File size: 8,855 Bytes
c5f0b3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# pylint: disable=missing-docstring
import numpy as np
from numpy import array
from numpy.testing import (assert_allclose, assert_array_equal,
                           assert_almost_equal)
import pytest
from pytest import raises

import scipy.signal._bsplines as bsp
from scipy import signal


class TestBSplines:
    """Test behaviors of B-splines. Some of the values tested against were
    returned as of SciPy 1.1.0 and are included for regression testing
    purposes. Others (at integer points) are compared to theoretical
    expressions (cf. Unser, Aldroubi, Eden, IEEE TSP 1993, Table 1)."""

    def test_spline_filter(self):
        np.random.seed(12457)
        # Test the type-error branch
        raises(TypeError, bsp.spline_filter, array([0]), 0)
        # Test the real branch
        np.random.seed(12457)
        data_array_real = np.random.rand(12, 12)
        # make the magnitude exceed 1, and make some negative
        data_array_real = 10*(1-2*data_array_real)
        result_array_real = array(
            [[-.463312621, 8.33391222, .697290949, 5.28390836,
              5.92066474, 6.59452137, 9.84406950, -8.78324188,
              7.20675750, -8.17222994, -4.38633345, 9.89917069],
             [2.67755154, 6.24192170, -3.15730578, 9.87658581,
              -9.96930425, 3.17194115, -4.50919947, 5.75423446,
              9.65979824, -8.29066885, .971416087, -2.38331897],
             [-7.08868346, 4.89887705, -1.37062289, 7.70705838,
              2.51526461, 3.65885497, 5.16786604, -8.77715342e-03,
              4.10533325, 9.04761993, -.577960351, 9.86382519],
             [-4.71444301, -1.68038985, 2.84695116, 1.14315938,
              -3.17127091, 1.91830461, 7.13779687, -5.35737482,
              -9.66586425, -9.87717456, 9.93160672, 4.71948144],
             [9.49551194, -1.92958436, 6.25427993, -9.05582911,
              3.97562282, 7.68232426, -1.04514824, -5.86021443,
              -8.43007451, 5.47528997, 2.06330736, -8.65968112],
             [-8.91720100, 8.87065356, 3.76879937, 2.56222894,
              -.828387146, 8.72288903, 6.42474741, -6.84576083,
              9.94724115, 6.90665380, -6.61084494, -9.44907391],
             [9.25196790, -.774032030, 7.05371046, -2.73505725,
              2.53953305, -1.82889155, 2.95454824, -1.66362046,
              5.72478916, -3.10287679, 1.54017123, -7.87759020],
             [-3.98464539, -2.44316992, -1.12708657, 1.01725672,
              -8.89294671, -5.42145629, -6.16370321, 2.91775492,
              9.64132208, .702499998, -2.02622392, 1.56308431],
             [-2.22050773, 7.89951554, 5.98970713, -7.35861835,
              5.45459283, -7.76427957, 3.67280490, -4.05521315,
              4.51967507, -3.22738749, -3.65080177, 3.05630155],
             [-6.21240584, -.296796126, -8.34800163, 9.21564563,
              -3.61958784, -4.77120006, -3.99454057, 1.05021988e-03,
              -6.95982829, 6.04380797, 8.43181250, -2.71653339],
             [1.19638037, 6.99718842e-02, 6.72020394, -2.13963198,
              3.75309875, -5.70076744, 5.92143551, -7.22150575,
              -3.77114594, -1.11903194, -5.39151466, 3.06620093],
             [9.86326886, 1.05134482, -7.75950607, -3.64429655,
              7.81848957, -9.02270373, 3.73399754, -4.71962549,
              -7.71144306, 3.78263161, 6.46034818, -4.43444731]])
        assert_allclose(bsp.spline_filter(data_array_real, 0),
                        result_array_real)

    def test_gauss_spline(self):
        np.random.seed(12459)
        assert_almost_equal(bsp.gauss_spline(0, 0), 1.381976597885342)
        assert_allclose(bsp.gauss_spline(array([1.]), 1), array([0.04865217]))

    def test_gauss_spline_list(self):
        # regression test for gh-12152 (accept array_like)
        knots = [-1.0, 0.0, -1.0]
        assert_almost_equal(bsp.gauss_spline(knots, 3),
                            array([0.15418033, 0.6909883, 0.15418033]))

    def test_cspline1d(self):
        np.random.seed(12462)
        assert_array_equal(bsp.cspline1d(array([0])), [0.])
        c1d = array([1.21037185, 1.86293902, 2.98834059, 4.11660378,
                     4.78893826])
        # test lamda != 0
        assert_allclose(bsp.cspline1d(array([1., 2, 3, 4, 5]), 1), c1d)
        c1d0 = array([0.78683946, 2.05333735, 2.99981113, 3.94741812,
                      5.21051638])
        assert_allclose(bsp.cspline1d(array([1., 2, 3, 4, 5])), c1d0)

    def test_qspline1d(self):
        np.random.seed(12463)
        assert_array_equal(bsp.qspline1d(array([0])), [0.])
        # test lamda != 0
        raises(ValueError, bsp.qspline1d, array([1., 2, 3, 4, 5]), 1.)
        raises(ValueError, bsp.qspline1d, array([1., 2, 3, 4, 5]), -1.)
        q1d0 = array([0.85350007, 2.02441743, 2.99999534, 3.97561055,
                      5.14634135])
        assert_allclose(bsp.qspline1d(array([1., 2, 3, 4, 5])), q1d0)

    def test_cspline1d_eval(self):
        np.random.seed(12464)
        assert_allclose(bsp.cspline1d_eval(array([0., 0]), [0.]), array([0.]))
        assert_array_equal(bsp.cspline1d_eval(array([1., 0, 1]), []),
                           array([]))
        x = [-3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
        dx = x[1]-x[0]
        newx = [-6., -5.5, -5., -4.5, -4., -3.5, -3., -2.5, -2., -1.5, -1.,
                -0.5, 0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6.,
                6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5, 12.,
                12.5]
        y = array([4.216, 6.864, 3.514, 6.203, 6.759, 7.433, 7.874, 5.879,
                   1.396, 4.094])
        cj = bsp.cspline1d(y)
        newy = array([6.203, 4.41570658, 3.514, 5.16924703, 6.864, 6.04643068,
                      4.21600281, 6.04643068, 6.864, 5.16924703, 3.514,
                      4.41570658, 6.203, 6.80717667, 6.759, 6.98971173, 7.433,
                      7.79560142, 7.874, 7.41525761, 5.879, 3.18686814, 1.396,
                      2.24889482, 4.094, 2.24889482, 1.396, 3.18686814, 5.879,
                      7.41525761, 7.874, 7.79560142, 7.433, 6.98971173, 6.759,
                      6.80717667, 6.203, 4.41570658])
        assert_allclose(bsp.cspline1d_eval(cj, newx, dx=dx, x0=x[0]), newy)

    def test_qspline1d_eval(self):
        np.random.seed(12465)
        assert_allclose(bsp.qspline1d_eval(array([0., 0]), [0.]), array([0.]))
        assert_array_equal(bsp.qspline1d_eval(array([1., 0, 1]), []),
                           array([]))
        x = [-3, -2, -1, 0, 1, 2, 3, 4, 5, 6]
        dx = x[1]-x[0]
        newx = [-6., -5.5, -5., -4.5, -4., -3.5, -3., -2.5, -2., -1.5, -1.,
                -0.5, 0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5., 5.5, 6.,
                6.5, 7., 7.5, 8., 8.5, 9., 9.5, 10., 10.5, 11., 11.5, 12.,
                12.5]
        y = array([4.216, 6.864, 3.514, 6.203, 6.759, 7.433, 7.874, 5.879,
                   1.396, 4.094])
        cj = bsp.qspline1d(y)
        newy = array([6.203, 4.49418159, 3.514, 5.18390821, 6.864, 5.91436915,
                      4.21600002, 5.91436915, 6.864, 5.18390821, 3.514,
                      4.49418159, 6.203, 6.71900226, 6.759, 7.03980488, 7.433,
                      7.81016848, 7.874, 7.32718426, 5.879, 3.23872593, 1.396,
                      2.34046013, 4.094, 2.34046013, 1.396, 3.23872593, 5.879,
                      7.32718426, 7.874, 7.81016848, 7.433, 7.03980488, 6.759,
                      6.71900226, 6.203, 4.49418159])
        assert_allclose(bsp.qspline1d_eval(cj, newx, dx=dx, x0=x[0]), newy)


def test_sepfir2d_invalid_filter():
    filt = np.array([1.0, 2.0, 4.0, 2.0, 1.0])
    image = np.random.rand(7, 9)
    # No error for odd lengths
    signal.sepfir2d(image, filt, filt[2:])

    # Row or column filter must be odd
    with pytest.raises(ValueError, match="odd length"):
        signal.sepfir2d(image, filt, filt[1:])
    with pytest.raises(ValueError, match="odd length"):
        signal.sepfir2d(image, filt[1:], filt)

    # Filters must be 1-dimensional
    with pytest.raises(ValueError, match="object too deep"):
        signal.sepfir2d(image, filt.reshape(1, -1), filt)
    with pytest.raises(ValueError, match="object too deep"):
        signal.sepfir2d(image, filt, filt.reshape(1, -1))

def test_sepfir2d_invalid_image():
    filt = np.array([1.0, 2.0, 4.0, 2.0, 1.0])
    image = np.random.rand(8, 8)

    # Image must be 2 dimensional
    with pytest.raises(ValueError, match="object too deep"):
        signal.sepfir2d(image.reshape(4, 4, 4), filt, filt)

    with pytest.raises(ValueError, match="object of too small depth"):
        signal.sepfir2d(image[0], filt, filt)


def test_cspline2d():
    np.random.seed(181819142)
    image = np.random.rand(71, 73)
    signal.cspline2d(image, 8.0)


def test_qspline2d():
    np.random.seed(181819143)
    image = np.random.rand(71, 73)
    signal.qspline2d(image)