+
if nu > 1:
|
1601 |
+
bp = self
|
1602 |
+
for k in range(nu):
|
1603 |
+
bp = bp.derivative()
|
1604 |
+
return bp
|
1605 |
+
|
1606 |
+
# reduce order
|
1607 |
+
if nu == 0:
|
1608 |
+
c2 = self.c.copy()
|
1609 |
+
else:
|
1610 |
+
# For a polynomial
|
1611 |
+
# B(x) = \sum_{a=0}^{k} c_a b_{a, k}(x),
|
1612 |
+
# we use the fact that
|
1613 |
+
# b'_{a, k} = k ( b_{a-1, k-1} - b_{a, k-1} ),
|
1614 |
+
# which leads to
|
1615 |
+
# B'(x) = \sum_{a=0}^{k-1} (c_{a+1} - c_a) b_{a, k-1}
|
1616 |
+
#
|
1617 |
+
# finally, for an interval [y, y + dy] with dy != 1,
|
1618 |
+
# we need to correct for an extra power of dy
|
1619 |
+
|
1620 |
+
rest = (None,)*(self.c.ndim-2)
|
1621 |
+
|
1622 |
+
k = self.c.shape[0] - 1
|
1623 |
+
dx = np.diff(self.x)[(None, slice(None))+rest]
|
1624 |
+
c2 = k * np.diff(self.c, axis=0) / dx
|
1625 |
+
|
1626 |
+
if c2.shape[0] == 0:
|
1627 |
+
# derivative of order 0 is zero
|
1628 |
+
c2 = np.zeros((1,) + c2.shape[1:], dtype=c2.dtype)
|
1629 |
+
|
1630 |
+
# construct a compatible polynomial
|
1631 |
+
return self.construct_fast(c2, self.x, self.extrapolate, self.axis)
|
1632 |
+
|
1633 |
+
def antiderivative(self, nu=1):
|
1634 |
+
"""
|
1635 |
+
Construct a new piecewise polynomial representing the antiderivative.
|
1636 |
+
|
1637 |
+
Parameters
|
1638 |
+
----------
|
1639 |
+
nu : int, optional
|
1640 |
+
Order of antiderivative to evaluate. Default is 1, i.e., compute
|
1641 |
+
the first integral. If negative, the derivative is returned.
|
1642 |
+
|
1643 |
+
Returns
|
1644 |
+
-------
|
1645 |
+
bp : BPoly
|
1646 |
+
Piecewise polynomial of order k + nu representing the
|
1647 |
+
antiderivative of this polynomial.
|
1648 |
+
|
1649 |
+
Notes
|
1650 |
+
-----
|
1651 |
+
If antiderivative is computed and ``self.extrapolate='periodic'``,
|
1652 |
+
it will be set to False for the returned instance. This is done because
|
1653 |
+
the antiderivative is no longer periodic and its correct evaluation
|
1654 |
+
outside of the initially given x interval is difficult.
|
1655 |
+
"""
|
1656 |
+
if nu <= 0:
|
1657 |
+
return self.derivative(-nu)
|
1658 |
+
|
1659 |
+
if nu > 1:
|
1660 |
+
bp = self
|
1661 |
+
for k in range(nu):
|
1662 |
+
bp = bp.antiderivative()
|
1663 |
+
return bp
|
1664 |
+
|
1665 |
+
# Construct the indefinite integrals on individual intervals
|
1666 |
+
c, x = self.c, self.x
|
1667 |
+
k = c.shape[0]
|
1668 |
+
c2 = np.zeros((k+1,) + c.shape[1:], dtype=c.dtype)
|
1669 |
+
|
1670 |
+
c2[1:, ...] = np.cumsum(c, axis=0) / k
|
1671 |
+
delta = x[1:] - x[:-1]
|
1672 |
+
c2 *= delta[(None, slice(None)) + (None,)*(c.ndim-2)]
|
1673 |
+
|
1674 |
+
# Now fix continuity: on the very first interval, take the integration
|
1675 |
+
# constant to be zero; on an interval [x_j, x_{j+1}) with j>0,
|
1676 |
+
# the integration constant is then equal to the jump of the `bp` at x_j.
|
1677 |
+
# The latter is given by the coefficient of B_{n+1, n+1}
|
1678 |
+
# *on the previous interval* (other B. polynomials are zero at the
|
1679 |
+
# breakpoint). Finally, use the fact that BPs form a partition of unity.
|
1680 |
+
c2[:,1:] += np.cumsum(c2[k, :], axis=0)[:-1]
|
1681 |
+
|
1682 |
+
if self.extrapolate == 'periodic':
|
1683 |
+
extrapolate = False
|
1684 |
+
else:
|
1685 |
+
extrapolate = self.extrapolate
|
1686 |
+
|
1687 |
+
return self.construct_fast(c2, x, extrapolate, axis=self.axis)
|
1688 |
+
|
1689 |
+
def integrate(self, a, b, extrapolate=None):
|
1690 |
+
"""
|
1691 |
+
Compute a definite integral over a piecewise polynomial.
|
1692 |
+
|
1693 |
+
Parameters
|
1694 |
+
----------
|
1695 |
+
a : float
|
1696 |
+
Lower integration bound
|
1697 |
+
b : float
|
1698 |
+
Upper integration bound
|
1699 |
+
extrapolate : {bool, 'periodic', None}, optional
|
1700 |
+
Whether to extrapolate to out-of-bounds points based on first
|
1701 |
+
and last intervals, or to return NaNs. If 'periodic', periodic
|
1702 |
+
extrapolation is used. If None (default), use `self.extrapolate`.
|
1703 |
+
|
1704 |
+
Returns
|
1705 |
+
-------
|
1706 |
+
array_like
|
1707 |
+
Definite integral of the piecewise polynomial over [a, b]
|
1708 |
+
|
1709 |
+
"""
|
1710 |
+
# XXX: can probably use instead the fact that
|
1711 |
+
# \int_0^{1} B_{j, n}(x) \dx = 1/(n+1)
|
1712 |
+
ib = self.antiderivative()
|
1713 |
+
if extrapolate is None:
|
1714 |
+
extrapolate = self.extrapolate
|
1715 |
+
|
1716 |
+
# ib.extrapolate shouldn't be 'periodic', it is converted to
|
1717 |
+
# False for 'periodic. in antiderivative() call.
|
1718 |
+
if extrapolate != 'periodic':
|
1719 |
+
ib.extrapolate = extrapolate
|
1720 |
+
|
1721 |
+
if extrapolate == 'periodic':
|
1722 |
+
# Split the integral into the part over period (can be several
|
1723 |
+
# of them) and the remaining part.
|
1724 |
+
|
1725 |
+
# For simplicity and clarity convert to a <= b case.
|
1726 |
+
if a <= b:
|
1727 |
+
sign = 1
|
1728 |
+
else:
|
1729 |
+
a, b = b, a
|
1730 |
+
sign = -1
|
1731 |
+
|
1732 |
+
xs, xe = self.x[0], self.x[-1]
|
1733 |
+
period = xe - xs
|
1734 |
+
interval = b - a
|
1735 |
+
n_periods, left = divmod(interval, period)
|
1736 |
+
res = n_periods * (ib(xe) - ib(xs))
|
1737 |
+
|
1738 |
+
# Map a and b to [xs, xe].
|
1739 |
+
a = xs + (a - xs) % period
|
1740 |
+
b = a + left
|
1741 |
+
|
1742 |
+
# If b <= xe then we need to integrate over [a, b], otherwise
|
1743 |
+
# over [a, xe] and from xs to what is remained.
|
1744 |
+
if b <= xe:
|
1745 |
+
res += ib(b) - ib(a)
|
1746 |
+
else:
|
1747 |
+
res += ib(xe) - ib(a) + ib(xs + left + a - xe) - ib(xs)
|
1748 |
+
|
1749 |
+
return sign * res
|
1750 |
+
else:
|
1751 |
+
return ib(b) - ib(a)
|
1752 |
+
|
1753 |
+
def extend(self, c, x):
|
1754 |
+
k = max(self.c.shape[0], c.shape[0])
|
1755 |
+
self.c = self._raise_degree(self.c, k - self.c.shape[0])
|
1756 |
+
c = self._raise_degree(c, k - c.shape[0])
|
1757 |
+
return _PPolyBase.extend(self, c, x)
|
1758 |
+
extend.__doc__ = _PPolyBase.extend.__doc__
|
1759 |
+
|
1760 |
+
@classmethod
|
1761 |
+
def from_power_basis(cls, pp, extrapolate=None):
|
1762 |
+
"""
|
1763 |
+
Construct a piecewise polynomial in Bernstein basis
|
1764 |
+
from a power basis polynomial.
|
1765 |
+
|
1766 |
+
Parameters
|
1767 |
+
----------
|
1768 |
+
pp : PPoly
|
1769 |
+
A piecewise polynomial in the power basis
|
1770 |
+
extrapolate : bool or 'periodic', optional
|
1771 |
+
If bool, determines whether to extrapolate to out-of-bounds points
|
1772 |
+
based on first and last intervals, or to return NaNs.
|
1773 |
+
If 'periodic', periodic extrapolation is used. Default is True.
|
1774 |
+
"""
|
1775 |
+
if not isinstance(pp, PPoly):
|
1776 |
+
raise TypeError(".from_power_basis only accepts PPoly instances. "
|
1777 |
+
"Got %s instead." % type(pp))
|
1778 |
+
|
1779 |
+
dx = np.diff(pp.x)
|
1780 |
+
k = pp.c.shape[0] - 1 # polynomial order
|
1781 |
+
|
1782 |
+
rest = (None,)*(pp.c.ndim-2)
|
1783 |
+
|
1784 |
+
c = np.zeros_like(pp.c)
|
1785 |
+
for a in range(k+1):
|
1786 |
+
factor = pp.c[a] / comb(k, k-a) * dx[(slice(None),)+rest]**(k-a)
|
1787 |
+
for j in range(k-a, k+1):
|
1788 |
+
c[j] += factor * comb(j, k-a)
|
1789 |
+
|
1790 |
+
if extrapolate is None:
|
1791 |
+
extrapolate = pp.extrapolate
|
1792 |
+
|
1793 |
+
return cls.construct_fast(c, pp.x, extrapolate, pp.axis)
|
1794 |
+
|
1795 |
+
@classmethod
|
1796 |
+
def from_derivatives(cls, xi, yi, orders=None, extrapolate=None):
|
1797 |
+
"""Construct a piecewise polynomial in the Bernstein basis,
|
1798 |
+
compatible with the specified values and derivatives at breakpoints.
|
1799 |
+
|
1800 |
+
Parameters
|
1801 |
+
----------
|
1802 |
+
xi : array_like
|
1803 |
+
sorted 1-D array of x-coordinates
|
1804 |
+
yi : array_like or list of array_likes
|
1805 |
+
``yi[i][j]`` is the ``j``\\ th derivative known at ``xi[i]``
|
1806 |
+
orders : None or int or array_like of ints. Default: None.
|
1807 |
+
Specifies the degree of local polynomials. If not None, some
|
1808 |
+
derivatives are ignored.
|
1809 |
+
extrapolate : bool or 'periodic', optional
|
1810 |
+
If bool, determines whether to extrapolate to out-of-bounds points
|
1811 |
+
based on first and last intervals, or to return NaNs.
|
1812 |
+
If 'periodic', periodic extrapolation is used. Default is True.
|
1813 |
+
|
1814 |
+
Notes
|
1815 |
+
-----
|
1816 |
+
If ``k`` derivatives are specified at a breakpoint ``x``, the
|
1817 |
+
constructed polynomial is exactly ``k`` times continuously
|
1818 |
+
differentiable at ``x``, unless the ``order`` is provided explicitly.
|
1819 |
+
In the latter case, the smoothness of the polynomial at
|
1820 |
+
the breakpoint is controlled by the ``order``.
|
1821 |
+
|
1822 |
+
Deduces the number of derivatives to match at each end
|
1823 |
+
from ``order`` and the number of derivatives available. If
|
1824 |
+
possible it uses the same number of derivatives from
|
1825 |
+
each end; if the number is odd it tries to take the
|
1826 |
+
extra one from y2. In any case if not enough derivatives
|
1827 |
+
are available at one end or another it draws enough to
|
1828 |
+
make up the total from the other end.
|
1829 |
+
|
1830 |
+
If the order is too high and not enough derivatives are available,
|
1831 |
+
an exception is raised.
|
1832 |
+
|
1833 |
+
Examples
|
1834 |
+
--------
|
1835 |
+
|
1836 |
+
>>> from scipy.interpolate import BPoly
|
1837 |
+
>>> BPoly.from_derivatives([0, 1], [[1, 2], [3, 4]])
|
1838 |
+
|
1839 |
+
Creates a polynomial `f(x)` of degree 3, defined on `[0, 1]`
|
1840 |
+
such that `f(0) = 1, df/dx(0) = 2, f(1) = 3, df/dx(1) = 4`
|
1841 |
+
|
1842 |
+
>>> BPoly.from_derivatives([0, 1, 2], [[0, 1], [0], [2]])
|
1843 |
+
|
1844 |
+
Creates a piecewise polynomial `f(x)`, such that
|
1845 |
+
`f(0) = f(1) = 0`, `f(2) = 2`, and `df/dx(0) = 1`.
|
1846 |
+
Based on the number of derivatives provided, the order of the
|
1847 |
+
local polynomials is 2 on `[0, 1]` and 1 on `[1, 2]`.
|
1848 |
+
Notice that no restriction is imposed on the derivatives at
|
1849 |
+
``x = 1`` and ``x = 2``.
|
1850 |
+
|
1851 |
+
Indeed, the explicit form of the polynomial is::
|
1852 |
+
|
1853 |
+
f(x) = | x * (1 - x), 0 <= x < 1
|
1854 |
+
| 2 * (x - 1), 1 <= x <= 2
|
1855 |
+
|
1856 |
+
So that f'(1-0) = -1 and f'(1+0) = 2
|
1857 |
+
|
1858 |
+
"""
|
1859 |
+
xi = np.asarray(xi)
|
1860 |
+
if len(xi) != len(yi):
|
1861 |
+
raise ValueError("xi and yi need to have the same length")
|
1862 |
+
if np.any(xi[1:] - xi[:1] <= 0):
|
1863 |
+
raise ValueError("x coordinates are not in increasing order")
|
1864 |
+
|
1865 |
+
# number of intervals
|
1866 |
+
m = len(xi) - 1
|
1867 |
+
|
1868 |
+
# global poly order is k-1, local orders are <=k and can vary
|
1869 |
+
try:
|
1870 |
+
k = max(len(yi[i]) + len(yi[i+1]) for i in range(m))
|
1871 |
+
except TypeError as e:
|
1872 |
+
raise ValueError(
|
1873 |
+
"Using a 1-D array for y? Please .reshape(-1, 1)."
|
1874 |
+
) from e
|
1875 |
+
|
1876 |
+
if orders is None:
|
1877 |
+
orders = [None] * m
|
1878 |
+
else:
|
1879 |
+
if isinstance(orders, (int, np.integer)):
|
1880 |
+
orders = [orders] * m
|
1881 |
+
k = max(k, max(orders))
|
1882 |
+
|
1883 |
+
if any(o <= 0 for o in orders):
|
1884 |
+
raise ValueError("Orders must be positive.")
|
1885 |
+
|
1886 |
+
c = []
|
1887 |
+
for i in range(m):
|
1888 |
+
y1, y2 = yi[i], yi[i+1]
|
1889 |
+
if orders[i] is None:
|
1890 |
+
n1, n2 = len(y1), len(y2)
|
1891 |
+
else:
|
1892 |
+
n = orders[i]+1
|
1893 |
+
n1 = min(n//2, len(y1))
|
1894 |
+
n2 = min(n - n1, len(y2))
|
1895 |
+
n1 = min(n - n2, len(y2))
|
1896 |
+
if n1+n2 != n:
|
1897 |
+
mesg = ("Point %g has %d derivatives, point %g"
|
1898 |
+
" has %d derivatives, but order %d requested" % (
|
1899 |
+
xi[i], len(y1), xi[i+1], len(y2), orders[i]))
|
1900 |
+
raise ValueError(mesg)
|
1901 |
+
|
1902 |
+
if not (n1 <= len(y1) and n2 <= len(y2)):
|
1903 |
+
raise ValueError("`order` input incompatible with"
|
1904 |
+
" length y1 or y2.")
|
1905 |
+
|
1906 |
+
b = BPoly._construct_from_derivatives(xi[i], xi[i+1],
|
1907 |
+
y1[:n1], y2[:n2])
|
1908 |
+
if len(b) < k:
|
1909 |
+
b = BPoly._raise_degree(b, k - len(b))
|
1910 |
+
c.append(b)
|
1911 |
+
|
1912 |
+
c = np.asarray(c)
|
1913 |
+
return cls(c.swapaxes(0, 1), xi, extrapolate)
|
1914 |
+
|
1915 |
+
@staticmethod
|
1916 |
+
def _construct_from_derivatives(xa, xb, ya, yb):
|
1917 |
+
r"""Compute the coefficients of a polynomial in the Bernstein basis
|
1918 |
+
given the values and derivatives at the edges.
|
1919 |
+
|
1920 |
+
Return the coefficients of a polynomial in the Bernstein basis
|
1921 |
+
defined on ``[xa, xb]`` and having the values and derivatives at the
|
1922 |
+
endpoints `xa` and `xb` as specified by `ya` and `yb`.
|
1923 |
+
The polynomial constructed is of the minimal possible degree, i.e.,
|
1924 |
+
if the lengths of `ya` and `yb` are `na` and `nb`, the degree
|
1925 |
+
of the polynomial is ``na + nb - 1``.
|
1926 |
+
|
1927 |
+
Parameters
|
1928 |
+
----------
|
1929 |
+
xa : float
|
1930 |
+
Left-hand end point of the interval
|
1931 |
+
xb : float
|
1932 |
+
Right-hand end point of the interval
|
1933 |
+
ya : array_like
|
1934 |
+
Derivatives at `xa`. ``ya[0]`` is the value of the function, and
|
1935 |
+
``ya[i]`` for ``i > 0`` is the value of the ``i``\ th derivative.
|
1936 |
+
yb : array_like
|
1937 |
+
Derivatives at `xb`.
|
1938 |
+
|
1939 |
+
Returns
|
1940 |
+
-------
|
1941 |
+
array
|
1942 |
+
coefficient array of a polynomial having specified derivatives
|
1943 |
+
|
1944 |
+
Notes
|
1945 |
+
-----
|
1946 |
+
This uses several facts from life of Bernstein basis functions.
|
1947 |
+
First of all,
|
1948 |
+
|
1949 |
+
.. math:: b'_{a, n} = n (b_{a-1, n-1} - b_{a, n-1})
|
1950 |
+
|
1951 |
+
If B(x) is a linear combination of the form
|
1952 |
+
|
1953 |
+
.. math:: B(x) = \sum_{a=0}^{n} c_a b_{a, n},
|
1954 |
+
|
1955 |
+
then :math: B'(x) = n \sum_{a=0}^{n-1} (c_{a+1} - c_{a}) b_{a, n-1}.
|
1956 |
+
Iterating the latter one, one finds for the q-th derivative
|
1957 |
+
|
1958 |
+
.. math:: B^{q}(x) = n!/(n-q)! \sum_{a=0}^{n-q} Q_a b_{a, n-q},
|
1959 |
+
|
1960 |
+
with
|
1961 |
+
|
1962 |
+
.. math:: Q_a = \sum_{j=0}^{q} (-)^{j+q} comb(q, j) c_{j+a}
|
1963 |
+
|
1964 |
+
This way, only `a=0` contributes to :math: `B^{q}(x = xa)`, and
|
1965 |
+
`c_q` are found one by one by iterating `q = 0, ..., na`.
|
1966 |
+
|
1967 |
+
At ``x = xb`` it's the same with ``a = n - q``.
|
1968 |
+
|
1969 |
+
"""
|
1970 |
+
ya, yb = np.asarray(ya), np.asarray(yb)
|
1971 |
+
if ya.shape[1:] != yb.shape[1:]:
|
1972 |
+
raise ValueError('Shapes of ya {} and yb {} are incompatible'
|
1973 |
+
.format(ya.shape, yb.shape))
|
1974 |
+
|
1975 |
+
dta, dtb = ya.dtype, yb.dtype
|
1976 |
+
if (np.issubdtype(dta, np.complexfloating) or
|
1977 |
+
np.issubdtype(dtb, np.complexfloating)):
|
1978 |
+
dt = np.complex128
|
1979 |
+
else:
|
1980 |
+
dt = np.float64
|
1981 |
+
|
1982 |
+
na, nb = len(ya), len(yb)
|
1983 |
+
n = na + nb
|
1984 |
+
|
1985 |
+
c = np.empty((na+nb,) + ya.shape[1:], dtype=dt)
|
1986 |
+
|
1987 |
+
# compute coefficients of a polynomial degree na+nb-1
|
1988 |
+
# walk left-to-right
|
1989 |
+
for q in range(0, na):
|
1990 |
+
c[q] = ya[q] / spec.poch(n - q, q) * (xb - xa)**q
|
1991 |
+
for j in range(0, q):
|
1992 |
+
c[q] -= (-1)**(j+q) * comb(q, j) * c[j]
|
1993 |
+
|
1994 |
+
# now walk right-to-left
|
1995 |
+
for q in range(0, nb):
|
1996 |
+
c[-q-1] = yb[q] / spec.poch(n - q, q) * (-1)**q * (xb - xa)**q
|
1997 |
+
for j in range(0, q):
|
1998 |
+
c[-q-1] -= (-1)**(j+1) * comb(q, j+1) * c[-q+j]
|
1999 |
+
|
2000 |
+
return c
|
2001 |
+
|
2002 |
+
@staticmethod
|
2003 |
+
def _raise_degree(c, d):
|
2004 |
+
r"""Raise a degree of a polynomial in the Bernstein basis.
|
2005 |
+
|
2006 |
+
Given the coefficients of a polynomial degree `k`, return (the
|
2007 |
+
coefficients of) the equivalent polynomial of degree `k+d`.
|
2008 |
+
|
2009 |
+
Parameters
|
2010 |
+
----------
|
2011 |
+
c : array_like
|
2012 |
+
coefficient array, 1-D
|
2013 |
+
d : integer
|
2014 |
+
|
2015 |
+
Returns
|
2016 |
+
-------
|
2017 |
+
array
|
2018 |
+
coefficient array, 1-D array of length `c.shape[0] + d`
|
2019 |
+
|
2020 |
+
Notes
|
2021 |
+
-----
|
2022 |
+
This uses the fact that a Bernstein polynomial `b_{a, k}` can be
|
2023 |
+
identically represented as a linear combination of polynomials of
|
2024 |
+
a higher degree `k+d`:
|
2025 |
+
|
2026 |
+
.. math:: b_{a, k} = comb(k, a) \sum_{j=0}^{d} b_{a+j, k+d} \
|
2027 |
+
comb(d, j) / comb(k+d, a+j)
|
2028 |
+
|
2029 |
+
"""
|
2030 |
+
if d == 0:
|
2031 |
+
return c
|
2032 |
+
|
2033 |
+
k = c.shape[0] - 1
|
2034 |
+
out = np.zeros((c.shape[0] + d,) + c.shape[1:], dtype=c.dtype)
|
2035 |
+
|
2036 |
+
for a in range(c.shape[0]):
|
2037 |
+
f = c[a] * comb(k, a)
|
2038 |
+
for j in range(d+1):
|
2039 |
+
out[a+j] += f * comb(d, j) / comb(k+d, a+j)
|
2040 |
+
return out
|
2041 |
+
|
2042 |
+
|
2043 |
+
class NdPPoly:
|
2044 |
+
"""
|
2045 |
+
Piecewise tensor product polynomial
|
2046 |
+
|
2047 |
+
The value at point ``xp = (x', y', z', ...)`` is evaluated by first
|
2048 |
+
computing the interval indices `i` such that::
|
2049 |
+
|
2050 |
+
x[0][i[0]] <= x' < x[0][i[0]+1]
|
2051 |
+
x[1][i[1]] <= y' < x[1][i[1]+1]
|
2052 |
+
...
|
2053 |
+
|
2054 |
+
and then computing::
|
2055 |
+
|
2056 |
+
S = sum(c[k0-m0-1,...,kn-mn-1,i[0],...,i[n]]
|
2057 |
+
* (xp[0] - x[0][i[0]])**m0
|
2058 |
+
* ...
|
2059 |
+
* (xp[n] - x[n][i[n]])**mn
|
2060 |
+
for m0 in range(k[0]+1)
|
2061 |
+
...
|
2062 |
+
for mn in range(k[n]+1))
|
2063 |
+
|
2064 |
+
where ``k[j]`` is the degree of the polynomial in dimension j. This
|
2065 |
+
representation is the piecewise multivariate power basis.
|
2066 |
+
|
2067 |
+
Parameters
|
2068 |
+
----------
|
2069 |
+
c : ndarray, shape (k0, ..., kn, m0, ..., mn, ...)
|
2070 |
+
Polynomial coefficients, with polynomial order `kj` and
|
2071 |
+
`mj+1` intervals for each dimension `j`.
|
2072 |
+
x : ndim-tuple of ndarrays, shapes (mj+1,)
|
2073 |
+
Polynomial breakpoints for each dimension. These must be
|
2074 |
+
sorted in increasing order.
|
2075 |
+
extrapolate : bool, optional
|
2076 |
+
Whether to extrapolate to out-of-bounds points based on first
|
2077 |
+
and last intervals, or to return NaNs. Default: True.
|
2078 |
+
|
2079 |
+
Attributes
|
2080 |
+
----------
|
2081 |
+
x : tuple of ndarrays
|
2082 |
+
Breakpoints.
|
2083 |
+
c : ndarray
|
2084 |
+
Coefficients of the polynomials.
|
2085 |
+
|
2086 |
+
Methods
|
2087 |
+
-------
|
2088 |
+
__call__
|
2089 |
+
derivative
|
2090 |
+
antiderivative
|
2091 |
+
integrate
|
2092 |
+
integrate_1d
|
2093 |
+
construct_fast
|
2094 |
+
|
2095 |
+
See also
|
2096 |
+
--------
|
2097 |
+
PPoly : piecewise polynomials in 1D
|
2098 |
+
|
2099 |
+
Notes
|
2100 |
+
-----
|
2101 |
+
High-order polynomials in the power basis can be numerically
|
2102 |
+
unstable.
|
2103 |
+
|
2104 |
+
"""
|
2105 |
+
|
2106 |
+
def __init__(self, c, x, extrapolate=None):
|
2107 |
+
self.x = tuple(np.ascontiguousarray(v, dtype=np.float64) for v in x)
|
2108 |
+
self.c = np.asarray(c)
|
2109 |
+
if extrapolate is None:
|
2110 |
+
extrapolate = True
|
2111 |
+
self.extrapolate = bool(extrapolate)
|
2112 |
+
|
2113 |
+
ndim = len(self.x)
|
2114 |
+
if any(v.ndim != 1 for v in self.x):
|
2115 |
+
raise ValueError("x arrays must all be 1-dimensional")
|
2116 |
+
if any(v.size < 2 for v in self.x):
|
2117 |
+
raise ValueError("x arrays must all contain at least 2 points")
|
2118 |
+
if c.ndim < 2*ndim:
|
2119 |
+
raise ValueError("c must have at least 2*len(x) dimensions")
|
2120 |
+
if any(np.any(v[1:] - v[:-1] < 0) for v in self.x):
|
2121 |
+
raise ValueError("x-coordinates are not in increasing order")
|
2122 |
+
if any(a != b.size - 1 for a, b in zip(c.shape[ndim:2*ndim], self.x)):
|
2123 |
+
raise ValueError("x and c do not agree on the number of intervals")
|
2124 |
+
|
2125 |
+
dtype = self._get_dtype(self.c.dtype)
|
2126 |
+
self.c = np.ascontiguousarray(self.c, dtype=dtype)
|
2127 |
+
|
2128 |
+
@classmethod
|
2129 |
+
def construct_fast(cls, c, x, extrapolate=None):
|
2130 |
+
"""
|
2131 |
+
Construct the piecewise polynomial without making checks.
|
2132 |
+
|
2133 |
+
Takes the same parameters as the constructor. Input arguments
|
2134 |
+
``c`` and ``x`` must be arrays of the correct shape and type. The
|
2135 |
+
``c`` array can only be of dtypes float and complex, and ``x``
|
2136 |
+
array must have dtype float.
|
2137 |
+
|
2138 |
+
"""
|
2139 |
+
self = object.__new__(cls)
|
2140 |
+
self.c = c
|
2141 |
+
self.x = x
|
2142 |
+
if extrapolate is None:
|
2143 |
+
extrapolate = True
|
2144 |
+
self.extrapolate = extrapolate
|
2145 |
+
return self
|
2146 |
+
|
2147 |
+
def _get_dtype(self, dtype):
|
2148 |
+
if np.issubdtype(dtype, np.complexfloating) \
|
2149 |
+
or np.issubdtype(self.c.dtype, np.complexfloating):
|
2150 |
+
return np.complex128
|
2151 |
+
else:
|
2152 |
+
return np.float64
|
2153 |
+
|
2154 |
+
def _ensure_c_contiguous(self):
|
2155 |
+
if not self.c.flags.c_contiguous:
|
2156 |
+
self.c = self.c.copy()
|
2157 |
+
if not isinstance(self.x, tuple):
|
2158 |
+
self.x = tuple(self.x)
|
2159 |
+
|
2160 |
+
def __call__(self, x, nu=None, extrapolate=None):
|
2161 |
+
"""
|
2162 |
+
Evaluate the piecewise polynomial or its derivative
|
2163 |
+
|
2164 |
+
Parameters
|
2165 |
+
----------
|
2166 |
+
x : array-like
|
2167 |
+
Points to evaluate the interpolant at.
|
2168 |
+
nu : tuple, optional
|
2169 |
+
Orders of derivatives to evaluate. Each must be non-negative.
|
2170 |
+
extrapolate : bool, optional
|
2171 |
+
Whether to extrapolate to out-of-bounds points based on first
|
2172 |
+
and last intervals, or to return NaNs.
|
2173 |
+
|
2174 |
+
Returns
|
2175 |
+
-------
|
2176 |
+
y : array-like
|
2177 |
+
Interpolated values. Shape is determined by replacing
|
2178 |
+
the interpolation axis in the original array with the shape of x.
|
2179 |
+
|
2180 |
+
Notes
|
2181 |
+
-----
|
2182 |
+
Derivatives are evaluated piecewise for each polynomial
|
2183 |
+
segment, even if the polynomial is not differentiable at the
|
2184 |
+
breakpoints. The polynomial intervals are considered half-open,
|
2185 |
+
``[a, b)``, except for the last interval which is closed
|
2186 |
+
``[a, b]``.
|
2187 |
+
|
2188 |
+
"""
|
2189 |
+
if extrapolate is None:
|
2190 |
+
extrapolate = self.extrapolate
|
2191 |
+
else:
|
2192 |
+
extrapolate = bool(extrapolate)
|
2193 |
+
|
2194 |
+
ndim = len(self.x)
|
2195 |
+
|
2196 |
+
x = _ndim_coords_from_arrays(x)
|
2197 |
+
x_shape = x.shape
|
2198 |
+
x = np.ascontiguousarray(x.reshape(-1, x.shape[-1]), dtype=np.float64)
|
2199 |
+
|
2200 |
+
if nu is None:
|
2201 |
+
nu = np.zeros((ndim,), dtype=np.intc)
|
2202 |
+
else:
|
2203 |
+
nu = np.asarray(nu, dtype=np.intc)
|
2204 |
+
if nu.ndim != 1 or nu.shape[0] != ndim:
|
2205 |
+
raise ValueError("invalid number of derivative orders nu")
|
2206 |
+
|
2207 |
+
dim1 = prod(self.c.shape[:ndim])
|
2208 |
+
dim2 = prod(self.c.shape[ndim:2*ndim])
|
2209 |
+
dim3 = prod(self.c.shape[2*ndim:])
|
2210 |
+
ks = np.array(self.c.shape[:ndim], dtype=np.intc)
|
2211 |
+
|
2212 |
+
out = np.empty((x.shape[0], dim3), dtype=self.c.dtype)
|
2213 |
+
self._ensure_c_contiguous()
|
2214 |
+
|
2215 |
+
_ppoly.evaluate_nd(self.c.reshape(dim1, dim2, dim3),
|
2216 |
+
self.x,
|
2217 |
+
ks,
|
2218 |
+
x,
|
2219 |
+
nu,
|
2220 |
+
bool(extrapolate),
|
2221 |
+
out)
|
2222 |
+
|
2223 |
+
return out.reshape(x_shape[:-1] + self.c.shape[2*ndim:])
|
2224 |
+
|
2225 |
+
def _derivative_inplace(self, nu, axis):
|
2226 |
+
"""
|
2227 |
+
Compute 1-D derivative along a selected dimension in-place
|
2228 |
+
May result to non-contiguous c array.
|
2229 |
+
"""
|
2230 |
+
if nu < 0:
|
2231 |
+
return self._antiderivative_inplace(-nu, axis)
|
2232 |
+
|
2233 |
+
ndim = len(self.x)
|
2234 |
+
axis = axis % ndim
|
2235 |
+
|
2236 |
+
# reduce order
|
2237 |
+
if nu == 0:
|
2238 |
+
# noop
|
2239 |
+
return
|
2240 |
+
else:
|
2241 |
+
sl = [slice(None)]*ndim
|
2242 |
+
sl[axis] = slice(None, -nu, None)
|
2243 |
+
c2 = self.c[tuple(sl)]
|
2244 |
+
|
2245 |
+
if c2.shape[axis] == 0:
|
2246 |
+
# derivative of order 0 is zero
|
2247 |
+
shp = list(c2.shape)
|
2248 |
+
shp[axis] = 1
|
2249 |
+
c2 = np.zeros(shp, dtype=c2.dtype)
|
2250 |
+
|
2251 |
+
# multiply by the correct rising factorials
|
2252 |
+
factor = spec.poch(np.arange(c2.shape[axis], 0, -1), nu)
|
2253 |
+
sl = [None]*c2.ndim
|
2254 |
+
sl[axis] = slice(None)
|
2255 |
+
c2 *= factor[tuple(sl)]
|
2256 |
+
|
2257 |
+
self.c = c2
|
2258 |
+
|
2259 |
+
def _antiderivative_inplace(self, nu, axis):
|
2260 |
+
"""
|
2261 |
+
Compute 1-D antiderivative along a selected dimension
|
2262 |
+
May result to non-contiguous c array.
|
2263 |
+
"""
|
2264 |
+
if nu <= 0:
|
2265 |
+
return self._derivative_inplace(-nu, axis)
|
2266 |
+
|
2267 |
+
ndim = len(self.x)
|
2268 |
+
axis = axis % ndim
|
2269 |
+
|
2270 |
+
perm = list(range(ndim))
|
2271 |
+
perm[0], perm[axis] = perm[axis], perm[0]
|
2272 |
+
perm = perm + list(range(ndim, self.c.ndim))
|
2273 |
+
|
2274 |
+
c = self.c.transpose(perm)
|
2275 |
+
|
2276 |
+
c2 = np.zeros((c.shape[0] + nu,) + c.shape[1:],
|
2277 |
+
dtype=c.dtype)
|
2278 |
+
c2[:-nu] = c
|
2279 |
+
|
2280 |
+
# divide by the correct rising factorials
|
2281 |
+
factor = spec.poch(np.arange(c.shape[0], 0, -1), nu)
|
2282 |
+
c2[:-nu] /= factor[(slice(None),) + (None,)*(c.ndim-1)]
|
2283 |
+
|
2284 |
+
# fix continuity of added degrees of freedom
|
2285 |
+
perm2 = list(range(c2.ndim))
|
2286 |
+
perm2[1], perm2[ndim+axis] = perm2[ndim+axis], perm2[1]
|
2287 |
+
|
2288 |
+
c2 = c2.transpose(perm2)
|
2289 |
+
c2 = c2.copy()
|
2290 |
+
_ppoly.fix_continuity(c2.reshape(c2.shape[0], c2.shape[1], -1),
|
2291 |
+
self.x[axis], nu-1)
|
2292 |
+
|
2293 |
+
c2 = c2.transpose(perm2)
|
2294 |
+
c2 = c2.transpose(perm)
|
2295 |
+
|
2296 |
+
# Done
|
2297 |
+
self.c = c2
|
2298 |
+
|
2299 |
+
def derivative(self, nu):
|
2300 |
+
"""
|
2301 |
+
Construct a new piecewise polynomial representing the derivative.
|
2302 |
+
|
2303 |
+
Parameters
|
2304 |
+
----------
|
2305 |
+
nu : ndim-tuple of int
|
2306 |
+
Order of derivatives to evaluate for each dimension.
|
2307 |
+
If negative, the antiderivative is returned.
|
2308 |
+
|
2309 |
+
Returns
|
2310 |
+
-------
|
2311 |
+
pp : NdPPoly
|
2312 |
+
Piecewise polynomial of orders (k[0] - nu[0], ..., k[n] - nu[n])
|
2313 |
+
representing the derivative of this polynomial.
|
2314 |
+
|
2315 |
+
Notes
|
2316 |
+
-----
|
2317 |
+
Derivatives are evaluated piecewise for each polynomial
|
2318 |
+
segment, even if the polynomial is not differentiable at the
|
2319 |
+
breakpoints. The polynomial intervals in each dimension are
|
2320 |
+
considered half-open, ``[a, b)``, except for the last interval
|
2321 |
+
which is closed ``[a, b]``.
|
2322 |
+
|
2323 |
+
"""
|
2324 |
+
p = self.construct_fast(self.c.copy(), self.x, self.extrapolate)
|
2325 |
+
|
2326 |
+
for axis, n in enumerate(nu):
|
2327 |
+
p._derivative_inplace(n, axis)
|
2328 |
+
|
2329 |
+
p._ensure_c_contiguous()
|
2330 |
+
return p
|
2331 |
+
|
2332 |
+
def antiderivative(self, nu):
|
2333 |
+
"""
|
2334 |
+
Construct a new piecewise polynomial representing the antiderivative.
|
2335 |
+
|
2336 |
+
Antiderivative is also the indefinite integral of the function,
|
2337 |
+
and derivative is its inverse operation.
|
2338 |
+
|
2339 |
+
Parameters
|
2340 |
+
----------
|
2341 |
+
nu : ndim-tuple of int
|
2342 |
+
Order of derivatives to evaluate for each dimension.
|
2343 |
+
If negative, the derivative is returned.
|
2344 |
+
|
2345 |
+
Returns
|
2346 |
+
-------
|
2347 |
+
pp : PPoly
|
2348 |
+
Piecewise polynomial of order k2 = k + n representing
|
2349 |
+
the antiderivative of this polynomial.
|
2350 |
+
|
2351 |
+
Notes
|
2352 |
+
-----
|
2353 |
+
The antiderivative returned by this function is continuous and
|
2354 |
+
continuously differentiable to order n-1, up to floating point
|
2355 |
+
rounding error.
|
2356 |
+
|
2357 |
+
"""
|
2358 |
+
p = self.construct_fast(self.c.copy(), self.x, self.extrapolate)
|
2359 |
+
|
2360 |
+
for axis, n in enumerate(nu):
|
2361 |
+
p._antiderivative_inplace(n, axis)
|
2362 |
+
|
2363 |
+
p._ensure_c_contiguous()
|
2364 |
+
return p
|
2365 |
+
|
2366 |
+
def integrate_1d(self, a, b, axis, extrapolate=None):
|
2367 |
+
r"""
|
2368 |
+
Compute NdPPoly representation for one dimensional definite integral
|
2369 |
+
|
2370 |
+
The result is a piecewise polynomial representing the integral:
|
2371 |
+
|
2372 |
+
.. math::
|
2373 |
+
|
2374 |
+
p(y, z, ...) = \int_a^b dx\, p(x, y, z, ...)
|
2375 |
+
|
2376 |
+
where the dimension integrated over is specified with the
|
2377 |
+
`axis` parameter.
|
2378 |
+
|
2379 |
+
Parameters
|
2380 |
+
----------
|
2381 |
+
a, b : float
|
2382 |
+
Lower and upper bound for integration.
|
2383 |
+
axis : int
|
2384 |
+
Dimension over which to compute the 1-D integrals
|
2385 |
+
extrapolate : bool, optional
|
2386 |
+
Whether to extrapolate to out-of-bounds points based on first
|
2387 |
+
and last intervals, or to return NaNs.
|
2388 |
+
|
2389 |
+
Returns
|
2390 |
+
-------
|
2391 |
+
ig : NdPPoly or array-like
|
2392 |
+
Definite integral of the piecewise polynomial over [a, b].
|
2393 |
+
If the polynomial was 1D, an array is returned,
|
2394 |
+
otherwise, an NdPPoly object.
|
2395 |
+
|
2396 |
+
"""
|
2397 |
+
if extrapolate is None:
|
2398 |
+
extrapolate = self.extrapolate
|
2399 |
+
else:
|
2400 |
+
extrapolate = bool(extrapolate)
|
2401 |
+
|
2402 |
+
ndim = len(self.x)
|
2403 |
+
axis = int(axis) % ndim
|
2404 |
+
|
2405 |
+
# reuse 1-D integration routines
|
2406 |
+
c = self.c
|
2407 |
+
swap = list(range(c.ndim))
|
2408 |
+
swap.insert(0, swap[axis])
|
2409 |
+
del swap[axis + 1]
|
2410 |
+
swap.insert(1, swap[ndim + axis])
|
2411 |
+
del swap[ndim + axis + 1]
|
2412 |
+
|
2413 |
+
c = c.transpose(swap)
|
2414 |
+
p = PPoly.construct_fast(c.reshape(c.shape[0], c.shape[1], -1),
|
2415 |
+
self.x[axis],
|
2416 |
+
extrapolate=extrapolate)
|
2417 |
+
out = p.integrate(a, b, extrapolate=extrapolate)
|
2418 |
+
|
2419 |
+
# Construct result
|
2420 |
+
if ndim == 1:
|
2421 |
+
return out.reshape(c.shape[2:])
|
2422 |
+
else:
|
2423 |
+
c = out.reshape(c.shape[2:])
|
2424 |
+
x = self.x[:axis] + self.x[axis+1:]
|
2425 |
+
return self.construct_fast(c, x, extrapolate=extrapolate)
|
2426 |
+
|
2427 |
+
def integrate(self, ranges, extrapolate=None):
|
2428 |
+
"""
|
2429 |
+
Compute a definite integral over a piecewise polynomial.
|
2430 |
+
|
2431 |
+
Parameters
|
2432 |
+
----------
|
2433 |
+
ranges : ndim-tuple of 2-tuples float
|
2434 |
+
Sequence of lower and upper bounds for each dimension,
|
2435 |
+
``[(a[0], b[0]), ..., (a[ndim-1], b[ndim-1])]``
|
2436 |
+
extrapolate : bool, optional
|
2437 |
+
Whether to extrapolate to out-of-bounds points based on first
|
2438 |
+
and last intervals, or to return NaNs.
|
2439 |
+
|
2440 |
+
Returns
|
2441 |
+
-------
|
2442 |
+
ig : array_like
|
2443 |
+
Definite integral of the piecewise polynomial over
|
2444 |
+
[a[0], b[0]] x ... x [a[ndim-1], b[ndim-1]]
|
2445 |
+
|
2446 |
+
"""
|
2447 |
+
|
2448 |
+
ndim = len(self.x)
|
2449 |
+
|
2450 |
+
if extrapolate is None:
|
2451 |
+
extrapolate = self.extrapolate
|
2452 |
+
else:
|
2453 |
+
extrapolate = bool(extrapolate)
|
2454 |
+
|
2455 |
+
if not hasattr(ranges, '__len__') or len(ranges) != ndim:
|
2456 |
+
raise ValueError("Range not a sequence of correct length")
|
2457 |
+
|
2458 |
+
self._ensure_c_contiguous()
|
2459 |
+
|
2460 |
+
# Reuse 1D integration routine
|
2461 |
+
c = self.c
|
2462 |
+
for n, (a, b) in enumerate(ranges):
|
2463 |
+
swap = list(range(c.ndim))
|
2464 |
+
swap.insert(1, swap[ndim - n])
|
2465 |
+
del swap[ndim - n + 1]
|
2466 |
+
|
2467 |
+
c = c.transpose(swap)
|
2468 |
+
|
2469 |
+
p = PPoly.construct_fast(c, self.x[n], extrapolate=extrapolate)
|
2470 |
+
out = p.integrate(a, b, extrapolate=extrapolate)
|
2471 |
+
c = out.reshape(c.shape[2:])
|
2472 |
+
|
2473 |
+
return c
|
venv/lib/python3.10/site-packages/scipy/interpolate/_ndbspline.py
ADDED
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
import functools
|
3 |
+
import operator
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
from math import prod
|
7 |
+
|
8 |
+
from . import _bspl # type: ignore
|
9 |
+
|
10 |
+
import scipy.sparse.linalg as ssl
|
11 |
+
from scipy.sparse import csr_array
|
12 |
+
|
13 |
+
from ._bsplines import _not_a_knot
|
14 |
+
|
15 |
+
__all__ = ["NdBSpline"]
|
16 |
+
|
17 |
+
|
18 |
+
def _get_dtype(dtype):
|
19 |
+
"""Return np.complex128 for complex dtypes, np.float64 otherwise."""
|
20 |
+
if np.issubdtype(dtype, np.complexfloating):
|
21 |
+
return np.complex128
|
22 |
+
else:
|
23 |
+
return np.float64
|
24 |
+
|
25 |
+
|
26 |
+
class NdBSpline:
|
27 |
+
"""Tensor product spline object.
|
28 |
+
|
29 |
+
The value at point ``xp = (x1, x2, ..., xN)`` is evaluated as a linear
|
30 |
+
combination of products of one-dimensional b-splines in each of the ``N``
|
31 |
+
dimensions::
|
32 |
+
|
33 |
+
c[i1, i2, ..., iN] * B(x1; i1, t1) * B(x2; i2, t2) * ... * B(xN; iN, tN)
|
34 |
+
|
35 |
+
|
36 |
+
Here ``B(x; i, t)`` is the ``i``-th b-spline defined by the knot vector
|
37 |
+
``t`` evaluated at ``x``.
|
38 |
+
|
39 |
+
Parameters
|
40 |
+
----------
|
41 |
+
t : tuple of 1D ndarrays
|
42 |
+
knot vectors in directions 1, 2, ... N,
|
43 |
+
``len(t[i]) == n[i] + k + 1``
|
44 |
+
c : ndarray, shape (n1, n2, ..., nN, ...)
|
45 |
+
b-spline coefficients
|
46 |
+
k : int or length-d tuple of integers
|
47 |
+
spline degrees.
|
48 |
+
A single integer is interpreted as having this degree for
|
49 |
+
all dimensions.
|
50 |
+
extrapolate : bool, optional
|
51 |
+
Whether to extrapolate out-of-bounds inputs, or return `nan`.
|
52 |
+
Default is to extrapolate.
|
53 |
+
|
54 |
+
Attributes
|
55 |
+
----------
|
56 |
+
t : tuple of ndarrays
|
57 |
+
Knots vectors.
|
58 |
+
c : ndarray
|
59 |
+
Coefficients of the tensor-produce spline.
|
60 |
+
k : tuple of integers
|
61 |
+
Degrees for each dimension.
|
62 |
+
extrapolate : bool, optional
|
63 |
+
Whether to extrapolate or return nans for out-of-bounds inputs.
|
64 |
+
Defaults to true.
|
65 |
+
|
66 |
+
Methods
|
67 |
+
-------
|
68 |
+
__call__
|
69 |
+
design_matrix
|
70 |
+
|
71 |
+
See Also
|
72 |
+
--------
|
73 |
+
BSpline : a one-dimensional B-spline object
|
74 |
+
NdPPoly : an N-dimensional piecewise tensor product polynomial
|
75 |
+
|
76 |
+
"""
|
77 |
+
def __init__(self, t, c, k, *, extrapolate=None):
|
78 |
+
ndim = len(t)
|
79 |
+
|
80 |
+
try:
|
81 |
+
len(k)
|
82 |
+
except TypeError:
|
83 |
+
# make k a tuple
|
84 |
+
k = (k,)*ndim
|
85 |
+
|
86 |
+
if len(k) != ndim:
|
87 |
+
raise ValueError(f"{len(t) = } != {len(k) = }.")
|
88 |
+
|
89 |
+
self.k = tuple(operator.index(ki) for ki in k)
|
90 |
+
self.t = tuple(np.ascontiguousarray(ti, dtype=float) for ti in t)
|
91 |
+
self.c = np.asarray(c)
|
92 |
+
|
93 |
+
if extrapolate is None:
|
94 |
+
extrapolate = True
|
95 |
+
self.extrapolate = bool(extrapolate)
|
96 |
+
|
97 |
+
self.c = np.asarray(c)
|
98 |
+
|
99 |
+
for d in range(ndim):
|
100 |
+
td = self.t[d]
|
101 |
+
kd = self.k[d]
|
102 |
+
n = td.shape[0] - kd - 1
|
103 |
+
if kd < 0:
|
104 |
+
raise ValueError(f"Spline degree in dimension {d} cannot be"
|
105 |
+
f" negative.")
|
106 |
+
if td.ndim != 1:
|
107 |
+
raise ValueError(f"Knot vector in dimension {d} must be"
|
108 |
+
f" one-dimensional.")
|
109 |
+
if n < kd + 1:
|
110 |
+
raise ValueError(f"Need at least {2*kd + 2} knots for degree"
|
111 |
+
f" {kd} in dimension {d}.")
|
112 |
+
if (np.diff(td) < 0).any():
|
113 |
+
raise ValueError(f"Knots in dimension {d} must be in a"
|
114 |
+
f" non-decreasing order.")
|
115 |
+
if len(np.unique(td[kd:n + 1])) < 2:
|
116 |
+
raise ValueError(f"Need at least two internal knots in"
|
117 |
+
f" dimension {d}.")
|
118 |
+
if not np.isfinite(td).all():
|
119 |
+
raise ValueError(f"Knots in dimension {d} should not have"
|
120 |
+
f" nans or infs.")
|
121 |
+
if self.c.ndim < ndim:
|
122 |
+
raise ValueError(f"Coefficients must be at least"
|
123 |
+
f" {d}-dimensional.")
|
124 |
+
if self.c.shape[d] != n:
|
125 |
+
raise ValueError(f"Knots, coefficients and degree in dimension"
|
126 |
+
f" {d} are inconsistent:"
|
127 |
+
f" got {self.c.shape[d]} coefficients for"
|
128 |
+
f" {len(td)} knots, need at least {n} for"
|
129 |
+
f" k={k}.")
|
130 |
+
|
131 |
+
dt = _get_dtype(self.c.dtype)
|
132 |
+
self.c = np.ascontiguousarray(self.c, dtype=dt)
|
133 |
+
|
134 |
+
def __call__(self, xi, *, nu=None, extrapolate=None):
|
135 |
+
"""Evaluate the tensor product b-spline at ``xi``.
|
136 |
+
|
137 |
+
Parameters
|
138 |
+
----------
|
139 |
+
xi : array_like, shape(..., ndim)
|
140 |
+
The coordinates to evaluate the interpolator at.
|
141 |
+
This can be a list or tuple of ndim-dimensional points
|
142 |
+
or an array with the shape (num_points, ndim).
|
143 |
+
nu : array_like, optional, shape (ndim,)
|
144 |
+
Orders of derivatives to evaluate. Each must be non-negative.
|
145 |
+
Defaults to the zeroth derivivative.
|
146 |
+
extrapolate : bool, optional
|
147 |
+
Whether to exrapolate based on first and last intervals in each
|
148 |
+
dimension, or return `nan`. Default is to ``self.extrapolate``.
|
149 |
+
|
150 |
+
Returns
|
151 |
+
-------
|
152 |
+
values : ndarray, shape ``xi.shape[:-1] + self.c.shape[ndim:]``
|
153 |
+
Interpolated values at ``xi``
|
154 |
+
"""
|
155 |
+
ndim = len(self.t)
|
156 |
+
|
157 |
+
if extrapolate is None:
|
158 |
+
extrapolate = self.extrapolate
|
159 |
+
extrapolate = bool(extrapolate)
|
160 |
+
|
161 |
+
if nu is None:
|
162 |
+
nu = np.zeros((ndim,), dtype=np.intc)
|
163 |
+
else:
|
164 |
+
nu = np.asarray(nu, dtype=np.intc)
|
165 |
+
if nu.ndim != 1 or nu.shape[0] != ndim:
|
166 |
+
raise ValueError(
|
167 |
+
f"invalid number of derivative orders {nu = } for "
|
168 |
+
f"ndim = {len(self.t)}.")
|
169 |
+
if any(nu < 0):
|
170 |
+
raise ValueError(f"derivatives must be positive, got {nu = }")
|
171 |
+
|
172 |
+
# prepare xi : shape (..., m1, ..., md) -> (1, m1, ..., md)
|
173 |
+
xi = np.asarray(xi, dtype=float)
|
174 |
+
xi_shape = xi.shape
|
175 |
+
xi = xi.reshape(-1, xi_shape[-1])
|
176 |
+
xi = np.ascontiguousarray(xi)
|
177 |
+
|
178 |
+
if xi_shape[-1] != ndim:
|
179 |
+
raise ValueError(f"Shapes: xi.shape={xi_shape} and ndim={ndim}")
|
180 |
+
|
181 |
+
# prepare k & t
|
182 |
+
_k = np.asarray(self.k, dtype=np.dtype("long"))
|
183 |
+
|
184 |
+
# pack the knots into a single array
|
185 |
+
len_t = [len(ti) for ti in self.t]
|
186 |
+
_t = np.empty((ndim, max(len_t)), dtype=float)
|
187 |
+
_t.fill(np.nan)
|
188 |
+
for d in range(ndim):
|
189 |
+
_t[d, :len(self.t[d])] = self.t[d]
|
190 |
+
len_t = np.asarray(len_t, dtype=np.dtype("long"))
|
191 |
+
|
192 |
+
# tabulate the flat indices for iterating over the (k+1)**ndim subarray
|
193 |
+
shape = tuple(kd + 1 for kd in self.k)
|
194 |
+
indices = np.unravel_index(np.arange(prod(shape)), shape)
|
195 |
+
_indices_k1d = np.asarray(indices, dtype=np.intp).T
|
196 |
+
|
197 |
+
# prepare the coefficients: flatten the trailing dimensions
|
198 |
+
c1 = self.c.reshape(self.c.shape[:ndim] + (-1,))
|
199 |
+
c1r = c1.ravel()
|
200 |
+
|
201 |
+
# replacement for np.ravel_multi_index for indexing of `c1`:
|
202 |
+
_strides_c1 = np.asarray([s // c1.dtype.itemsize
|
203 |
+
for s in c1.strides], dtype=np.intp)
|
204 |
+
|
205 |
+
num_c_tr = c1.shape[-1] # # of trailing coefficients
|
206 |
+
out = np.empty(xi.shape[:-1] + (num_c_tr,), dtype=c1.dtype)
|
207 |
+
|
208 |
+
_bspl.evaluate_ndbspline(xi,
|
209 |
+
_t,
|
210 |
+
len_t,
|
211 |
+
_k,
|
212 |
+
nu,
|
213 |
+
extrapolate,
|
214 |
+
c1r,
|
215 |
+
num_c_tr,
|
216 |
+
_strides_c1,
|
217 |
+
_indices_k1d,
|
218 |
+
out,)
|
219 |
+
|
220 |
+
return out.reshape(xi_shape[:-1] + self.c.shape[ndim:])
|
221 |
+
|
222 |
+
@classmethod
|
223 |
+
def design_matrix(cls, xvals, t, k, extrapolate=True):
|
224 |
+
"""Construct the design matrix as a CSR format sparse array.
|
225 |
+
|
226 |
+
Parameters
|
227 |
+
----------
|
228 |
+
xvals : ndarray, shape(npts, ndim)
|
229 |
+
Data points. ``xvals[j, :]`` gives the ``j``-th data point as an
|
230 |
+
``ndim``-dimensional array.
|
231 |
+
t : tuple of 1D ndarrays, length-ndim
|
232 |
+
Knot vectors in directions 1, 2, ... ndim,
|
233 |
+
k : int
|
234 |
+
B-spline degree.
|
235 |
+
extrapolate : bool, optional
|
236 |
+
Whether to extrapolate out-of-bounds values of raise a `ValueError`
|
237 |
+
|
238 |
+
Returns
|
239 |
+
-------
|
240 |
+
design_matrix : a CSR array
|
241 |
+
Each row of the design matrix corresponds to a value in `xvals` and
|
242 |
+
contains values of b-spline basis elements which are non-zero
|
243 |
+
at this value.
|
244 |
+
|
245 |
+
"""
|
246 |
+
xvals = np.asarray(xvals, dtype=float)
|
247 |
+
ndim = xvals.shape[-1]
|
248 |
+
if len(t) != ndim:
|
249 |
+
raise ValueError(
|
250 |
+
f"Data and knots are inconsistent: len(t) = {len(t)} for "
|
251 |
+
f" {ndim = }."
|
252 |
+
)
|
253 |
+
try:
|
254 |
+
len(k)
|
255 |
+
except TypeError:
|
256 |
+
# make k a tuple
|
257 |
+
k = (k,)*ndim
|
258 |
+
|
259 |
+
kk = np.asarray(k, dtype=np.int32)
|
260 |
+
data, indices, indptr = _bspl._colloc_nd(xvals, t, kk)
|
261 |
+
return csr_array((data, indices, indptr))
|
262 |
+
|
263 |
+
|
264 |
+
def _iter_solve(a, b, solver=ssl.gcrotmk, **solver_args):
|
265 |
+
# work around iterative solvers not accepting multiple r.h.s.
|
266 |
+
|
267 |
+
# also work around a.dtype == float64 and b.dtype == complex128
|
268 |
+
# cf https://github.com/scipy/scipy/issues/19644
|
269 |
+
if np.issubdtype(b.dtype, np.complexfloating):
|
270 |
+
real = _iter_solve(a, b.real, solver, **solver_args)
|
271 |
+
imag = _iter_solve(a, b.imag, solver, **solver_args)
|
272 |
+
return real + 1j*imag
|
273 |
+
|
274 |
+
if b.ndim == 2 and b.shape[1] !=1:
|
275 |
+
res = np.empty_like(b)
|
276 |
+
for j in range(b.shape[1]):
|
277 |
+
res[:, j], info = solver(a, b[:, j], **solver_args)
|
278 |
+
if info != 0:
|
279 |
+
raise ValueError(f"{solver = } returns {info =} for column {j}.")
|
280 |
+
return res
|
281 |
+
else:
|
282 |
+
res, info = solver(a, b, **solver_args)
|
283 |
+
if info != 0:
|
284 |
+
raise ValueError(f"{solver = } returns {info = }.")
|
285 |
+
return res
|
286 |
+
|
287 |
+
|
288 |
+
def make_ndbspl(points, values, k=3, *, solver=ssl.gcrotmk, **solver_args):
|
289 |
+
"""Construct an interpolating NdBspline.
|
290 |
+
|
291 |
+
Parameters
|
292 |
+
----------
|
293 |
+
points : tuple of ndarrays of float, with shapes (m1,), ... (mN,)
|
294 |
+
The points defining the regular grid in N dimensions. The points in
|
295 |
+
each dimension (i.e. every element of the `points` tuple) must be
|
296 |
+
strictly ascending or descending.
|
297 |
+
values : ndarray of float, shape (m1, ..., mN, ...)
|
298 |
+
The data on the regular grid in n dimensions.
|
299 |
+
k : int, optional
|
300 |
+
The spline degree. Must be odd. Default is cubic, k=3
|
301 |
+
solver : a `scipy.sparse.linalg` solver (iterative or direct), optional.
|
302 |
+
An iterative solver from `scipy.sparse.linalg` or a direct one,
|
303 |
+
`sparse.sparse.linalg.spsolve`.
|
304 |
+
Used to solve the sparse linear system
|
305 |
+
``design_matrix @ coefficients = rhs`` for the coefficients.
|
306 |
+
Default is `scipy.sparse.linalg.gcrotmk`
|
307 |
+
solver_args : dict, optional
|
308 |
+
Additional arguments for the solver. The call signature is
|
309 |
+
``solver(csr_array, rhs_vector, **solver_args)``
|
310 |
+
|
311 |
+
Returns
|
312 |
+
-------
|
313 |
+
spl : NdBSpline object
|
314 |
+
|
315 |
+
Notes
|
316 |
+
-----
|
317 |
+
Boundary conditions are not-a-knot in all dimensions.
|
318 |
+
"""
|
319 |
+
ndim = len(points)
|
320 |
+
xi_shape = tuple(len(x) for x in points)
|
321 |
+
|
322 |
+
try:
|
323 |
+
len(k)
|
324 |
+
except TypeError:
|
325 |
+
# make k a tuple
|
326 |
+
k = (k,)*ndim
|
327 |
+
|
328 |
+
for d, point in enumerate(points):
|
329 |
+
numpts = len(np.atleast_1d(point))
|
330 |
+
if numpts <= k[d]:
|
331 |
+
raise ValueError(f"There are {numpts} points in dimension {d},"
|
332 |
+
f" but order {k[d]} requires at least "
|
333 |
+
f" {k[d]+1} points per dimension.")
|
334 |
+
|
335 |
+
t = tuple(_not_a_knot(np.asarray(points[d], dtype=float), k[d])
|
336 |
+
for d in range(ndim))
|
337 |
+
xvals = np.asarray([xv for xv in itertools.product(*points)], dtype=float)
|
338 |
+
|
339 |
+
# construct the colocation matrix
|
340 |
+
matr = NdBSpline.design_matrix(xvals, t, k)
|
341 |
+
|
342 |
+
# Solve for the coefficients given `values`.
|
343 |
+
# Trailing dimensions: first ndim dimensions are data, the rest are batch
|
344 |
+
# dimensions, so stack `values` into a 2D array for `spsolve` to undestand.
|
345 |
+
v_shape = values.shape
|
346 |
+
vals_shape = (prod(v_shape[:ndim]), prod(v_shape[ndim:]))
|
347 |
+
vals = values.reshape(vals_shape)
|
348 |
+
|
349 |
+
if solver != ssl.spsolve:
|
350 |
+
solver = functools.partial(_iter_solve, solver=solver)
|
351 |
+
if "atol" not in solver_args:
|
352 |
+
# avoid a DeprecationWarning, grumble grumble
|
353 |
+
solver_args["atol"] = 1e-6
|
354 |
+
|
355 |
+
coef = solver(matr, vals, **solver_args)
|
356 |
+
coef = coef.reshape(xi_shape + v_shape[ndim:])
|
357 |
+
return NdBSpline(t, coef, k)
|
358 |
+
|
venv/lib/python3.10/site-packages/scipy/interpolate/_ndgriddata.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Convenience interface to N-D interpolation
|
3 |
+
|
4 |
+
.. versionadded:: 0.9
|
5 |
+
|
6 |
+
"""
|
7 |
+
import numpy as np
|
8 |
+
from .interpnd import LinearNDInterpolator, NDInterpolatorBase, \
|
9 |
+
CloughTocher2DInterpolator, _ndim_coords_from_arrays
|
10 |
+
from scipy.spatial import cKDTree
|
11 |
+
|
12 |
+
__all__ = ['griddata', 'NearestNDInterpolator', 'LinearNDInterpolator',
|
13 |
+
'CloughTocher2DInterpolator']
|
14 |
+
|
15 |
+
#------------------------------------------------------------------------------
|
16 |
+
# Nearest-neighbor interpolation
|
17 |
+
#------------------------------------------------------------------------------
|
18 |
+
|
19 |
+
|
20 |
+
class NearestNDInterpolator(NDInterpolatorBase):
|
21 |
+
"""NearestNDInterpolator(x, y).
|
22 |
+
|
23 |
+
Nearest-neighbor interpolator in N > 1 dimensions.
|
24 |
+
|
25 |
+
.. versionadded:: 0.9
|
26 |
+
|
27 |
+
Methods
|
28 |
+
-------
|
29 |
+
__call__
|
30 |
+
|
31 |
+
Parameters
|
32 |
+
----------
|
33 |
+
x : (npoints, ndims) 2-D ndarray of floats
|
34 |
+
Data point coordinates.
|
35 |
+
y : (npoints, ) 1-D ndarray of float or complex
|
36 |
+
Data values.
|
37 |
+
rescale : boolean, optional
|
38 |
+
Rescale points to unit cube before performing interpolation.
|
39 |
+
This is useful if some of the input dimensions have
|
40 |
+
incommensurable units and differ by many orders of magnitude.
|
41 |
+
|
42 |
+
.. versionadded:: 0.14.0
|
43 |
+
tree_options : dict, optional
|
44 |
+
Options passed to the underlying ``cKDTree``.
|
45 |
+
|
46 |
+
.. versionadded:: 0.17.0
|
47 |
+
|
48 |
+
See Also
|
49 |
+
--------
|
50 |
+
griddata :
|
51 |
+
Interpolate unstructured D-D data.
|
52 |
+
LinearNDInterpolator :
|
53 |
+
Piecewise linear interpolator in N dimensions.
|
54 |
+
CloughTocher2DInterpolator :
|
55 |
+
Piecewise cubic, C1 smooth, curvature-minimizing interpolator in 2D.
|
56 |
+
interpn : Interpolation on a regular grid or rectilinear grid.
|
57 |
+
RegularGridInterpolator : Interpolator on a regular or rectilinear grid
|
58 |
+
in arbitrary dimensions (`interpn` wraps this
|
59 |
+
class).
|
60 |
+
|
61 |
+
Notes
|
62 |
+
-----
|
63 |
+
Uses ``scipy.spatial.cKDTree``
|
64 |
+
|
65 |
+
.. note:: For data on a regular grid use `interpn` instead.
|
66 |
+
|
67 |
+
Examples
|
68 |
+
--------
|
69 |
+
We can interpolate values on a 2D plane:
|
70 |
+
|
71 |
+
>>> from scipy.interpolate import NearestNDInterpolator
|
72 |
+
>>> import numpy as np
|
73 |
+
>>> import matplotlib.pyplot as plt
|
74 |
+
>>> rng = np.random.default_rng()
|
75 |
+
>>> x = rng.random(10) - 0.5
|
76 |
+
>>> y = rng.random(10) - 0.5
|
77 |
+
>>> z = np.hypot(x, y)
|
78 |
+
>>> X = np.linspace(min(x), max(x))
|
79 |
+
>>> Y = np.linspace(min(y), max(y))
|
80 |
+
>>> X, Y = np.meshgrid(X, Y) # 2D grid for interpolation
|
81 |
+
>>> interp = NearestNDInterpolator(list(zip(x, y)), z)
|
82 |
+
>>> Z = interp(X, Y)
|
83 |
+
>>> plt.pcolormesh(X, Y, Z, shading='auto')
|
84 |
+
>>> plt.plot(x, y, "ok", label="input point")
|
85 |
+
>>> plt.legend()
|
86 |
+
>>> plt.colorbar()
|
87 |
+
>>> plt.axis("equal")
|
88 |
+
>>> plt.show()
|
89 |
+
|
90 |
+
"""
|
91 |
+
|
92 |
+
def __init__(self, x, y, rescale=False, tree_options=None):
|
93 |
+
NDInterpolatorBase.__init__(self, x, y, rescale=rescale,
|
94 |
+
need_contiguous=False,
|
95 |
+
need_values=False)
|
96 |
+
if tree_options is None:
|
97 |
+
tree_options = dict()
|
98 |
+
self.tree = cKDTree(self.points, **tree_options)
|
99 |
+
self.values = np.asarray(y)
|
100 |
+
|
101 |
+
def __call__(self, *args, **query_options):
|
102 |
+
"""
|
103 |
+
Evaluate interpolator at given points.
|
104 |
+
|
105 |
+
Parameters
|
106 |
+
----------
|
107 |
+
x1, x2, ... xn : array-like of float
|
108 |
+
Points where to interpolate data at.
|
109 |
+
x1, x2, ... xn can be array-like of float with broadcastable shape.
|
110 |
+
or x1 can be array-like of float with shape ``(..., ndim)``
|
111 |
+
**query_options
|
112 |
+
This allows ``eps``, ``p``, ``distance_upper_bound``, and ``workers``
|
113 |
+
being passed to the cKDTree's query function to be explicitly set.
|
114 |
+
See `scipy.spatial.cKDTree.query` for an overview of the different options.
|
115 |
+
|
116 |
+
.. versionadded:: 1.12.0
|
117 |
+
|
118 |
+
"""
|
119 |
+
# For the sake of enabling subclassing, NDInterpolatorBase._set_xi performs
|
120 |
+
# some operations which are not required by NearestNDInterpolator.__call__,
|
121 |
+
# hence here we operate on xi directly, without calling a parent class function.
|
122 |
+
xi = _ndim_coords_from_arrays(args, ndim=self.points.shape[1])
|
123 |
+
xi = self._check_call_shape(xi)
|
124 |
+
xi = self._scale_x(xi)
|
125 |
+
|
126 |
+
# We need to handle two important cases:
|
127 |
+
# (1) the case where xi has trailing dimensions (..., ndim), and
|
128 |
+
# (2) the case where y has trailing dimensions
|
129 |
+
# We will first flatten xi to deal with case (1),
|
130 |
+
# do the computation in flattened array while retaining y's dimensionality,
|
131 |
+
# and then reshape the interpolated values back to match xi's shape.
|
132 |
+
|
133 |
+
# Flatten xi for the query
|
134 |
+
xi_flat = xi.reshape(-1, xi.shape[-1])
|
135 |
+
original_shape = xi.shape
|
136 |
+
flattened_shape = xi_flat.shape
|
137 |
+
|
138 |
+
# if distance_upper_bound is set to not be infinite,
|
139 |
+
# then we need to consider the case where cKDtree
|
140 |
+
# does not find any points within distance_upper_bound to return.
|
141 |
+
# It marks those points as having infinte distance, which is what will be used
|
142 |
+
# below to mask the array and return only the points that were deemed
|
143 |
+
# to have a close enough neighbor to return something useful.
|
144 |
+
dist, i = self.tree.query(xi_flat, **query_options)
|
145 |
+
valid_mask = np.isfinite(dist)
|
146 |
+
|
147 |
+
# create a holder interp_values array and fill with nans.
|
148 |
+
if self.values.ndim > 1:
|
149 |
+
interp_shape = flattened_shape[:-1] + self.values.shape[1:]
|
150 |
+
else:
|
151 |
+
interp_shape = flattened_shape[:-1]
|
152 |
+
|
153 |
+
if np.issubdtype(self.values.dtype, np.complexfloating):
|
154 |
+
interp_values = np.full(interp_shape, np.nan, dtype=self.values.dtype)
|
155 |
+
else:
|
156 |
+
interp_values = np.full(interp_shape, np.nan)
|
157 |
+
|
158 |
+
interp_values[valid_mask] = self.values[i[valid_mask], ...]
|
159 |
+
|
160 |
+
if self.values.ndim > 1:
|
161 |
+
new_shape = original_shape[:-1] + self.values.shape[1:]
|
162 |
+
else:
|
163 |
+
new_shape = original_shape[:-1]
|
164 |
+
interp_values = interp_values.reshape(new_shape)
|
165 |
+
|
166 |
+
return interp_values
|
167 |
+
|
168 |
+
|
169 |
+
#------------------------------------------------------------------------------
|
170 |
+
# Convenience interface function
|
171 |
+
#------------------------------------------------------------------------------
|
172 |
+
|
173 |
+
|
174 |
+
def griddata(points, values, xi, method='linear', fill_value=np.nan,
|
175 |
+
rescale=False):
|
176 |
+
"""
|
177 |
+
Interpolate unstructured D-D data.
|
178 |
+
|
179 |
+
Parameters
|
180 |
+
----------
|
181 |
+
points : 2-D ndarray of floats with shape (n, D), or length D tuple of 1-D ndarrays with shape (n,).
|
182 |
+
Data point coordinates.
|
183 |
+
values : ndarray of float or complex, shape (n,)
|
184 |
+
Data values.
|
185 |
+
xi : 2-D ndarray of floats with shape (m, D), or length D tuple of ndarrays broadcastable to the same shape.
|
186 |
+
Points at which to interpolate data.
|
187 |
+
method : {'linear', 'nearest', 'cubic'}, optional
|
188 |
+
Method of interpolation. One of
|
189 |
+
|
190 |
+
``nearest``
|
191 |
+
return the value at the data point closest to
|
192 |
+
the point of interpolation. See `NearestNDInterpolator` for
|
193 |
+
more details.
|
194 |
+
|
195 |
+
``linear``
|
196 |
+
tessellate the input point set to N-D
|
197 |
+
simplices, and interpolate linearly on each simplex. See
|
198 |
+
`LinearNDInterpolator` for more details.
|
199 |
+
|
200 |
+
``cubic`` (1-D)
|
201 |
+
return the value determined from a cubic
|
202 |
+
spline.
|
203 |
+
|
204 |
+
``cubic`` (2-D)
|
205 |
+
return the value determined from a
|
206 |
+
piecewise cubic, continuously differentiable (C1), and
|
207 |
+
approximately curvature-minimizing polynomial surface. See
|
208 |
+
`CloughTocher2DInterpolator` for more details.
|
209 |
+
fill_value : float, optional
|
210 |
+
Value used to fill in for requested points outside of the
|
211 |
+
convex hull of the input points. If not provided, then the
|
212 |
+
default is ``nan``. This option has no effect for the
|
213 |
+
'nearest' method.
|
214 |
+
rescale : bool, optional
|
215 |
+
Rescale points to unit cube before performing interpolation.
|
216 |
+
This is useful if some of the input dimensions have
|
217 |
+
incommensurable units and differ by many orders of magnitude.
|
218 |
+
|
219 |
+
.. versionadded:: 0.14.0
|
220 |
+
|
221 |
+
Returns
|
222 |
+
-------
|
223 |
+
ndarray
|
224 |
+
Array of interpolated values.
|
225 |
+
|
226 |
+
See Also
|
227 |
+
--------
|
228 |
+
LinearNDInterpolator :
|
229 |
+
Piecewise linear interpolator in N dimensions.
|
230 |
+
NearestNDInterpolator :
|
231 |
+
Nearest-neighbor interpolator in N dimensions.
|
232 |
+
CloughTocher2DInterpolator :
|
233 |
+
Piecewise cubic, C1 smooth, curvature-minimizing interpolator in 2D.
|
234 |
+
interpn : Interpolation on a regular grid or rectilinear grid.
|
235 |
+
RegularGridInterpolator : Interpolator on a regular or rectilinear grid
|
236 |
+
in arbitrary dimensions (`interpn` wraps this
|
237 |
+
class).
|
238 |
+
|
239 |
+
Notes
|
240 |
+
-----
|
241 |
+
|
242 |
+
.. versionadded:: 0.9
|
243 |
+
|
244 |
+
.. note:: For data on a regular grid use `interpn` instead.
|
245 |
+
|
246 |
+
Examples
|
247 |
+
--------
|
248 |
+
|
249 |
+
Suppose we want to interpolate the 2-D function
|
250 |
+
|
251 |
+
>>> import numpy as np
|
252 |
+
>>> def func(x, y):
|
253 |
+
... return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2
|
254 |
+
|
255 |
+
on a grid in [0, 1]x[0, 1]
|
256 |
+
|
257 |
+
>>> grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j]
|
258 |
+
|
259 |
+
but we only know its values at 1000 data points:
|
260 |
+
|
261 |
+
>>> rng = np.random.default_rng()
|
262 |
+
>>> points = rng.random((1000, 2))
|
263 |
+
>>> values = func(points[:,0], points[:,1])
|
264 |
+
|
265 |
+
This can be done with `griddata` -- below we try out all of the
|
266 |
+
interpolation methods:
|
267 |
+
|
268 |
+
>>> from scipy.interpolate import griddata
|
269 |
+
>>> grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest')
|
270 |
+
>>> grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear')
|
271 |
+
>>> grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic')
|
272 |
+
|
273 |
+
One can see that the exact result is reproduced by all of the
|
274 |
+
methods to some degree, but for this smooth function the piecewise
|
275 |
+
cubic interpolant gives the best results:
|
276 |
+
|
277 |
+
>>> import matplotlib.pyplot as plt
|
278 |
+
>>> plt.subplot(221)
|
279 |
+
>>> plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower')
|
280 |
+
>>> plt.plot(points[:,0], points[:,1], 'k.', ms=1)
|
281 |
+
>>> plt.title('Original')
|
282 |
+
>>> plt.subplot(222)
|
283 |
+
>>> plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower')
|
284 |
+
>>> plt.title('Nearest')
|
285 |
+
>>> plt.subplot(223)
|
286 |
+
>>> plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower')
|
287 |
+
>>> plt.title('Linear')
|
288 |
+
>>> plt.subplot(224)
|
289 |
+
>>> plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower')
|
290 |
+
>>> plt.title('Cubic')
|
291 |
+
>>> plt.gcf().set_size_inches(6, 6)
|
292 |
+
>>> plt.show()
|
293 |
+
|
294 |
+
""" # numpy/numpydoc#87 # noqa: E501
|
295 |
+
|
296 |
+
points = _ndim_coords_from_arrays(points)
|
297 |
+
|
298 |
+
if points.ndim < 2:
|
299 |
+
ndim = points.ndim
|
300 |
+
else:
|
301 |
+
ndim = points.shape[-1]
|
302 |
+
|
303 |
+
if ndim == 1 and method in ('nearest', 'linear', 'cubic'):
|
304 |
+
from ._interpolate import interp1d
|
305 |
+
points = points.ravel()
|
306 |
+
if isinstance(xi, tuple):
|
307 |
+
if len(xi) != 1:
|
308 |
+
raise ValueError("invalid number of dimensions in xi")
|
309 |
+
xi, = xi
|
310 |
+
# Sort points/values together, necessary as input for interp1d
|
311 |
+
idx = np.argsort(points)
|
312 |
+
points = points[idx]
|
313 |
+
values = values[idx]
|
314 |
+
if method == 'nearest':
|
315 |
+
fill_value = 'extrapolate'
|
316 |
+
ip = interp1d(points, values, kind=method, axis=0, bounds_error=False,
|
317 |
+
fill_value=fill_value)
|
318 |
+
return ip(xi)
|
319 |
+
elif method == 'nearest':
|
320 |
+
ip = NearestNDInterpolator(points, values, rescale=rescale)
|
321 |
+
return ip(xi)
|
322 |
+
elif method == 'linear':
|
323 |
+
ip = LinearNDInterpolator(points, values, fill_value=fill_value,
|
324 |
+
rescale=rescale)
|
325 |
+
return ip(xi)
|
326 |
+
elif method == 'cubic' and ndim == 2:
|
327 |
+
ip = CloughTocher2DInterpolator(points, values, fill_value=fill_value,
|
328 |
+
rescale=rescale)
|
329 |
+
return ip(xi)
|
330 |
+
else:
|
331 |
+
raise ValueError("Unknown interpolation method %r for "
|
332 |
+
"%d dimensional data" % (method, ndim))
|
venv/lib/python3.10/site-packages/scipy/interpolate/_pade.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy import zeros, asarray, eye, poly1d, hstack, r_
|
2 |
+
from scipy import linalg
|
3 |
+
|
4 |
+
__all__ = ["pade"]
|
5 |
+
|
6 |
+
def pade(an, m, n=None):
|
7 |
+
"""
|
8 |
+
Return Pade approximation to a polynomial as the ratio of two polynomials.
|
9 |
+
|
10 |
+
Parameters
|
11 |
+
----------
|
12 |
+
an : (N,) array_like
|
13 |
+
Taylor series coefficients.
|
14 |
+
m : int
|
15 |
+
The order of the returned approximating polynomial `q`.
|
16 |
+
n : int, optional
|
17 |
+
The order of the returned approximating polynomial `p`. By default,
|
18 |
+
the order is ``len(an)-1-m``.
|
19 |
+
|
20 |
+
Returns
|
21 |
+
-------
|
22 |
+
p, q : Polynomial class
|
23 |
+
The Pade approximation of the polynomial defined by `an` is
|
24 |
+
``p(x)/q(x)``.
|
25 |
+
|
26 |
+
Examples
|
27 |
+
--------
|
28 |
+
>>> import numpy as np
|
29 |
+
>>> from scipy.interpolate import pade
|
30 |
+
>>> e_exp = [1.0, 1.0, 1.0/2.0, 1.0/6.0, 1.0/24.0, 1.0/120.0]
|
31 |
+
>>> p, q = pade(e_exp, 2)
|
32 |
+
|
33 |
+
>>> e_exp.reverse()
|
34 |
+
>>> e_poly = np.poly1d(e_exp)
|
35 |
+
|
36 |
+
Compare ``e_poly(x)`` and the Pade approximation ``p(x)/q(x)``
|
37 |
+
|
38 |
+
>>> e_poly(1)
|
39 |
+
2.7166666666666668
|
40 |
+
|
41 |
+
>>> p(1)/q(1)
|
42 |
+
2.7179487179487181
|
43 |
+
|
44 |
+
"""
|
45 |
+
an = asarray(an)
|
46 |
+
if n is None:
|
47 |
+
n = len(an) - 1 - m
|
48 |
+
if n < 0:
|
49 |
+
raise ValueError("Order of q <m> must be smaller than len(an)-1.")
|
50 |
+
if n < 0:
|
51 |
+
raise ValueError("Order of p <n> must be greater than 0.")
|
52 |
+
N = m + n
|
53 |
+
if N > len(an)-1:
|
54 |
+
raise ValueError("Order of q+p <m+n> must be smaller than len(an).")
|
55 |
+
an = an[:N+1]
|
56 |
+
Akj = eye(N+1, n+1, dtype=an.dtype)
|
57 |
+
Bkj = zeros((N+1, m), dtype=an.dtype)
|
58 |
+
for row in range(1, m+1):
|
59 |
+
Bkj[row,:row] = -(an[:row])[::-1]
|
60 |
+
for row in range(m+1, N+1):
|
61 |
+
Bkj[row,:] = -(an[row-m:row])[::-1]
|
62 |
+
C = hstack((Akj, Bkj))
|
63 |
+
pq = linalg.solve(C, an)
|
64 |
+
p = pq[:n+1]
|
65 |
+
q = r_[1.0, pq[n+1:]]
|
66 |
+
return poly1d(p[::-1]), poly1d(q[::-1])
|
67 |
+
|
venv/lib/python3.10/site-packages/scipy/interpolate/_polyint.py
ADDED
@@ -0,0 +1,938 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from scipy.special import factorial
|
5 |
+
from scipy._lib._util import _asarray_validated, float_factorial, check_random_state
|
6 |
+
|
7 |
+
|
8 |
+
__all__ = ["KroghInterpolator", "krogh_interpolate",
|
9 |
+
"BarycentricInterpolator", "barycentric_interpolate",
|
10 |
+
"approximate_taylor_polynomial"]
|
11 |
+
|
12 |
+
|
13 |
+
def _isscalar(x):
|
14 |
+
"""Check whether x is if a scalar type, or 0-dim"""
|
15 |
+
return np.isscalar(x) or hasattr(x, 'shape') and x.shape == ()
|
16 |
+
|
17 |
+
|
18 |
+
class _Interpolator1D:
|
19 |
+
"""
|
20 |
+
Common features in univariate interpolation
|
21 |
+
|
22 |
+
Deal with input data type and interpolation axis rolling. The
|
23 |
+
actual interpolator can assume the y-data is of shape (n, r) where
|
24 |
+
`n` is the number of x-points, and `r` the number of variables,
|
25 |
+
and use self.dtype as the y-data type.
|
26 |
+
|
27 |
+
Attributes
|
28 |
+
----------
|
29 |
+
_y_axis
|
30 |
+
Axis along which the interpolation goes in the original array
|
31 |
+
_y_extra_shape
|
32 |
+
Additional trailing shape of the input arrays, excluding
|
33 |
+
the interpolation axis.
|
34 |
+
dtype
|
35 |
+
Dtype of the y-data arrays. Can be set via _set_dtype, which
|
36 |
+
forces it to be float or complex.
|
37 |
+
|
38 |
+
Methods
|
39 |
+
-------
|
40 |
+
__call__
|
41 |
+
_prepare_x
|
42 |
+
_finish_y
|
43 |
+
_reshape_yi
|
44 |
+
_set_yi
|
45 |
+
_set_dtype
|
46 |
+
_evaluate
|
47 |
+
|
48 |
+
"""
|
49 |
+
|
50 |
+
__slots__ = ('_y_axis', '_y_extra_shape', 'dtype')
|
51 |
+
|
52 |
+
def __init__(self, xi=None, yi=None, axis=None):
|
53 |
+
self._y_axis = axis
|
54 |
+
self._y_extra_shape = None
|
55 |
+
self.dtype = None
|
56 |
+
if yi is not None:
|
57 |
+
self._set_yi(yi, xi=xi, axis=axis)
|
58 |
+
|
59 |
+
def __call__(self, x):
|
60 |
+
"""
|
61 |
+
Evaluate the interpolant
|
62 |
+
|
63 |
+
Parameters
|
64 |
+
----------
|
65 |
+
x : array_like
|
66 |
+
Point or points at which to evaluate the interpolant.
|
67 |
+
|
68 |
+
Returns
|
69 |
+
-------
|
70 |
+
y : array_like
|
71 |
+
Interpolated values. Shape is determined by replacing
|
72 |
+
the interpolation axis in the original array with the shape of `x`.
|
73 |
+
|
74 |
+
Notes
|
75 |
+
-----
|
76 |
+
Input values `x` must be convertible to `float` values like `int`
|
77 |
+
or `float`.
|
78 |
+
|
79 |
+
"""
|
80 |
+
x, x_shape = self._prepare_x(x)
|
81 |
+
y = self._evaluate(x)
|
82 |
+
return self._finish_y(y, x_shape)
|
83 |
+
|
84 |
+
def _evaluate(self, x):
|
85 |
+
"""
|
86 |
+
Actually evaluate the value of the interpolator.
|
87 |
+
"""
|
88 |
+
raise NotImplementedError()
|
89 |
+
|
90 |
+
def _prepare_x(self, x):
|
91 |
+
"""Reshape input x array to 1-D"""
|
92 |
+
x = _asarray_validated(x, check_finite=False, as_inexact=True)
|
93 |
+
x_shape = x.shape
|
94 |
+
return x.ravel(), x_shape
|
95 |
+
|
96 |
+
def _finish_y(self, y, x_shape):
|
97 |
+
"""Reshape interpolated y back to an N-D array similar to initial y"""
|
98 |
+
y = y.reshape(x_shape + self._y_extra_shape)
|
99 |
+
if self._y_axis != 0 and x_shape != ():
|
100 |
+
nx = len(x_shape)
|
101 |
+
ny = len(self._y_extra_shape)
|
102 |
+
s = (list(range(nx, nx + self._y_axis))
|
103 |
+
+ list(range(nx)) + list(range(nx+self._y_axis, nx+ny)))
|
104 |
+
y = y.transpose(s)
|
105 |
+
return y
|
106 |
+
|
107 |
+
def _reshape_yi(self, yi, check=False):
|
108 |
+
yi = np.moveaxis(np.asarray(yi), self._y_axis, 0)
|
109 |
+
if check and yi.shape[1:] != self._y_extra_shape:
|
110 |
+
ok_shape = "{!r} + (N,) + {!r}".format(self._y_extra_shape[-self._y_axis:],
|
111 |
+
self._y_extra_shape[:-self._y_axis])
|
112 |
+
raise ValueError("Data must be of shape %s" % ok_shape)
|
113 |
+
return yi.reshape((yi.shape[0], -1))
|
114 |
+
|
115 |
+
def _set_yi(self, yi, xi=None, axis=None):
|
116 |
+
if axis is None:
|
117 |
+
axis = self._y_axis
|
118 |
+
if axis is None:
|
119 |
+
raise ValueError("no interpolation axis specified")
|
120 |
+
|
121 |
+
yi = np.asarray(yi)
|
122 |
+
|
123 |
+
shape = yi.shape
|
124 |
+
if shape == ():
|
125 |
+
shape = (1,)
|
126 |
+
if xi is not None and shape[axis] != len(xi):
|
127 |
+
raise ValueError("x and y arrays must be equal in length along "
|
128 |
+
"interpolation axis.")
|
129 |
+
|
130 |
+
self._y_axis = (axis % yi.ndim)
|
131 |
+
self._y_extra_shape = yi.shape[:self._y_axis] + yi.shape[self._y_axis+1:]
|
132 |
+
self.dtype = None
|
133 |
+
self._set_dtype(yi.dtype)
|
134 |
+
|
135 |
+
def _set_dtype(self, dtype, union=False):
|
136 |
+
if np.issubdtype(dtype, np.complexfloating) \
|
137 |
+
or np.issubdtype(self.dtype, np.complexfloating):
|
138 |
+
self.dtype = np.complex128
|
139 |
+
else:
|
140 |
+
if not union or self.dtype != np.complex128:
|
141 |
+
self.dtype = np.float64
|
142 |
+
|
143 |
+
|
144 |
+
class _Interpolator1DWithDerivatives(_Interpolator1D):
|
145 |
+
def derivatives(self, x, der=None):
|
146 |
+
"""
|
147 |
+
Evaluate several derivatives of the polynomial at the point `x`
|
148 |
+
|
149 |
+
Produce an array of derivatives evaluated at the point `x`.
|
150 |
+
|
151 |
+
Parameters
|
152 |
+
----------
|
153 |
+
x : array_like
|
154 |
+
Point or points at which to evaluate the derivatives
|
155 |
+
der : int or list or None, optional
|
156 |
+
How many derivatives to evaluate, or None for all potentially
|
157 |
+
nonzero derivatives (that is, a number equal to the number
|
158 |
+
of points), or a list of derivatives to evaluate. This number
|
159 |
+
includes the function value as the '0th' derivative.
|
160 |
+
|
161 |
+
Returns
|
162 |
+
-------
|
163 |
+
d : ndarray
|
164 |
+
Array with derivatives; ``d[j]`` contains the jth derivative.
|
165 |
+
Shape of ``d[j]`` is determined by replacing the interpolation
|
166 |
+
axis in the original array with the shape of `x`.
|
167 |
+
|
168 |
+
Examples
|
169 |
+
--------
|
170 |
+
>>> from scipy.interpolate import KroghInterpolator
|
171 |
+
>>> KroghInterpolator([0,0,0],[1,2,3]).derivatives(0)
|
172 |
+
array([1.0,2.0,3.0])
|
173 |
+
>>> KroghInterpolator([0,0,0],[1,2,3]).derivatives([0,0])
|
174 |
+
array([[1.0,1.0],
|
175 |
+
[2.0,2.0],
|
176 |
+
[3.0,3.0]])
|
177 |
+
|
178 |
+
"""
|
179 |
+
x, x_shape = self._prepare_x(x)
|
180 |
+
y = self._evaluate_derivatives(x, der)
|
181 |
+
|
182 |
+
y = y.reshape((y.shape[0],) + x_shape + self._y_extra_shape)
|
183 |
+
if self._y_axis != 0 and x_shape != ():
|
184 |
+
nx = len(x_shape)
|
185 |
+
ny = len(self._y_extra_shape)
|
186 |
+
s = ([0] + list(range(nx+1, nx + self._y_axis+1))
|
187 |
+
+ list(range(1, nx+1)) +
|
188 |
+
list(range(nx+1+self._y_axis, nx+ny+1)))
|
189 |
+
y = y.transpose(s)
|
190 |
+
return y
|
191 |
+
|
192 |
+
def derivative(self, x, der=1):
|
193 |
+
"""
|
194 |
+
Evaluate a single derivative of the polynomial at the point `x`.
|
195 |
+
|
196 |
+
Parameters
|
197 |
+
----------
|
198 |
+
x : array_like
|
199 |
+
Point or points at which to evaluate the derivatives
|
200 |
+
|
201 |
+
der : integer, optional
|
202 |
+
Which derivative to evaluate (default: first derivative).
|
203 |
+
This number includes the function value as 0th derivative.
|
204 |
+
|
205 |
+
Returns
|
206 |
+
-------
|
207 |
+
d : ndarray
|
208 |
+
Derivative interpolated at the x-points. Shape of `d` is
|
209 |
+
determined by replacing the interpolation axis in the
|
210 |
+
original array with the shape of `x`.
|
211 |
+
|
212 |
+
Notes
|
213 |
+
-----
|
214 |
+
This may be computed by evaluating all derivatives up to the desired
|
215 |
+
one (using self.derivatives()) and then discarding the rest.
|
216 |
+
|
217 |
+
"""
|
218 |
+
x, x_shape = self._prepare_x(x)
|
219 |
+
y = self._evaluate_derivatives(x, der+1)
|
220 |
+
return self._finish_y(y[der], x_shape)
|
221 |
+
|
222 |
+
def _evaluate_derivatives(self, x, der=None):
|
223 |
+
"""
|
224 |
+
Actually evaluate the derivatives.
|
225 |
+
|
226 |
+
Parameters
|
227 |
+
----------
|
228 |
+
x : array_like
|
229 |
+
1D array of points at which to evaluate the derivatives
|
230 |
+
der : integer, optional
|
231 |
+
The number of derivatives to evaluate, from 'order 0' (der=1)
|
232 |
+
to order der-1. If omitted, return all possibly-non-zero
|
233 |
+
derivatives, ie 0 to order n-1.
|
234 |
+
|
235 |
+
Returns
|
236 |
+
-------
|
237 |
+
d : ndarray
|
238 |
+
Array of shape ``(der, x.size, self.yi.shape[1])`` containing
|
239 |
+
the derivatives from 0 to der-1
|
240 |
+
"""
|
241 |
+
raise NotImplementedError()
|
242 |
+
|
243 |
+
|
244 |
+
class KroghInterpolator(_Interpolator1DWithDerivatives):
|
245 |
+
"""
|
246 |
+
Interpolating polynomial for a set of points.
|
247 |
+
|
248 |
+
The polynomial passes through all the pairs ``(xi, yi)``. One may
|
249 |
+
additionally specify a number of derivatives at each point `xi`;
|
250 |
+
this is done by repeating the value `xi` and specifying the
|
251 |
+
derivatives as successive `yi` values.
|
252 |
+
|
253 |
+
Allows evaluation of the polynomial and all its derivatives.
|
254 |
+
For reasons of numerical stability, this function does not compute
|
255 |
+
the coefficients of the polynomial, although they can be obtained
|
256 |
+
by evaluating all the derivatives.
|
257 |
+
|
258 |
+
Parameters
|
259 |
+
----------
|
260 |
+
xi : array_like, shape (npoints, )
|
261 |
+
Known x-coordinates. Must be sorted in increasing order.
|
262 |
+
yi : array_like, shape (..., npoints, ...)
|
263 |
+
Known y-coordinates. When an xi occurs two or more times in
|
264 |
+
a row, the corresponding yi's represent derivative values. The length of `yi`
|
265 |
+
along the interpolation axis must be equal to the length of `xi`. Use the
|
266 |
+
`axis` parameter to select the correct axis.
|
267 |
+
axis : int, optional
|
268 |
+
Axis in the `yi` array corresponding to the x-coordinate values. Defaults to
|
269 |
+
``axis=0``.
|
270 |
+
|
271 |
+
Notes
|
272 |
+
-----
|
273 |
+
Be aware that the algorithms implemented here are not necessarily
|
274 |
+
the most numerically stable known. Moreover, even in a world of
|
275 |
+
exact computation, unless the x coordinates are chosen very
|
276 |
+
carefully - Chebyshev zeros (e.g., cos(i*pi/n)) are a good choice -
|
277 |
+
polynomial interpolation itself is a very ill-conditioned process
|
278 |
+
due to the Runge phenomenon. In general, even with well-chosen
|
279 |
+
x values, degrees higher than about thirty cause problems with
|
280 |
+
numerical instability in this code.
|
281 |
+
|
282 |
+
Based on [1]_.
|
283 |
+
|
284 |
+
References
|
285 |
+
----------
|
286 |
+
.. [1] Krogh, "Efficient Algorithms for Polynomial Interpolation
|
287 |
+
and Numerical Differentiation", 1970.
|
288 |
+
|
289 |
+
Examples
|
290 |
+
--------
|
291 |
+
To produce a polynomial that is zero at 0 and 1 and has
|
292 |
+
derivative 2 at 0, call
|
293 |
+
|
294 |
+
>>> from scipy.interpolate import KroghInterpolator
|
295 |
+
>>> KroghInterpolator([0,0,1],[0,2,0])
|
296 |
+
|
297 |
+
This constructs the quadratic :math:`2x^2-2x`. The derivative condition
|
298 |
+
is indicated by the repeated zero in the `xi` array; the corresponding
|
299 |
+
yi values are 0, the function value, and 2, the derivative value.
|
300 |
+
|
301 |
+
For another example, given `xi`, `yi`, and a derivative `ypi` for each
|
302 |
+
point, appropriate arrays can be constructed as:
|
303 |
+
|
304 |
+
>>> import numpy as np
|
305 |
+
>>> rng = np.random.default_rng()
|
306 |
+
>>> xi = np.linspace(0, 1, 5)
|
307 |
+
>>> yi, ypi = rng.random((2, 5))
|
308 |
+
>>> xi_k, yi_k = np.repeat(xi, 2), np.ravel(np.dstack((yi,ypi)))
|
309 |
+
>>> KroghInterpolator(xi_k, yi_k)
|
310 |
+
|
311 |
+
To produce a vector-valued polynomial, supply a higher-dimensional
|
312 |
+
array for `yi`:
|
313 |
+
|
314 |
+
>>> KroghInterpolator([0,1],[[2,3],[4,5]])
|
315 |
+
|
316 |
+
This constructs a linear polynomial giving (2,3) at 0 and (4,5) at 1.
|
317 |
+
|
318 |
+
"""
|
319 |
+
|
320 |
+
def __init__(self, xi, yi, axis=0):
|
321 |
+
super().__init__(xi, yi, axis)
|
322 |
+
|
323 |
+
self.xi = np.asarray(xi)
|
324 |
+
self.yi = self._reshape_yi(yi)
|
325 |
+
self.n, self.r = self.yi.shape
|
326 |
+
|
327 |
+
if (deg := self.xi.size) > 30:
|
328 |
+
warnings.warn(f"{deg} degrees provided, degrees higher than about"
|
329 |
+
" thirty cause problems with numerical instability "
|
330 |
+
"with 'KroghInterpolator'", stacklevel=2)
|
331 |
+
|
332 |
+
c = np.zeros((self.n+1, self.r), dtype=self.dtype)
|
333 |
+
c[0] = self.yi[0]
|
334 |
+
Vk = np.zeros((self.n, self.r), dtype=self.dtype)
|
335 |
+
for k in range(1, self.n):
|
336 |
+
s = 0
|
337 |
+
while s <= k and xi[k-s] == xi[k]:
|
338 |
+
s += 1
|
339 |
+
s -= 1
|
340 |
+
Vk[0] = self.yi[k]/float_factorial(s)
|
341 |
+
for i in range(k-s):
|
342 |
+
if xi[i] == xi[k]:
|
343 |
+
raise ValueError("Elements of `xi` can't be equal.")
|
344 |
+
if s == 0:
|
345 |
+
Vk[i+1] = (c[i]-Vk[i])/(xi[i]-xi[k])
|
346 |
+
else:
|
347 |
+
Vk[i+1] = (Vk[i+1]-Vk[i])/(xi[i]-xi[k])
|
348 |
+
c[k] = Vk[k-s]
|
349 |
+
self.c = c
|
350 |
+
|
351 |
+
def _evaluate(self, x):
|
352 |
+
pi = 1
|
353 |
+
p = np.zeros((len(x), self.r), dtype=self.dtype)
|
354 |
+
p += self.c[0,np.newaxis,:]
|
355 |
+
for k in range(1, self.n):
|
356 |
+
w = x - self.xi[k-1]
|
357 |
+
pi = w*pi
|
358 |
+
p += pi[:,np.newaxis] * self.c[k]
|
359 |
+
return p
|
360 |
+
|
361 |
+
def _evaluate_derivatives(self, x, der=None):
|
362 |
+
n = self.n
|
363 |
+
r = self.r
|
364 |
+
|
365 |
+
if der is None:
|
366 |
+
der = self.n
|
367 |
+
|
368 |
+
pi = np.zeros((n, len(x)))
|
369 |
+
w = np.zeros((n, len(x)))
|
370 |
+
pi[0] = 1
|
371 |
+
p = np.zeros((len(x), self.r), dtype=self.dtype)
|
372 |
+
p += self.c[0, np.newaxis, :]
|
373 |
+
|
374 |
+
for k in range(1, n):
|
375 |
+
w[k-1] = x - self.xi[k-1]
|
376 |
+
pi[k] = w[k-1] * pi[k-1]
|
377 |
+
p += pi[k, :, np.newaxis] * self.c[k]
|
378 |
+
|
379 |
+
cn = np.zeros((max(der, n+1), len(x), r), dtype=self.dtype)
|
380 |
+
cn[:n+1, :, :] += self.c[:n+1, np.newaxis, :]
|
381 |
+
cn[0] = p
|
382 |
+
for k in range(1, n):
|
383 |
+
for i in range(1, n-k+1):
|
384 |
+
pi[i] = w[k+i-1]*pi[i-1] + pi[i]
|
385 |
+
cn[k] = cn[k] + pi[i, :, np.newaxis]*cn[k+i]
|
386 |
+
cn[k] *= float_factorial(k)
|
387 |
+
|
388 |
+
cn[n, :, :] = 0
|
389 |
+
return cn[:der]
|
390 |
+
|
391 |
+
|
392 |
+
def krogh_interpolate(xi, yi, x, der=0, axis=0):
|
393 |
+
"""
|
394 |
+
Convenience function for polynomial interpolation.
|
395 |
+
|
396 |
+
See `KroghInterpolator` for more details.
|
397 |
+
|
398 |
+
Parameters
|
399 |
+
----------
|
400 |
+
xi : array_like
|
401 |
+
Interpolation points (known x-coordinates).
|
402 |
+
yi : array_like
|
403 |
+
Known y-coordinates, of shape ``(xi.size, R)``. Interpreted as
|
404 |
+
vectors of length R, or scalars if R=1.
|
405 |
+
x : array_like
|
406 |
+
Point or points at which to evaluate the derivatives.
|
407 |
+
der : int or list or None, optional
|
408 |
+
How many derivatives to evaluate, or None for all potentially
|
409 |
+
nonzero derivatives (that is, a number equal to the number
|
410 |
+
of points), or a list of derivatives to evaluate. This number
|
411 |
+
includes the function value as the '0th' derivative.
|
412 |
+
axis : int, optional
|
413 |
+
Axis in the `yi` array corresponding to the x-coordinate values.
|
414 |
+
|
415 |
+
Returns
|
416 |
+
-------
|
417 |
+
d : ndarray
|
418 |
+
If the interpolator's values are R-D then the
|
419 |
+
returned array will be the number of derivatives by N by R.
|
420 |
+
If `x` is a scalar, the middle dimension will be dropped; if
|
421 |
+
the `yi` are scalars then the last dimension will be dropped.
|
422 |
+
|
423 |
+
See Also
|
424 |
+
--------
|
425 |
+
KroghInterpolator : Krogh interpolator
|
426 |
+
|
427 |
+
Notes
|
428 |
+
-----
|
429 |
+
Construction of the interpolating polynomial is a relatively expensive
|
430 |
+
process. If you want to evaluate it repeatedly consider using the class
|
431 |
+
KroghInterpolator (which is what this function uses).
|
432 |
+
|
433 |
+
Examples
|
434 |
+
--------
|
435 |
+
We can interpolate 2D observed data using Krogh interpolation:
|
436 |
+
|
437 |
+
>>> import numpy as np
|
438 |
+
>>> import matplotlib.pyplot as plt
|
439 |
+
>>> from scipy.interpolate import krogh_interpolate
|
440 |
+
>>> x_observed = np.linspace(0.0, 10.0, 11)
|
441 |
+
>>> y_observed = np.sin(x_observed)
|
442 |
+
>>> x = np.linspace(min(x_observed), max(x_observed), num=100)
|
443 |
+
>>> y = krogh_interpolate(x_observed, y_observed, x)
|
444 |
+
>>> plt.plot(x_observed, y_observed, "o", label="observation")
|
445 |
+
>>> plt.plot(x, y, label="krogh interpolation")
|
446 |
+
>>> plt.legend()
|
447 |
+
>>> plt.show()
|
448 |
+
"""
|
449 |
+
|
450 |
+
P = KroghInterpolator(xi, yi, axis=axis)
|
451 |
+
if der == 0:
|
452 |
+
return P(x)
|
453 |
+
elif _isscalar(der):
|
454 |
+
return P.derivative(x, der=der)
|
455 |
+
else:
|
456 |
+
return P.derivatives(x, der=np.amax(der)+1)[der]
|
457 |
+
|
458 |
+
|
459 |
+
def approximate_taylor_polynomial(f,x,degree,scale,order=None):
|
460 |
+
"""
|
461 |
+
Estimate the Taylor polynomial of f at x by polynomial fitting.
|
462 |
+
|
463 |
+
Parameters
|
464 |
+
----------
|
465 |
+
f : callable
|
466 |
+
The function whose Taylor polynomial is sought. Should accept
|
467 |
+
a vector of `x` values.
|
468 |
+
x : scalar
|
469 |
+
The point at which the polynomial is to be evaluated.
|
470 |
+
degree : int
|
471 |
+
The degree of the Taylor polynomial
|
472 |
+
scale : scalar
|
473 |
+
The width of the interval to use to evaluate the Taylor polynomial.
|
474 |
+
Function values spread over a range this wide are used to fit the
|
475 |
+
polynomial. Must be chosen carefully.
|
476 |
+
order : int or None, optional
|
477 |
+
The order of the polynomial to be used in the fitting; `f` will be
|
478 |
+
evaluated ``order+1`` times. If None, use `degree`.
|
479 |
+
|
480 |
+
Returns
|
481 |
+
-------
|
482 |
+
p : poly1d instance
|
483 |
+
The Taylor polynomial (translated to the origin, so that
|
484 |
+
for example p(0)=f(x)).
|
485 |
+
|
486 |
+
Notes
|
487 |
+
-----
|
488 |
+
The appropriate choice of "scale" is a trade-off; too large and the
|
489 |
+
function differs from its Taylor polynomial too much to get a good
|
490 |
+
answer, too small and round-off errors overwhelm the higher-order terms.
|
491 |
+
The algorithm used becomes numerically unstable around order 30 even
|
492 |
+
under ideal circumstances.
|
493 |
+
|
494 |
+
Choosing order somewhat larger than degree may improve the higher-order
|
495 |
+
terms.
|
496 |
+
|
497 |
+
Examples
|
498 |
+
--------
|
499 |
+
We can calculate Taylor approximation polynomials of sin function with
|
500 |
+
various degrees:
|
501 |
+
|
502 |
+
>>> import numpy as np
|
503 |
+
>>> import matplotlib.pyplot as plt
|
504 |
+
>>> from scipy.interpolate import approximate_taylor_polynomial
|
505 |
+
>>> x = np.linspace(-10.0, 10.0, num=100)
|
506 |
+
>>> plt.plot(x, np.sin(x), label="sin curve")
|
507 |
+
>>> for degree in np.arange(1, 15, step=2):
|
508 |
+
... sin_taylor = approximate_taylor_polynomial(np.sin, 0, degree, 1,
|
509 |
+
... order=degree + 2)
|
510 |
+
... plt.plot(x, sin_taylor(x), label=f"degree={degree}")
|
511 |
+
>>> plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left',
|
512 |
+
... borderaxespad=0.0, shadow=True)
|
513 |
+
>>> plt.tight_layout()
|
514 |
+
>>> plt.axis([-10, 10, -10, 10])
|
515 |
+
>>> plt.show()
|
516 |
+
|
517 |
+
"""
|
518 |
+
if order is None:
|
519 |
+
order = degree
|
520 |
+
|
521 |
+
n = order+1
|
522 |
+
# Choose n points that cluster near the endpoints of the interval in
|
523 |
+
# a way that avoids the Runge phenomenon. Ensure, by including the
|
524 |
+
# endpoint or not as appropriate, that one point always falls at x
|
525 |
+
# exactly.
|
526 |
+
xs = scale*np.cos(np.linspace(0,np.pi,n,endpoint=n % 1)) + x
|
527 |
+
|
528 |
+
P = KroghInterpolator(xs, f(xs))
|
529 |
+
d = P.derivatives(x,der=degree+1)
|
530 |
+
|
531 |
+
return np.poly1d((d/factorial(np.arange(degree+1)))[::-1])
|
532 |
+
|
533 |
+
|
534 |
+
class BarycentricInterpolator(_Interpolator1DWithDerivatives):
|
535 |
+
r"""Interpolating polynomial for a set of points.
|
536 |
+
|
537 |
+
Constructs a polynomial that passes through a given set of points.
|
538 |
+
Allows evaluation of the polynomial and all its derivatives,
|
539 |
+
efficient changing of the y-values to be interpolated,
|
540 |
+
and updating by adding more x- and y-values.
|
541 |
+
|
542 |
+
For reasons of numerical stability, this function does not compute
|
543 |
+
the coefficients of the polynomial.
|
544 |
+
|
545 |
+
The values `yi` need to be provided before the function is
|
546 |
+
evaluated, but none of the preprocessing depends on them, so rapid
|
547 |
+
updates are possible.
|
548 |
+
|
549 |
+
Parameters
|
550 |
+
----------
|
551 |
+
xi : array_like, shape (npoints, )
|
552 |
+
1-D array of x coordinates of the points the polynomial
|
553 |
+
should pass through
|
554 |
+
yi : array_like, shape (..., npoints, ...), optional
|
555 |
+
N-D array of y coordinates of the points the polynomial should pass through.
|
556 |
+
If None, the y values will be supplied later via the `set_y` method.
|
557 |
+
The length of `yi` along the interpolation axis must be equal to the length
|
558 |
+
of `xi`. Use the ``axis`` parameter to select correct axis.
|
559 |
+
axis : int, optional
|
560 |
+
Axis in the yi array corresponding to the x-coordinate values. Defaults
|
561 |
+
to ``axis=0``.
|
562 |
+
wi : array_like, optional
|
563 |
+
The barycentric weights for the chosen interpolation points `xi`.
|
564 |
+
If absent or None, the weights will be computed from `xi` (default).
|
565 |
+
This allows for the reuse of the weights `wi` if several interpolants
|
566 |
+
are being calculated using the same nodes `xi`, without re-computation.
|
567 |
+
random_state : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional
|
568 |
+
If `seed` is None (or `np.random`), the `numpy.random.RandomState`
|
569 |
+
singleton is used.
|
570 |
+
If `seed` is an int, a new ``RandomState`` instance is used,
|
571 |
+
seeded with `seed`.
|
572 |
+
If `seed` is already a ``Generator`` or ``RandomState`` instance then
|
573 |
+
that instance is used.
|
574 |
+
|
575 |
+
Notes
|
576 |
+
-----
|
577 |
+
This class uses a "barycentric interpolation" method that treats
|
578 |
+
the problem as a special case of rational function interpolation.
|
579 |
+
This algorithm is quite stable, numerically, but even in a world of
|
580 |
+
exact computation, unless the x coordinates are chosen very
|
581 |
+
carefully - Chebyshev zeros (e.g., cos(i*pi/n)) are a good choice -
|
582 |
+
polynomial interpolation itself is a very ill-conditioned process
|
583 |
+
due to the Runge phenomenon.
|
584 |
+
|
585 |
+
Based on Berrut and Trefethen 2004, "Barycentric Lagrange Interpolation".
|
586 |
+
|
587 |
+
Examples
|
588 |
+
--------
|
589 |
+
To produce a quintic barycentric interpolant approximating the function
|
590 |
+
:math:`\sin x`, and its first four derivatives, using six randomly-spaced
|
591 |
+
nodes in :math:`(0, \frac{\pi}{2})`:
|
592 |
+
|
593 |
+
>>> import numpy as np
|
594 |
+
>>> import matplotlib.pyplot as plt
|
595 |
+
>>> from scipy.interpolate import BarycentricInterpolator
|
596 |
+
>>> rng = np.random.default_rng()
|
597 |
+
>>> xi = rng.random(6) * np.pi/2
|
598 |
+
>>> f, f_d1, f_d2, f_d3, f_d4 = np.sin, np.cos, lambda x: -np.sin(x), lambda x: -np.cos(x), np.sin
|
599 |
+
>>> P = BarycentricInterpolator(xi, f(xi), random_state=rng)
|
600 |
+
>>> fig, axs = plt.subplots(5, 1, sharex=True, layout='constrained', figsize=(7,10))
|
601 |
+
>>> x = np.linspace(0, np.pi, 100)
|
602 |
+
>>> axs[0].plot(x, P(x), 'r:', x, f(x), 'k--', xi, f(xi), 'xk')
|
603 |
+
>>> axs[1].plot(x, P.derivative(x), 'r:', x, f_d1(x), 'k--', xi, f_d1(xi), 'xk')
|
604 |
+
>>> axs[2].plot(x, P.derivative(x, 2), 'r:', x, f_d2(x), 'k--', xi, f_d2(xi), 'xk')
|
605 |
+
>>> axs[3].plot(x, P.derivative(x, 3), 'r:', x, f_d3(x), 'k--', xi, f_d3(xi), 'xk')
|
606 |
+
>>> axs[4].plot(x, P.derivative(x, 4), 'r:', x, f_d4(x), 'k--', xi, f_d4(xi), 'xk')
|
607 |
+
>>> axs[0].set_xlim(0, np.pi)
|
608 |
+
>>> axs[4].set_xlabel(r"$x$")
|
609 |
+
>>> axs[4].set_xticks([i * np.pi / 4 for i in range(5)],
|
610 |
+
... ["0", r"$\frac{\pi}{4}$", r"$\frac{\pi}{2}$", r"$\frac{3\pi}{4}$", r"$\pi$"])
|
611 |
+
>>> axs[0].set_ylabel("$f(x)$")
|
612 |
+
>>> axs[1].set_ylabel("$f'(x)$")
|
613 |
+
>>> axs[2].set_ylabel("$f''(x)$")
|
614 |
+
>>> axs[3].set_ylabel("$f^{(3)}(x)$")
|
615 |
+
>>> axs[4].set_ylabel("$f^{(4)}(x)$")
|
616 |
+
>>> labels = ['Interpolation nodes', 'True function $f$', 'Barycentric interpolation']
|
617 |
+
>>> axs[0].legend(axs[0].get_lines()[::-1], labels, bbox_to_anchor=(0., 1.02, 1., .102),
|
618 |
+
... loc='lower left', ncols=3, mode="expand", borderaxespad=0., frameon=False)
|
619 |
+
>>> plt.show()
|
620 |
+
""" # numpy/numpydoc#87 # noqa: E501
|
621 |
+
|
622 |
+
def __init__(self, xi, yi=None, axis=0, *, wi=None, random_state=None):
|
623 |
+
super().__init__(xi, yi, axis)
|
624 |
+
|
625 |
+
random_state = check_random_state(random_state)
|
626 |
+
|
627 |
+
self.xi = np.asarray(xi, dtype=np.float64)
|
628 |
+
self.set_yi(yi)
|
629 |
+
self.n = len(self.xi)
|
630 |
+
|
631 |
+
# cache derivative object to avoid re-computing the weights with every call.
|
632 |
+
self._diff_cij = None
|
633 |
+
|
634 |
+
if wi is not None:
|
635 |
+
self.wi = wi
|
636 |
+
else:
|
637 |
+
# See page 510 of Berrut and Trefethen 2004 for an explanation of the
|
638 |
+
# capacity scaling and the suggestion of using a random permutation of
|
639 |
+
# the input factors.
|
640 |
+
# At the moment, the permutation is not performed for xi that are
|
641 |
+
# appended later through the add_xi interface. It's not clear to me how
|
642 |
+
# to implement that and it seems that most situations that require
|
643 |
+
# these numerical stability improvements will be able to provide all
|
644 |
+
# the points to the constructor.
|
645 |
+
self._inv_capacity = 4.0 / (np.max(self.xi) - np.min(self.xi))
|
646 |
+
permute = random_state.permutation(self.n, )
|
647 |
+
inv_permute = np.zeros(self.n, dtype=np.int32)
|
648 |
+
inv_permute[permute] = np.arange(self.n)
|
649 |
+
self.wi = np.zeros(self.n)
|
650 |
+
|
651 |
+
for i in range(self.n):
|
652 |
+
dist = self._inv_capacity * (self.xi[i] - self.xi[permute])
|
653 |
+
dist[inv_permute[i]] = 1.0
|
654 |
+
prod = np.prod(dist)
|
655 |
+
if prod == 0.0:
|
656 |
+
raise ValueError("Interpolation points xi must be"
|
657 |
+
" distinct.")
|
658 |
+
self.wi[i] = 1.0 / prod
|
659 |
+
|
660 |
+
def set_yi(self, yi, axis=None):
|
661 |
+
"""
|
662 |
+
Update the y values to be interpolated
|
663 |
+
|
664 |
+
The barycentric interpolation algorithm requires the calculation
|
665 |
+
of weights, but these depend only on the `xi`. The `yi` can be changed
|
666 |
+
at any time.
|
667 |
+
|
668 |
+
Parameters
|
669 |
+
----------
|
670 |
+
yi : array_like
|
671 |
+
The y-coordinates of the points the polynomial will pass through.
|
672 |
+
If None, the y values must be supplied later.
|
673 |
+
axis : int, optional
|
674 |
+
Axis in the `yi` array corresponding to the x-coordinate values.
|
675 |
+
|
676 |
+
"""
|
677 |
+
if yi is None:
|
678 |
+
self.yi = None
|
679 |
+
return
|
680 |
+
self._set_yi(yi, xi=self.xi, axis=axis)
|
681 |
+
self.yi = self._reshape_yi(yi)
|
682 |
+
self.n, self.r = self.yi.shape
|
683 |
+
self._diff_baryint = None
|
684 |
+
|
685 |
+
def add_xi(self, xi, yi=None):
|
686 |
+
"""
|
687 |
+
Add more x values to the set to be interpolated
|
688 |
+
|
689 |
+
The barycentric interpolation algorithm allows easy updating by
|
690 |
+
adding more points for the polynomial to pass through.
|
691 |
+
|
692 |
+
Parameters
|
693 |
+
----------
|
694 |
+
xi : array_like
|
695 |
+
The x coordinates of the points that the polynomial should pass
|
696 |
+
through.
|
697 |
+
yi : array_like, optional
|
698 |
+
The y coordinates of the points the polynomial should pass through.
|
699 |
+
Should have shape ``(xi.size, R)``; if R > 1 then the polynomial is
|
700 |
+
vector-valued.
|
701 |
+
If `yi` is not given, the y values will be supplied later. `yi`
|
702 |
+
should be given if and only if the interpolator has y values
|
703 |
+
specified.
|
704 |
+
|
705 |
+
Notes
|
706 |
+
-----
|
707 |
+
The new points added by `add_xi` are not randomly permuted
|
708 |
+
so there is potential for numerical instability,
|
709 |
+
especially for a large number of points. If this
|
710 |
+
happens, please reconstruct interpolation from scratch instead.
|
711 |
+
"""
|
712 |
+
if yi is not None:
|
713 |
+
if self.yi is None:
|
714 |
+
raise ValueError("No previous yi value to update!")
|
715 |
+
yi = self._reshape_yi(yi, check=True)
|
716 |
+
self.yi = np.vstack((self.yi,yi))
|
717 |
+
else:
|
718 |
+
if self.yi is not None:
|
719 |
+
raise ValueError("No update to yi provided!")
|
720 |
+
old_n = self.n
|
721 |
+
self.xi = np.concatenate((self.xi,xi))
|
722 |
+
self.n = len(self.xi)
|
723 |
+
self.wi **= -1
|
724 |
+
old_wi = self.wi
|
725 |
+
self.wi = np.zeros(self.n)
|
726 |
+
self.wi[:old_n] = old_wi
|
727 |
+
for j in range(old_n, self.n):
|
728 |
+
self.wi[:j] *= self._inv_capacity * (self.xi[j]-self.xi[:j])
|
729 |
+
self.wi[j] = np.multiply.reduce(
|
730 |
+
self._inv_capacity * (self.xi[:j]-self.xi[j])
|
731 |
+
)
|
732 |
+
self.wi **= -1
|
733 |
+
self._diff_cij = None
|
734 |
+
self._diff_baryint = None
|
735 |
+
|
736 |
+
def __call__(self, x):
|
737 |
+
"""Evaluate the interpolating polynomial at the points x
|
738 |
+
|
739 |
+
Parameters
|
740 |
+
----------
|
741 |
+
x : array_like
|
742 |
+
Point or points at which to evaluate the interpolant.
|
743 |
+
|
744 |
+
Returns
|
745 |
+
-------
|
746 |
+
y : array_like
|
747 |
+
Interpolated values. Shape is determined by replacing
|
748 |
+
the interpolation axis in the original array with the shape of `x`.
|
749 |
+
|
750 |
+
Notes
|
751 |
+
-----
|
752 |
+
Currently the code computes an outer product between `x` and the
|
753 |
+
weights, that is, it constructs an intermediate array of size
|
754 |
+
``(N, len(x))``, where N is the degree of the polynomial.
|
755 |
+
"""
|
756 |
+
return _Interpolator1D.__call__(self, x)
|
757 |
+
|
758 |
+
def _evaluate(self, x):
|
759 |
+
if x.size == 0:
|
760 |
+
p = np.zeros((0, self.r), dtype=self.dtype)
|
761 |
+
else:
|
762 |
+
c = x[..., np.newaxis] - self.xi
|
763 |
+
z = c == 0
|
764 |
+
c[z] = 1
|
765 |
+
c = self.wi / c
|
766 |
+
with np.errstate(divide='ignore'):
|
767 |
+
p = np.dot(c, self.yi) / np.sum(c, axis=-1)[..., np.newaxis]
|
768 |
+
# Now fix where x==some xi
|
769 |
+
r = np.nonzero(z)
|
770 |
+
if len(r) == 1: # evaluation at a scalar
|
771 |
+
if len(r[0]) > 0: # equals one of the points
|
772 |
+
p = self.yi[r[0][0]]
|
773 |
+
else:
|
774 |
+
p[r[:-1]] = self.yi[r[-1]]
|
775 |
+
return p
|
776 |
+
|
777 |
+
def derivative(self, x, der=1):
|
778 |
+
"""
|
779 |
+
Evaluate a single derivative of the polynomial at the point x.
|
780 |
+
|
781 |
+
Parameters
|
782 |
+
----------
|
783 |
+
x : array_like
|
784 |
+
Point or points at which to evaluate the derivatives
|
785 |
+
der : integer, optional
|
786 |
+
Which derivative to evaluate (default: first derivative).
|
787 |
+
This number includes the function value as 0th derivative.
|
788 |
+
|
789 |
+
Returns
|
790 |
+
-------
|
791 |
+
d : ndarray
|
792 |
+
Derivative interpolated at the x-points. Shape of `d` is
|
793 |
+
determined by replacing the interpolation axis in the
|
794 |
+
original array with the shape of `x`.
|
795 |
+
"""
|
796 |
+
x, x_shape = self._prepare_x(x)
|
797 |
+
y = self._evaluate_derivatives(x, der+1, all_lower=False)
|
798 |
+
return self._finish_y(y, x_shape)
|
799 |
+
|
800 |
+
def _evaluate_derivatives(self, x, der=None, all_lower=True):
|
801 |
+
# NB: der here is not the order of the highest derivative;
|
802 |
+
# instead, it is the size of the derivatives matrix that
|
803 |
+
# would be returned with all_lower=True, including the
|
804 |
+
# '0th' derivative (the undifferentiated function).
|
805 |
+
# E.g. to evaluate the 5th derivative alone, call
|
806 |
+
# _evaluate_derivatives(x, der=6, all_lower=False).
|
807 |
+
|
808 |
+
if (not all_lower) and (x.size == 0 or self.r == 0):
|
809 |
+
return np.zeros((0, self.r), dtype=self.dtype)
|
810 |
+
|
811 |
+
if (not all_lower) and der == 1:
|
812 |
+
return self._evaluate(x)
|
813 |
+
|
814 |
+
if (not all_lower) and (der > self.n):
|
815 |
+
return np.zeros((len(x), self.r), dtype=self.dtype)
|
816 |
+
|
817 |
+
if der is None:
|
818 |
+
der = self.n
|
819 |
+
|
820 |
+
if all_lower and (x.size == 0 or self.r == 0):
|
821 |
+
return np.zeros((der, len(x), self.r), dtype=self.dtype)
|
822 |
+
|
823 |
+
if self._diff_cij is None:
|
824 |
+
# c[i,j] = xi[i] - xi[j]
|
825 |
+
c = self.xi[:, np.newaxis] - self.xi
|
826 |
+
|
827 |
+
# avoid division by 0 (diagonal entries are so far zero by construction)
|
828 |
+
np.fill_diagonal(c, 1)
|
829 |
+
|
830 |
+
# c[i,j] = (w[j] / w[i]) / (xi[i] - xi[j]) (equation 9.4)
|
831 |
+
c = self.wi/ (c * self.wi[..., np.newaxis])
|
832 |
+
|
833 |
+
# fill in correct diagonal entries: each column sums to 0
|
834 |
+
np.fill_diagonal(c, 0)
|
835 |
+
|
836 |
+
# calculate diagonal
|
837 |
+
# c[j,j] = -sum_{i != j} c[i,j] (equation 9.5)
|
838 |
+
d = -c.sum(axis=1)
|
839 |
+
# c[i,j] = l_j(x_i)
|
840 |
+
np.fill_diagonal(c, d)
|
841 |
+
|
842 |
+
self._diff_cij = c
|
843 |
+
|
844 |
+
if self._diff_baryint is None:
|
845 |
+
# initialise and cache derivative interpolator and cijs;
|
846 |
+
# reuse weights wi (which depend only on interpolation points xi),
|
847 |
+
# to avoid unnecessary re-computation
|
848 |
+
self._diff_baryint = BarycentricInterpolator(xi=self.xi,
|
849 |
+
yi=self._diff_cij @ self.yi,
|
850 |
+
wi=self.wi)
|
851 |
+
self._diff_baryint._diff_cij = self._diff_cij
|
852 |
+
|
853 |
+
if all_lower:
|
854 |
+
# assemble matrix of derivatives from order 0 to order der-1,
|
855 |
+
# in the format required by _Interpolator1DWithDerivatives.
|
856 |
+
cn = np.zeros((der, len(x), self.r), dtype=self.dtype)
|
857 |
+
for d in range(der):
|
858 |
+
cn[d, :, :] = self._evaluate_derivatives(x, d+1, all_lower=False)
|
859 |
+
return cn
|
860 |
+
|
861 |
+
# recursively evaluate only the derivative requested
|
862 |
+
return self._diff_baryint._evaluate_derivatives(x, der-1, all_lower=False)
|
863 |
+
|
864 |
+
|
865 |
+
def barycentric_interpolate(xi, yi, x, axis=0, *, der=0):
|
866 |
+
"""
|
867 |
+
Convenience function for polynomial interpolation.
|
868 |
+
|
869 |
+
Constructs a polynomial that passes through a given set of points,
|
870 |
+
then evaluates the polynomial. For reasons of numerical stability,
|
871 |
+
this function does not compute the coefficients of the polynomial.
|
872 |
+
|
873 |
+
This function uses a "barycentric interpolation" method that treats
|
874 |
+
the problem as a special case of rational function interpolation.
|
875 |
+
This algorithm is quite stable, numerically, but even in a world of
|
876 |
+
exact computation, unless the `x` coordinates are chosen very
|
877 |
+
carefully - Chebyshev zeros (e.g., cos(i*pi/n)) are a good choice -
|
878 |
+
polynomial interpolation itself is a very ill-conditioned process
|
879 |
+
due to the Runge phenomenon.
|
880 |
+
|
881 |
+
Parameters
|
882 |
+
----------
|
883 |
+
xi : array_like
|
884 |
+
1-D array of x coordinates of the points the polynomial should
|
885 |
+
pass through
|
886 |
+
yi : array_like
|
887 |
+
The y coordinates of the points the polynomial should pass through.
|
888 |
+
x : scalar or array_like
|
889 |
+
Point or points at which to evaluate the interpolant.
|
890 |
+
der : int or list or None, optional
|
891 |
+
How many derivatives to evaluate, or None for all potentially
|
892 |
+
nonzero derivatives (that is, a number equal to the number
|
893 |
+
of points), or a list of derivatives to evaluate. This number
|
894 |
+
includes the function value as the '0th' derivative.
|
895 |
+
axis : int, optional
|
896 |
+
Axis in the `yi` array corresponding to the x-coordinate values.
|
897 |
+
|
898 |
+
Returns
|
899 |
+
-------
|
900 |
+
y : scalar or array_like
|
901 |
+
Interpolated values. Shape is determined by replacing
|
902 |
+
the interpolation axis in the original array with the shape of `x`.
|
903 |
+
|
904 |
+
See Also
|
905 |
+
--------
|
906 |
+
BarycentricInterpolator : Barycentric interpolator
|
907 |
+
|
908 |
+
Notes
|
909 |
+
-----
|
910 |
+
Construction of the interpolation weights is a relatively slow process.
|
911 |
+
If you want to call this many times with the same xi (but possibly
|
912 |
+
varying yi or x) you should use the class `BarycentricInterpolator`.
|
913 |
+
This is what this function uses internally.
|
914 |
+
|
915 |
+
Examples
|
916 |
+
--------
|
917 |
+
We can interpolate 2D observed data using barycentric interpolation:
|
918 |
+
|
919 |
+
>>> import numpy as np
|
920 |
+
>>> import matplotlib.pyplot as plt
|
921 |
+
>>> from scipy.interpolate import barycentric_interpolate
|
922 |
+
>>> x_observed = np.linspace(0.0, 10.0, 11)
|
923 |
+
>>> y_observed = np.sin(x_observed)
|
924 |
+
>>> x = np.linspace(min(x_observed), max(x_observed), num=100)
|
925 |
+
>>> y = barycentric_interpolate(x_observed, y_observed, x)
|
926 |
+
>>> plt.plot(x_observed, y_observed, "o", label="observation")
|
927 |
+
>>> plt.plot(x, y, label="barycentric interpolation")
|
928 |
+
>>> plt.legend()
|
929 |
+
>>> plt.show()
|
930 |
+
|
931 |
+
"""
|
932 |
+
P = BarycentricInterpolator(xi, yi, axis=axis)
|
933 |
+
if der == 0:
|
934 |
+
return P(x)
|
935 |
+
elif _isscalar(der):
|
936 |
+
return P.derivative(x, der=der)
|
937 |
+
else:
|
938 |
+
return P.derivatives(x, der=np.amax(der)+1)[der]
|
venv/lib/python3.10/site-packages/scipy/interpolate/_ppoly.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (470 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/interpolate/_rbf.py
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""rbf - Radial basis functions for interpolation/smoothing scattered N-D data.
|
2 |
+
|
3 |
+
Written by John Travers <[email protected]>, February 2007
|
4 |
+
Based closely on Matlab code by Alex Chirokov
|
5 |
+
Additional, large, improvements by Robert Hetland
|
6 |
+
Some additional alterations by Travis Oliphant
|
7 |
+
Interpolation with multi-dimensional target domain by Josua Sassen
|
8 |
+
|
9 |
+
Permission to use, modify, and distribute this software is given under the
|
10 |
+
terms of the SciPy (BSD style) license. See LICENSE.txt that came with
|
11 |
+
this distribution for specifics.
|
12 |
+
|
13 |
+
NO WARRANTY IS EXPRESSED OR IMPLIED. USE AT YOUR OWN RISK.
|
14 |
+
|
15 |
+
Copyright (c) 2006-2007, Robert Hetland <[email protected]>
|
16 |
+
Copyright (c) 2007, John Travers <[email protected]>
|
17 |
+
|
18 |
+
Redistribution and use in source and binary forms, with or without
|
19 |
+
modification, are permitted provided that the following conditions are
|
20 |
+
met:
|
21 |
+
|
22 |
+
* Redistributions of source code must retain the above copyright
|
23 |
+
notice, this list of conditions and the following disclaimer.
|
24 |
+
|
25 |
+
* Redistributions in binary form must reproduce the above
|
26 |
+
copyright notice, this list of conditions and the following
|
27 |
+
disclaimer in the documentation and/or other materials provided
|
28 |
+
with the distribution.
|
29 |
+
|
30 |
+
* Neither the name of Robert Hetland nor the names of any
|
31 |
+
contributors may be used to endorse or promote products derived
|
32 |
+
from this software without specific prior written permission.
|
33 |
+
|
34 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
35 |
+
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
36 |
+
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
37 |
+
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
38 |
+
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
39 |
+
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
40 |
+
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
41 |
+
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
42 |
+
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
43 |
+
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
44 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
45 |
+
"""
|
46 |
+
import numpy as np
|
47 |
+
|
48 |
+
from scipy import linalg
|
49 |
+
from scipy.special import xlogy
|
50 |
+
from scipy.spatial.distance import cdist, pdist, squareform
|
51 |
+
|
52 |
+
__all__ = ['Rbf']
|
53 |
+
|
54 |
+
|
55 |
+
class Rbf:
|
56 |
+
"""
|
57 |
+
Rbf(*args, **kwargs)
|
58 |
+
|
59 |
+
A class for radial basis function interpolation of functions from
|
60 |
+
N-D scattered data to an M-D domain.
|
61 |
+
|
62 |
+
.. legacy:: class
|
63 |
+
|
64 |
+
`Rbf` is legacy code, for new usage please use `RBFInterpolator`
|
65 |
+
instead.
|
66 |
+
|
67 |
+
Parameters
|
68 |
+
----------
|
69 |
+
*args : arrays
|
70 |
+
x, y, z, ..., d, where x, y, z, ... are the coordinates of the nodes
|
71 |
+
and d is the array of values at the nodes
|
72 |
+
function : str or callable, optional
|
73 |
+
The radial basis function, based on the radius, r, given by the norm
|
74 |
+
(default is Euclidean distance); the default is 'multiquadric'::
|
75 |
+
|
76 |
+
'multiquadric': sqrt((r/self.epsilon)**2 + 1)
|
77 |
+
'inverse': 1.0/sqrt((r/self.epsilon)**2 + 1)
|
78 |
+
'gaussian': exp(-(r/self.epsilon)**2)
|
79 |
+
'linear': r
|
80 |
+
'cubic': r**3
|
81 |
+
'quintic': r**5
|
82 |
+
'thin_plate': r**2 * log(r)
|
83 |
+
|
84 |
+
If callable, then it must take 2 arguments (self, r). The epsilon
|
85 |
+
parameter will be available as self.epsilon. Other keyword
|
86 |
+
arguments passed in will be available as well.
|
87 |
+
|
88 |
+
epsilon : float, optional
|
89 |
+
Adjustable constant for gaussian or multiquadrics functions
|
90 |
+
- defaults to approximate average distance between nodes (which is
|
91 |
+
a good start).
|
92 |
+
smooth : float, optional
|
93 |
+
Values greater than zero increase the smoothness of the
|
94 |
+
approximation. 0 is for interpolation (default), the function will
|
95 |
+
always go through the nodal points in this case.
|
96 |
+
norm : str, callable, optional
|
97 |
+
A function that returns the 'distance' between two points, with
|
98 |
+
inputs as arrays of positions (x, y, z, ...), and an output as an
|
99 |
+
array of distance. E.g., the default: 'euclidean', such that the result
|
100 |
+
is a matrix of the distances from each point in ``x1`` to each point in
|
101 |
+
``x2``. For more options, see documentation of
|
102 |
+
`scipy.spatial.distances.cdist`.
|
103 |
+
mode : str, optional
|
104 |
+
Mode of the interpolation, can be '1-D' (default) or 'N-D'. When it is
|
105 |
+
'1-D' the data `d` will be considered as 1-D and flattened
|
106 |
+
internally. When it is 'N-D' the data `d` is assumed to be an array of
|
107 |
+
shape (n_samples, m), where m is the dimension of the target domain.
|
108 |
+
|
109 |
+
|
110 |
+
Attributes
|
111 |
+
----------
|
112 |
+
N : int
|
113 |
+
The number of data points (as determined by the input arrays).
|
114 |
+
di : ndarray
|
115 |
+
The 1-D array of data values at each of the data coordinates `xi`.
|
116 |
+
xi : ndarray
|
117 |
+
The 2-D array of data coordinates.
|
118 |
+
function : str or callable
|
119 |
+
The radial basis function. See description under Parameters.
|
120 |
+
epsilon : float
|
121 |
+
Parameter used by gaussian or multiquadrics functions. See Parameters.
|
122 |
+
smooth : float
|
123 |
+
Smoothing parameter. See description under Parameters.
|
124 |
+
norm : str or callable
|
125 |
+
The distance function. See description under Parameters.
|
126 |
+
mode : str
|
127 |
+
Mode of the interpolation. See description under Parameters.
|
128 |
+
nodes : ndarray
|
129 |
+
A 1-D array of node values for the interpolation.
|
130 |
+
A : internal property, do not use
|
131 |
+
|
132 |
+
See Also
|
133 |
+
--------
|
134 |
+
RBFInterpolator
|
135 |
+
|
136 |
+
Examples
|
137 |
+
--------
|
138 |
+
>>> import numpy as np
|
139 |
+
>>> from scipy.interpolate import Rbf
|
140 |
+
>>> rng = np.random.default_rng()
|
141 |
+
>>> x, y, z, d = rng.random((4, 50))
|
142 |
+
>>> rbfi = Rbf(x, y, z, d) # radial basis function interpolator instance
|
143 |
+
>>> xi = yi = zi = np.linspace(0, 1, 20)
|
144 |
+
>>> di = rbfi(xi, yi, zi) # interpolated values
|
145 |
+
>>> di.shape
|
146 |
+
(20,)
|
147 |
+
|
148 |
+
"""
|
149 |
+
# Available radial basis functions that can be selected as strings;
|
150 |
+
# they all start with _h_ (self._init_function relies on that)
|
151 |
+
def _h_multiquadric(self, r):
|
152 |
+
return np.sqrt((1.0/self.epsilon*r)**2 + 1)
|
153 |
+
|
154 |
+
def _h_inverse_multiquadric(self, r):
|
155 |
+
return 1.0/np.sqrt((1.0/self.epsilon*r)**2 + 1)
|
156 |
+
|
157 |
+
def _h_gaussian(self, r):
|
158 |
+
return np.exp(-(1.0/self.epsilon*r)**2)
|
159 |
+
|
160 |
+
def _h_linear(self, r):
|
161 |
+
return r
|
162 |
+
|
163 |
+
def _h_cubic(self, r):
|
164 |
+
return r**3
|
165 |
+
|
166 |
+
def _h_quintic(self, r):
|
167 |
+
return r**5
|
168 |
+
|
169 |
+
def _h_thin_plate(self, r):
|
170 |
+
return xlogy(r**2, r)
|
171 |
+
|
172 |
+
# Setup self._function and do smoke test on initial r
|
173 |
+
def _init_function(self, r):
|
174 |
+
if isinstance(self.function, str):
|
175 |
+
self.function = self.function.lower()
|
176 |
+
_mapped = {'inverse': 'inverse_multiquadric',
|
177 |
+
'inverse multiquadric': 'inverse_multiquadric',
|
178 |
+
'thin-plate': 'thin_plate'}
|
179 |
+
if self.function in _mapped:
|
180 |
+
self.function = _mapped[self.function]
|
181 |
+
|
182 |
+
func_name = "_h_" + self.function
|
183 |
+
if hasattr(self, func_name):
|
184 |
+
self._function = getattr(self, func_name)
|
185 |
+
else:
|
186 |
+
functionlist = [x[3:] for x in dir(self)
|
187 |
+
if x.startswith('_h_')]
|
188 |
+
raise ValueError("function must be a callable or one of " +
|
189 |
+
", ".join(functionlist))
|
190 |
+
self._function = getattr(self, "_h_"+self.function)
|
191 |
+
elif callable(self.function):
|
192 |
+
allow_one = False
|
193 |
+
if hasattr(self.function, 'func_code') or \
|
194 |
+
hasattr(self.function, '__code__'):
|
195 |
+
val = self.function
|
196 |
+
allow_one = True
|
197 |
+
elif hasattr(self.function, "__call__"):
|
198 |
+
val = self.function.__call__.__func__
|
199 |
+
else:
|
200 |
+
raise ValueError("Cannot determine number of arguments to "
|
201 |
+
"function")
|
202 |
+
|
203 |
+
argcount = val.__code__.co_argcount
|
204 |
+
if allow_one and argcount == 1:
|
205 |
+
self._function = self.function
|
206 |
+
elif argcount == 2:
|
207 |
+
self._function = self.function.__get__(self, Rbf)
|
208 |
+
else:
|
209 |
+
raise ValueError("Function argument must take 1 or 2 "
|
210 |
+
"arguments.")
|
211 |
+
|
212 |
+
a0 = self._function(r)
|
213 |
+
if a0.shape != r.shape:
|
214 |
+
raise ValueError("Callable must take array and return array of "
|
215 |
+
"the same shape")
|
216 |
+
return a0
|
217 |
+
|
218 |
+
def __init__(self, *args, **kwargs):
|
219 |
+
# `args` can be a variable number of arrays; we flatten them and store
|
220 |
+
# them as a single 2-D array `xi` of shape (n_args-1, array_size),
|
221 |
+
# plus a 1-D array `di` for the values.
|
222 |
+
# All arrays must have the same number of elements
|
223 |
+
self.xi = np.asarray([np.asarray(a, dtype=np.float64).flatten()
|
224 |
+
for a in args[:-1]])
|
225 |
+
self.N = self.xi.shape[-1]
|
226 |
+
|
227 |
+
self.mode = kwargs.pop('mode', '1-D')
|
228 |
+
|
229 |
+
if self.mode == '1-D':
|
230 |
+
self.di = np.asarray(args[-1]).flatten()
|
231 |
+
self._target_dim = 1
|
232 |
+
elif self.mode == 'N-D':
|
233 |
+
self.di = np.asarray(args[-1])
|
234 |
+
self._target_dim = self.di.shape[-1]
|
235 |
+
else:
|
236 |
+
raise ValueError("Mode has to be 1-D or N-D.")
|
237 |
+
|
238 |
+
if not all([x.size == self.di.shape[0] for x in self.xi]):
|
239 |
+
raise ValueError("All arrays must be equal length.")
|
240 |
+
|
241 |
+
self.norm = kwargs.pop('norm', 'euclidean')
|
242 |
+
self.epsilon = kwargs.pop('epsilon', None)
|
243 |
+
if self.epsilon is None:
|
244 |
+
# default epsilon is the "the average distance between nodes" based
|
245 |
+
# on a bounding hypercube
|
246 |
+
ximax = np.amax(self.xi, axis=1)
|
247 |
+
ximin = np.amin(self.xi, axis=1)
|
248 |
+
edges = ximax - ximin
|
249 |
+
edges = edges[np.nonzero(edges)]
|
250 |
+
self.epsilon = np.power(np.prod(edges)/self.N, 1.0/edges.size)
|
251 |
+
|
252 |
+
self.smooth = kwargs.pop('smooth', 0.0)
|
253 |
+
self.function = kwargs.pop('function', 'multiquadric')
|
254 |
+
|
255 |
+
# attach anything left in kwargs to self for use by any user-callable
|
256 |
+
# function or to save on the object returned.
|
257 |
+
for item, value in kwargs.items():
|
258 |
+
setattr(self, item, value)
|
259 |
+
|
260 |
+
# Compute weights
|
261 |
+
if self._target_dim > 1: # If we have more than one target dimension,
|
262 |
+
# we first factorize the matrix
|
263 |
+
self.nodes = np.zeros((self.N, self._target_dim), dtype=self.di.dtype)
|
264 |
+
lu, piv = linalg.lu_factor(self.A)
|
265 |
+
for i in range(self._target_dim):
|
266 |
+
self.nodes[:, i] = linalg.lu_solve((lu, piv), self.di[:, i])
|
267 |
+
else:
|
268 |
+
self.nodes = linalg.solve(self.A, self.di)
|
269 |
+
|
270 |
+
@property
|
271 |
+
def A(self):
|
272 |
+
# this only exists for backwards compatibility: self.A was available
|
273 |
+
# and, at least technically, public.
|
274 |
+
r = squareform(pdist(self.xi.T, self.norm)) # Pairwise norm
|
275 |
+
return self._init_function(r) - np.eye(self.N)*self.smooth
|
276 |
+
|
277 |
+
def _call_norm(self, x1, x2):
|
278 |
+
return cdist(x1.T, x2.T, self.norm)
|
279 |
+
|
280 |
+
def __call__(self, *args):
|
281 |
+
args = [np.asarray(x) for x in args]
|
282 |
+
if not all([x.shape == y.shape for x in args for y in args]):
|
283 |
+
raise ValueError("Array lengths must be equal")
|
284 |
+
if self._target_dim > 1:
|
285 |
+
shp = args[0].shape + (self._target_dim,)
|
286 |
+
else:
|
287 |
+
shp = args[0].shape
|
288 |
+
xa = np.asarray([a.flatten() for a in args], dtype=np.float64)
|
289 |
+
r = self._call_norm(xa, self.xi)
|
290 |
+
return np.dot(self._function(r), self.nodes).reshape(shp)
|
venv/lib/python3.10/site-packages/scipy/interpolate/_rbfinterp.py
ADDED
@@ -0,0 +1,550 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Module for RBF interpolation."""
|
2 |
+
import warnings
|
3 |
+
from itertools import combinations_with_replacement
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
from numpy.linalg import LinAlgError
|
7 |
+
from scipy.spatial import KDTree
|
8 |
+
from scipy.special import comb
|
9 |
+
from scipy.linalg.lapack import dgesv # type: ignore[attr-defined]
|
10 |
+
|
11 |
+
from ._rbfinterp_pythran import (_build_system,
|
12 |
+
_build_evaluation_coefficients,
|
13 |
+
_polynomial_matrix)
|
14 |
+
|
15 |
+
|
16 |
+
__all__ = ["RBFInterpolator"]
|
17 |
+
|
18 |
+
|
19 |
+
# These RBFs are implemented.
|
20 |
+
_AVAILABLE = {
|
21 |
+
"linear",
|
22 |
+
"thin_plate_spline",
|
23 |
+
"cubic",
|
24 |
+
"quintic",
|
25 |
+
"multiquadric",
|
26 |
+
"inverse_multiquadric",
|
27 |
+
"inverse_quadratic",
|
28 |
+
"gaussian"
|
29 |
+
}
|
30 |
+
|
31 |
+
|
32 |
+
# The shape parameter does not need to be specified when using these RBFs.
|
33 |
+
_SCALE_INVARIANT = {"linear", "thin_plate_spline", "cubic", "quintic"}
|
34 |
+
|
35 |
+
|
36 |
+
# For RBFs that are conditionally positive definite of order m, the interpolant
|
37 |
+
# should include polynomial terms with degree >= m - 1. Define the minimum
|
38 |
+
# degrees here. These values are from Chapter 8 of Fasshauer's "Meshfree
|
39 |
+
# Approximation Methods with MATLAB". The RBFs that are not in this dictionary
|
40 |
+
# are positive definite and do not need polynomial terms.
|
41 |
+
_NAME_TO_MIN_DEGREE = {
|
42 |
+
"multiquadric": 0,
|
43 |
+
"linear": 0,
|
44 |
+
"thin_plate_spline": 1,
|
45 |
+
"cubic": 1,
|
46 |
+
"quintic": 2
|
47 |
+
}
|
48 |
+
|
49 |
+
|
50 |
+
def _monomial_powers(ndim, degree):
|
51 |
+
"""Return the powers for each monomial in a polynomial.
|
52 |
+
|
53 |
+
Parameters
|
54 |
+
----------
|
55 |
+
ndim : int
|
56 |
+
Number of variables in the polynomial.
|
57 |
+
degree : int
|
58 |
+
Degree of the polynomial.
|
59 |
+
|
60 |
+
Returns
|
61 |
+
-------
|
62 |
+
(nmonos, ndim) int ndarray
|
63 |
+
Array where each row contains the powers for each variable in a
|
64 |
+
monomial.
|
65 |
+
|
66 |
+
"""
|
67 |
+
nmonos = comb(degree + ndim, ndim, exact=True)
|
68 |
+
out = np.zeros((nmonos, ndim), dtype=np.dtype("long"))
|
69 |
+
count = 0
|
70 |
+
for deg in range(degree + 1):
|
71 |
+
for mono in combinations_with_replacement(range(ndim), deg):
|
72 |
+
# `mono` is a tuple of variables in the current monomial with
|
73 |
+
# multiplicity indicating power (e.g., (0, 1, 1) represents x*y**2)
|
74 |
+
for var in mono:
|
75 |
+
out[count, var] += 1
|
76 |
+
|
77 |
+
count += 1
|
78 |
+
|
79 |
+
return out
|
80 |
+
|
81 |
+
|
82 |
+
def _build_and_solve_system(y, d, smoothing, kernel, epsilon, powers):
|
83 |
+
"""Build and solve the RBF interpolation system of equations.
|
84 |
+
|
85 |
+
Parameters
|
86 |
+
----------
|
87 |
+
y : (P, N) float ndarray
|
88 |
+
Data point coordinates.
|
89 |
+
d : (P, S) float ndarray
|
90 |
+
Data values at `y`.
|
91 |
+
smoothing : (P,) float ndarray
|
92 |
+
Smoothing parameter for each data point.
|
93 |
+
kernel : str
|
94 |
+
Name of the RBF.
|
95 |
+
epsilon : float
|
96 |
+
Shape parameter.
|
97 |
+
powers : (R, N) int ndarray
|
98 |
+
The exponents for each monomial in the polynomial.
|
99 |
+
|
100 |
+
Returns
|
101 |
+
-------
|
102 |
+
coeffs : (P + R, S) float ndarray
|
103 |
+
Coefficients for each RBF and monomial.
|
104 |
+
shift : (N,) float ndarray
|
105 |
+
Domain shift used to create the polynomial matrix.
|
106 |
+
scale : (N,) float ndarray
|
107 |
+
Domain scaling used to create the polynomial matrix.
|
108 |
+
|
109 |
+
"""
|
110 |
+
lhs, rhs, shift, scale = _build_system(
|
111 |
+
y, d, smoothing, kernel, epsilon, powers
|
112 |
+
)
|
113 |
+
_, _, coeffs, info = dgesv(lhs, rhs, overwrite_a=True, overwrite_b=True)
|
114 |
+
if info < 0:
|
115 |
+
raise ValueError(f"The {-info}-th argument had an illegal value.")
|
116 |
+
elif info > 0:
|
117 |
+
msg = "Singular matrix."
|
118 |
+
nmonos = powers.shape[0]
|
119 |
+
if nmonos > 0:
|
120 |
+
pmat = _polynomial_matrix((y - shift)/scale, powers)
|
121 |
+
rank = np.linalg.matrix_rank(pmat)
|
122 |
+
if rank < nmonos:
|
123 |
+
msg = (
|
124 |
+
"Singular matrix. The matrix of monomials evaluated at "
|
125 |
+
"the data point coordinates does not have full column "
|
126 |
+
f"rank ({rank}/{nmonos})."
|
127 |
+
)
|
128 |
+
|
129 |
+
raise LinAlgError(msg)
|
130 |
+
|
131 |
+
return shift, scale, coeffs
|
132 |
+
|
133 |
+
|
134 |
+
class RBFInterpolator:
|
135 |
+
"""Radial basis function (RBF) interpolation in N dimensions.
|
136 |
+
|
137 |
+
Parameters
|
138 |
+
----------
|
139 |
+
y : (npoints, ndims) array_like
|
140 |
+
2-D array of data point coordinates.
|
141 |
+
d : (npoints, ...) array_like
|
142 |
+
N-D array of data values at `y`. The length of `d` along the first
|
143 |
+
axis must be equal to the length of `y`. Unlike some interpolators, the
|
144 |
+
interpolation axis cannot be changed.
|
145 |
+
neighbors : int, optional
|
146 |
+
If specified, the value of the interpolant at each evaluation point
|
147 |
+
will be computed using only this many nearest data points. All the data
|
148 |
+
points are used by default.
|
149 |
+
smoothing : float or (npoints, ) array_like, optional
|
150 |
+
Smoothing parameter. The interpolant perfectly fits the data when this
|
151 |
+
is set to 0. For large values, the interpolant approaches a least
|
152 |
+
squares fit of a polynomial with the specified degree. Default is 0.
|
153 |
+
kernel : str, optional
|
154 |
+
Type of RBF. This should be one of
|
155 |
+
|
156 |
+
- 'linear' : ``-r``
|
157 |
+
- 'thin_plate_spline' : ``r**2 * log(r)``
|
158 |
+
- 'cubic' : ``r**3``
|
159 |
+
- 'quintic' : ``-r**5``
|
160 |
+
- 'multiquadric' : ``-sqrt(1 + r**2)``
|
161 |
+
- 'inverse_multiquadric' : ``1/sqrt(1 + r**2)``
|
162 |
+
- 'inverse_quadratic' : ``1/(1 + r**2)``
|
163 |
+
- 'gaussian' : ``exp(-r**2)``
|
164 |
+
|
165 |
+
Default is 'thin_plate_spline'.
|
166 |
+
epsilon : float, optional
|
167 |
+
Shape parameter that scales the input to the RBF. If `kernel` is
|
168 |
+
'linear', 'thin_plate_spline', 'cubic', or 'quintic', this defaults to
|
169 |
+
1 and can be ignored because it has the same effect as scaling the
|
170 |
+
smoothing parameter. Otherwise, this must be specified.
|
171 |
+
degree : int, optional
|
172 |
+
Degree of the added polynomial. For some RBFs the interpolant may not
|
173 |
+
be well-posed if the polynomial degree is too small. Those RBFs and
|
174 |
+
their corresponding minimum degrees are
|
175 |
+
|
176 |
+
- 'multiquadric' : 0
|
177 |
+
- 'linear' : 0
|
178 |
+
- 'thin_plate_spline' : 1
|
179 |
+
- 'cubic' : 1
|
180 |
+
- 'quintic' : 2
|
181 |
+
|
182 |
+
The default value is the minimum degree for `kernel` or 0 if there is
|
183 |
+
no minimum degree. Set this to -1 for no added polynomial.
|
184 |
+
|
185 |
+
Notes
|
186 |
+
-----
|
187 |
+
An RBF is a scalar valued function in N-dimensional space whose value at
|
188 |
+
:math:`x` can be expressed in terms of :math:`r=||x - c||`, where :math:`c`
|
189 |
+
is the center of the RBF.
|
190 |
+
|
191 |
+
An RBF interpolant for the vector of data values :math:`d`, which are from
|
192 |
+
locations :math:`y`, is a linear combination of RBFs centered at :math:`y`
|
193 |
+
plus a polynomial with a specified degree. The RBF interpolant is written
|
194 |
+
as
|
195 |
+
|
196 |
+
.. math::
|
197 |
+
f(x) = K(x, y) a + P(x) b,
|
198 |
+
|
199 |
+
where :math:`K(x, y)` is a matrix of RBFs with centers at :math:`y`
|
200 |
+
evaluated at the points :math:`x`, and :math:`P(x)` is a matrix of
|
201 |
+
monomials, which span polynomials with the specified degree, evaluated at
|
202 |
+
:math:`x`. The coefficients :math:`a` and :math:`b` are the solution to the
|
203 |
+
linear equations
|
204 |
+
|
205 |
+
.. math::
|
206 |
+
(K(y, y) + \\lambda I) a + P(y) b = d
|
207 |
+
|
208 |
+
and
|
209 |
+
|
210 |
+
.. math::
|
211 |
+
P(y)^T a = 0,
|
212 |
+
|
213 |
+
where :math:`\\lambda` is a non-negative smoothing parameter that controls
|
214 |
+
how well we want to fit the data. The data are fit exactly when the
|
215 |
+
smoothing parameter is 0.
|
216 |
+
|
217 |
+
The above system is uniquely solvable if the following requirements are
|
218 |
+
met:
|
219 |
+
|
220 |
+
- :math:`P(y)` must have full column rank. :math:`P(y)` always has full
|
221 |
+
column rank when `degree` is -1 or 0. When `degree` is 1,
|
222 |
+
:math:`P(y)` has full column rank if the data point locations are not
|
223 |
+
all collinear (N=2), coplanar (N=3), etc.
|
224 |
+
- If `kernel` is 'multiquadric', 'linear', 'thin_plate_spline',
|
225 |
+
'cubic', or 'quintic', then `degree` must not be lower than the
|
226 |
+
minimum value listed above.
|
227 |
+
- If `smoothing` is 0, then each data point location must be distinct.
|
228 |
+
|
229 |
+
When using an RBF that is not scale invariant ('multiquadric',
|
230 |
+
'inverse_multiquadric', 'inverse_quadratic', or 'gaussian'), an appropriate
|
231 |
+
shape parameter must be chosen (e.g., through cross validation). Smaller
|
232 |
+
values for the shape parameter correspond to wider RBFs. The problem can
|
233 |
+
become ill-conditioned or singular when the shape parameter is too small.
|
234 |
+
|
235 |
+
The memory required to solve for the RBF interpolation coefficients
|
236 |
+
increases quadratically with the number of data points, which can become
|
237 |
+
impractical when interpolating more than about a thousand data points.
|
238 |
+
To overcome memory limitations for large interpolation problems, the
|
239 |
+
`neighbors` argument can be specified to compute an RBF interpolant for
|
240 |
+
each evaluation point using only the nearest data points.
|
241 |
+
|
242 |
+
.. versionadded:: 1.7.0
|
243 |
+
|
244 |
+
See Also
|
245 |
+
--------
|
246 |
+
NearestNDInterpolator
|
247 |
+
LinearNDInterpolator
|
248 |
+
CloughTocher2DInterpolator
|
249 |
+
|
250 |
+
References
|
251 |
+
----------
|
252 |
+
.. [1] Fasshauer, G., 2007. Meshfree Approximation Methods with Matlab.
|
253 |
+
World Scientific Publishing Co.
|
254 |
+
|
255 |
+
.. [2] http://amadeus.math.iit.edu/~fass/603_ch3.pdf
|
256 |
+
|
257 |
+
.. [3] Wahba, G., 1990. Spline Models for Observational Data. SIAM.
|
258 |
+
|
259 |
+
.. [4] http://pages.stat.wisc.edu/~wahba/stat860public/lect/lect8/lect8.pdf
|
260 |
+
|
261 |
+
Examples
|
262 |
+
--------
|
263 |
+
Demonstrate interpolating scattered data to a grid in 2-D.
|
264 |
+
|
265 |
+
>>> import numpy as np
|
266 |
+
>>> import matplotlib.pyplot as plt
|
267 |
+
>>> from scipy.interpolate import RBFInterpolator
|
268 |
+
>>> from scipy.stats.qmc import Halton
|
269 |
+
|
270 |
+
>>> rng = np.random.default_rng()
|
271 |
+
>>> xobs = 2*Halton(2, seed=rng).random(100) - 1
|
272 |
+
>>> yobs = np.sum(xobs, axis=1)*np.exp(-6*np.sum(xobs**2, axis=1))
|
273 |
+
|
274 |
+
>>> xgrid = np.mgrid[-1:1:50j, -1:1:50j]
|
275 |
+
>>> xflat = xgrid.reshape(2, -1).T
|
276 |
+
>>> yflat = RBFInterpolator(xobs, yobs)(xflat)
|
277 |
+
>>> ygrid = yflat.reshape(50, 50)
|
278 |
+
|
279 |
+
>>> fig, ax = plt.subplots()
|
280 |
+
>>> ax.pcolormesh(*xgrid, ygrid, vmin=-0.25, vmax=0.25, shading='gouraud')
|
281 |
+
>>> p = ax.scatter(*xobs.T, c=yobs, s=50, ec='k', vmin=-0.25, vmax=0.25)
|
282 |
+
>>> fig.colorbar(p)
|
283 |
+
>>> plt.show()
|
284 |
+
|
285 |
+
"""
|
286 |
+
|
287 |
+
def __init__(self, y, d,
|
288 |
+
neighbors=None,
|
289 |
+
smoothing=0.0,
|
290 |
+
kernel="thin_plate_spline",
|
291 |
+
epsilon=None,
|
292 |
+
degree=None):
|
293 |
+
y = np.asarray(y, dtype=float, order="C")
|
294 |
+
if y.ndim != 2:
|
295 |
+
raise ValueError("`y` must be a 2-dimensional array.")
|
296 |
+
|
297 |
+
ny, ndim = y.shape
|
298 |
+
|
299 |
+
d_dtype = complex if np.iscomplexobj(d) else float
|
300 |
+
d = np.asarray(d, dtype=d_dtype, order="C")
|
301 |
+
if d.shape[0] != ny:
|
302 |
+
raise ValueError(
|
303 |
+
f"Expected the first axis of `d` to have length {ny}."
|
304 |
+
)
|
305 |
+
|
306 |
+
d_shape = d.shape[1:]
|
307 |
+
d = d.reshape((ny, -1))
|
308 |
+
# If `d` is complex, convert it to a float array with twice as many
|
309 |
+
# columns. Otherwise, the LHS matrix would need to be converted to
|
310 |
+
# complex and take up 2x more memory than necessary.
|
311 |
+
d = d.view(float)
|
312 |
+
|
313 |
+
if np.isscalar(smoothing):
|
314 |
+
smoothing = np.full(ny, smoothing, dtype=float)
|
315 |
+
else:
|
316 |
+
smoothing = np.asarray(smoothing, dtype=float, order="C")
|
317 |
+
if smoothing.shape != (ny,):
|
318 |
+
raise ValueError(
|
319 |
+
"Expected `smoothing` to be a scalar or have shape "
|
320 |
+
f"({ny},)."
|
321 |
+
)
|
322 |
+
|
323 |
+
kernel = kernel.lower()
|
324 |
+
if kernel not in _AVAILABLE:
|
325 |
+
raise ValueError(f"`kernel` must be one of {_AVAILABLE}.")
|
326 |
+
|
327 |
+
if epsilon is None:
|
328 |
+
if kernel in _SCALE_INVARIANT:
|
329 |
+
epsilon = 1.0
|
330 |
+
else:
|
331 |
+
raise ValueError(
|
332 |
+
"`epsilon` must be specified if `kernel` is not one of "
|
333 |
+
f"{_SCALE_INVARIANT}."
|
334 |
+
)
|
335 |
+
else:
|
336 |
+
epsilon = float(epsilon)
|
337 |
+
|
338 |
+
min_degree = _NAME_TO_MIN_DEGREE.get(kernel, -1)
|
339 |
+
if degree is None:
|
340 |
+
degree = max(min_degree, 0)
|
341 |
+
else:
|
342 |
+
degree = int(degree)
|
343 |
+
if degree < -1:
|
344 |
+
raise ValueError("`degree` must be at least -1.")
|
345 |
+
elif -1 < degree < min_degree:
|
346 |
+
warnings.warn(
|
347 |
+
f"`degree` should not be below {min_degree} except -1 "
|
348 |
+
f"when `kernel` is '{kernel}'."
|
349 |
+
f"The interpolant may not be uniquely "
|
350 |
+
f"solvable, and the smoothing parameter may have an "
|
351 |
+
f"unintuitive effect.",
|
352 |
+
UserWarning, stacklevel=2
|
353 |
+
)
|
354 |
+
|
355 |
+
if neighbors is None:
|
356 |
+
nobs = ny
|
357 |
+
else:
|
358 |
+
# Make sure the number of nearest neighbors used for interpolation
|
359 |
+
# does not exceed the number of observations.
|
360 |
+
neighbors = int(min(neighbors, ny))
|
361 |
+
nobs = neighbors
|
362 |
+
|
363 |
+
powers = _monomial_powers(ndim, degree)
|
364 |
+
# The polynomial matrix must have full column rank in order for the
|
365 |
+
# interpolant to be well-posed, which is not possible if there are
|
366 |
+
# fewer observations than monomials.
|
367 |
+
if powers.shape[0] > nobs:
|
368 |
+
raise ValueError(
|
369 |
+
f"At least {powers.shape[0]} data points are required when "
|
370 |
+
f"`degree` is {degree} and the number of dimensions is {ndim}."
|
371 |
+
)
|
372 |
+
|
373 |
+
if neighbors is None:
|
374 |
+
shift, scale, coeffs = _build_and_solve_system(
|
375 |
+
y, d, smoothing, kernel, epsilon, powers
|
376 |
+
)
|
377 |
+
|
378 |
+
# Make these attributes private since they do not always exist.
|
379 |
+
self._shift = shift
|
380 |
+
self._scale = scale
|
381 |
+
self._coeffs = coeffs
|
382 |
+
|
383 |
+
else:
|
384 |
+
self._tree = KDTree(y)
|
385 |
+
|
386 |
+
self.y = y
|
387 |
+
self.d = d
|
388 |
+
self.d_shape = d_shape
|
389 |
+
self.d_dtype = d_dtype
|
390 |
+
self.neighbors = neighbors
|
391 |
+
self.smoothing = smoothing
|
392 |
+
self.kernel = kernel
|
393 |
+
self.epsilon = epsilon
|
394 |
+
self.powers = powers
|
395 |
+
|
396 |
+
def _chunk_evaluator(
|
397 |
+
self,
|
398 |
+
x,
|
399 |
+
y,
|
400 |
+
shift,
|
401 |
+
scale,
|
402 |
+
coeffs,
|
403 |
+
memory_budget=1000000
|
404 |
+
):
|
405 |
+
"""
|
406 |
+
Evaluate the interpolation while controlling memory consumption.
|
407 |
+
We chunk the input if we need more memory than specified.
|
408 |
+
|
409 |
+
Parameters
|
410 |
+
----------
|
411 |
+
x : (Q, N) float ndarray
|
412 |
+
array of points on which to evaluate
|
413 |
+
y: (P, N) float ndarray
|
414 |
+
array of points on which we know function values
|
415 |
+
shift: (N, ) ndarray
|
416 |
+
Domain shift used to create the polynomial matrix.
|
417 |
+
scale : (N,) float ndarray
|
418 |
+
Domain scaling used to create the polynomial matrix.
|
419 |
+
coeffs: (P+R, S) float ndarray
|
420 |
+
Coefficients in front of basis functions
|
421 |
+
memory_budget: int
|
422 |
+
Total amount of memory (in units of sizeof(float)) we wish
|
423 |
+
to devote for storing the array of coefficients for
|
424 |
+
interpolated points. If we need more memory than that, we
|
425 |
+
chunk the input.
|
426 |
+
|
427 |
+
Returns
|
428 |
+
-------
|
429 |
+
(Q, S) float ndarray
|
430 |
+
Interpolated array
|
431 |
+
"""
|
432 |
+
nx, ndim = x.shape
|
433 |
+
if self.neighbors is None:
|
434 |
+
nnei = len(y)
|
435 |
+
else:
|
436 |
+
nnei = self.neighbors
|
437 |
+
# in each chunk we consume the same space we already occupy
|
438 |
+
chunksize = memory_budget // (self.powers.shape[0] + nnei) + 1
|
439 |
+
if chunksize <= nx:
|
440 |
+
out = np.empty((nx, self.d.shape[1]), dtype=float)
|
441 |
+
for i in range(0, nx, chunksize):
|
442 |
+
vec = _build_evaluation_coefficients(
|
443 |
+
x[i:i + chunksize, :],
|
444 |
+
y,
|
445 |
+
self.kernel,
|
446 |
+
self.epsilon,
|
447 |
+
self.powers,
|
448 |
+
shift,
|
449 |
+
scale)
|
450 |
+
out[i:i + chunksize, :] = np.dot(vec, coeffs)
|
451 |
+
else:
|
452 |
+
vec = _build_evaluation_coefficients(
|
453 |
+
x,
|
454 |
+
y,
|
455 |
+
self.kernel,
|
456 |
+
self.epsilon,
|
457 |
+
self.powers,
|
458 |
+
shift,
|
459 |
+
scale)
|
460 |
+
out = np.dot(vec, coeffs)
|
461 |
+
return out
|
462 |
+
|
463 |
+
def __call__(self, x):
|
464 |
+
"""Evaluate the interpolant at `x`.
|
465 |
+
|
466 |
+
Parameters
|
467 |
+
----------
|
468 |
+
x : (Q, N) array_like
|
469 |
+
Evaluation point coordinates.
|
470 |
+
|
471 |
+
Returns
|
472 |
+
-------
|
473 |
+
(Q, ...) ndarray
|
474 |
+
Values of the interpolant at `x`.
|
475 |
+
|
476 |
+
"""
|
477 |
+
x = np.asarray(x, dtype=float, order="C")
|
478 |
+
if x.ndim != 2:
|
479 |
+
raise ValueError("`x` must be a 2-dimensional array.")
|
480 |
+
|
481 |
+
nx, ndim = x.shape
|
482 |
+
if ndim != self.y.shape[1]:
|
483 |
+
raise ValueError("Expected the second axis of `x` to have length "
|
484 |
+
f"{self.y.shape[1]}.")
|
485 |
+
|
486 |
+
# Our memory budget for storing RBF coefficients is
|
487 |
+
# based on how many floats in memory we already occupy
|
488 |
+
# If this number is below 1e6 we just use 1e6
|
489 |
+
# This memory budget is used to decide how we chunk
|
490 |
+
# the inputs
|
491 |
+
memory_budget = max(x.size + self.y.size + self.d.size, 1000000)
|
492 |
+
|
493 |
+
if self.neighbors is None:
|
494 |
+
out = self._chunk_evaluator(
|
495 |
+
x,
|
496 |
+
self.y,
|
497 |
+
self._shift,
|
498 |
+
self._scale,
|
499 |
+
self._coeffs,
|
500 |
+
memory_budget=memory_budget)
|
501 |
+
else:
|
502 |
+
# Get the indices of the k nearest observation points to each
|
503 |
+
# evaluation point.
|
504 |
+
_, yindices = self._tree.query(x, self.neighbors)
|
505 |
+
if self.neighbors == 1:
|
506 |
+
# `KDTree` squeezes the output when neighbors=1.
|
507 |
+
yindices = yindices[:, None]
|
508 |
+
|
509 |
+
# Multiple evaluation points may have the same neighborhood of
|
510 |
+
# observation points. Make the neighborhoods unique so that we only
|
511 |
+
# compute the interpolation coefficients once for each
|
512 |
+
# neighborhood.
|
513 |
+
yindices = np.sort(yindices, axis=1)
|
514 |
+
yindices, inv = np.unique(yindices, return_inverse=True, axis=0)
|
515 |
+
inv = np.reshape(inv, (-1,)) # flatten, we need 1-D indices
|
516 |
+
# `inv` tells us which neighborhood will be used by each evaluation
|
517 |
+
# point. Now we find which evaluation points will be using each
|
518 |
+
# neighborhood.
|
519 |
+
xindices = [[] for _ in range(len(yindices))]
|
520 |
+
for i, j in enumerate(inv):
|
521 |
+
xindices[j].append(i)
|
522 |
+
|
523 |
+
out = np.empty((nx, self.d.shape[1]), dtype=float)
|
524 |
+
for xidx, yidx in zip(xindices, yindices):
|
525 |
+
# `yidx` are the indices of the observations in this
|
526 |
+
# neighborhood. `xidx` are the indices of the evaluation points
|
527 |
+
# that are using this neighborhood.
|
528 |
+
xnbr = x[xidx]
|
529 |
+
ynbr = self.y[yidx]
|
530 |
+
dnbr = self.d[yidx]
|
531 |
+
snbr = self.smoothing[yidx]
|
532 |
+
shift, scale, coeffs = _build_and_solve_system(
|
533 |
+
ynbr,
|
534 |
+
dnbr,
|
535 |
+
snbr,
|
536 |
+
self.kernel,
|
537 |
+
self.epsilon,
|
538 |
+
self.powers,
|
539 |
+
)
|
540 |
+
out[xidx] = self._chunk_evaluator(
|
541 |
+
xnbr,
|
542 |
+
ynbr,
|
543 |
+
shift,
|
544 |
+
scale,
|
545 |
+
coeffs,
|
546 |
+
memory_budget=memory_budget)
|
547 |
+
|
548 |
+
out = out.view(self.d_dtype)
|
549 |
+
out = out.reshape((nx, ) + self.d_shape)
|
550 |
+
return out
|