File size: 11,281 Bytes
cb0f9fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import numpy as np
from numpy.testing import assert_equal, assert_allclose
# avoid new uses of the following; prefer assert/np.testing.assert_allclose
from numpy.testing import (assert_, assert_almost_equal,
                           assert_array_almost_equal)

import pytest
from pytest import raises as assert_raises
import scipy.stats as stats


class TestEntropy:
    def test_entropy_positive(self):
        # See ticket #497
        pk = [0.5, 0.2, 0.3]
        qk = [0.1, 0.25, 0.65]
        eself = stats.entropy(pk, pk)
        edouble = stats.entropy(pk, qk)
        assert_(0.0 == eself)
        assert_(edouble >= 0.0)

    def test_entropy_base(self):
        pk = np.ones(16, float)
        S = stats.entropy(pk, base=2.)
        assert_(abs(S - 4.) < 1.e-5)

        qk = np.ones(16, float)
        qk[:8] = 2.
        S = stats.entropy(pk, qk)
        S2 = stats.entropy(pk, qk, base=2.)
        assert_(abs(S/S2 - np.log(2.)) < 1.e-5)

    def test_entropy_zero(self):
        # Test for PR-479
        assert_almost_equal(stats.entropy([0, 1, 2]), 0.63651416829481278,
                            decimal=12)

    def test_entropy_2d(self):
        pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]
        qk = [[0.2, 0.1], [0.3, 0.6], [0.5, 0.3]]
        assert_array_almost_equal(stats.entropy(pk, qk),
                                  [0.1933259, 0.18609809])

    def test_entropy_2d_zero(self):
        pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]
        qk = [[0.0, 0.1], [0.3, 0.6], [0.5, 0.3]]
        assert_array_almost_equal(stats.entropy(pk, qk),
                                  [np.inf, 0.18609809])

        pk[0][0] = 0.0
        assert_array_almost_equal(stats.entropy(pk, qk),
                                  [0.17403988, 0.18609809])

    def test_entropy_base_2d_nondefault_axis(self):
        pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]
        assert_array_almost_equal(stats.entropy(pk, axis=1),
                                  [0.63651417, 0.63651417, 0.66156324])

    def test_entropy_2d_nondefault_axis(self):
        pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]
        qk = [[0.2, 0.1], [0.3, 0.6], [0.5, 0.3]]
        assert_array_almost_equal(stats.entropy(pk, qk, axis=1),
                                  [0.231049, 0.231049, 0.127706])

    def test_entropy_raises_value_error(self):
        pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]
        qk = [[0.1, 0.2], [0.6, 0.3]]
        assert_raises(ValueError, stats.entropy, pk, qk)

    def test_base_entropy_with_axis_0_is_equal_to_default(self):
        pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]
        assert_array_almost_equal(stats.entropy(pk, axis=0),
                                  stats.entropy(pk))

    def test_entropy_with_axis_0_is_equal_to_default(self):
        pk = [[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]]
        qk = [[0.2, 0.1], [0.3, 0.6], [0.5, 0.3]]
        assert_array_almost_equal(stats.entropy(pk, qk, axis=0),
                                  stats.entropy(pk, qk))

    def test_base_entropy_transposed(self):
        pk = np.array([[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]])
        assert_array_almost_equal(stats.entropy(pk.T).T,
                                  stats.entropy(pk, axis=1))

    def test_entropy_transposed(self):
        pk = np.array([[0.1, 0.2], [0.6, 0.3], [0.3, 0.5]])
        qk = np.array([[0.2, 0.1], [0.3, 0.6], [0.5, 0.3]])
        assert_array_almost_equal(stats.entropy(pk.T, qk.T).T,
                                  stats.entropy(pk, qk, axis=1))

    def test_entropy_broadcasting(self):
        np.random.rand(0)
        x = np.random.rand(3)
        y = np.random.rand(2, 1)
        res = stats.entropy(x, y, axis=-1)
        assert_equal(res[0], stats.entropy(x, y[0]))
        assert_equal(res[1], stats.entropy(x, y[1]))

    def test_entropy_shape_mismatch(self):
        x = np.random.rand(10, 1, 12)
        y = np.random.rand(11, 2)
        message = "Array shapes are incompatible for broadcasting."
        with pytest.raises(ValueError, match=message):
            stats.entropy(x, y)

    def test_input_validation(self):
        x = np.random.rand(10)
        message = "`base` must be a positive number."
        with pytest.raises(ValueError, match=message):
            stats.entropy(x, base=-2)


class TestDifferentialEntropy:
    """
    Vasicek results are compared with the R package vsgoftest.

    # library(vsgoftest)
    #
    # samp <- c(<values>)
    # entropy.estimate(x = samp, window = <window_length>)

    """

    def test_differential_entropy_vasicek(self):

        random_state = np.random.RandomState(0)
        values = random_state.standard_normal(100)

        entropy = stats.differential_entropy(values, method='vasicek')
        assert_allclose(entropy, 1.342551, rtol=1e-6)

        entropy = stats.differential_entropy(values, window_length=1,
                                             method='vasicek')
        assert_allclose(entropy, 1.122044, rtol=1e-6)

        entropy = stats.differential_entropy(values, window_length=8,
                                             method='vasicek')
        assert_allclose(entropy, 1.349401, rtol=1e-6)

    def test_differential_entropy_vasicek_2d_nondefault_axis(self):
        random_state = np.random.RandomState(0)
        values = random_state.standard_normal((3, 100))

        entropy = stats.differential_entropy(values, axis=1, method='vasicek')
        assert_allclose(
            entropy,
            [1.342551, 1.341826, 1.293775],
            rtol=1e-6,
        )

        entropy = stats.differential_entropy(values, axis=1, window_length=1,
                                             method='vasicek')
        assert_allclose(
            entropy,
            [1.122044, 1.102944, 1.129616],
            rtol=1e-6,
        )

        entropy = stats.differential_entropy(values, axis=1, window_length=8,
                                             method='vasicek')
        assert_allclose(
            entropy,
            [1.349401, 1.338514, 1.292332],
            rtol=1e-6,
        )

    def test_differential_entropy_raises_value_error(self):
        random_state = np.random.RandomState(0)
        values = random_state.standard_normal((3, 100))

        error_str = (
            r"Window length \({window_length}\) must be positive and less "
            r"than half the sample size \({sample_size}\)."
        )

        sample_size = values.shape[1]

        for window_length in {-1, 0, sample_size//2, sample_size}:

            formatted_error_str = error_str.format(
                window_length=window_length,
                sample_size=sample_size,
            )

            with assert_raises(ValueError, match=formatted_error_str):
                stats.differential_entropy(
                    values,
                    window_length=window_length,
                    axis=1,
                )

    def test_base_differential_entropy_with_axis_0_is_equal_to_default(self):
        random_state = np.random.RandomState(0)
        values = random_state.standard_normal((100, 3))

        entropy = stats.differential_entropy(values, axis=0)
        default_entropy = stats.differential_entropy(values)
        assert_allclose(entropy, default_entropy)

    def test_base_differential_entropy_transposed(self):
        random_state = np.random.RandomState(0)
        values = random_state.standard_normal((3, 100))

        assert_allclose(
            stats.differential_entropy(values.T).T,
            stats.differential_entropy(values, axis=1),
        )

    def test_input_validation(self):
        x = np.random.rand(10)

        message = "`base` must be a positive number or `None`."
        with pytest.raises(ValueError, match=message):
            stats.differential_entropy(x, base=-2)

        message = "`method` must be one of..."
        with pytest.raises(ValueError, match=message):
            stats.differential_entropy(x, method='ekki-ekki')

    @pytest.mark.parametrize('method', ['vasicek', 'van es',
                                        'ebrahimi', 'correa'])
    def test_consistency(self, method):
        # test that method is a consistent estimator
        n = 10000 if method == 'correa' else 1000000
        rvs = stats.norm.rvs(size=n, random_state=0)
        expected = stats.norm.entropy()
        res = stats.differential_entropy(rvs, method=method)
        assert_allclose(res, expected, rtol=0.005)

    # values from differential_entropy reference [6], table 1, n=50, m=7
    norm_rmse_std_cases = {  # method: (RMSE, STD)
                           'vasicek': (0.198, 0.109),
                           'van es': (0.212, 0.110),
                           'correa': (0.135, 0.112),
                           'ebrahimi': (0.128, 0.109)
                           }

    @pytest.mark.parametrize('method, expected',
                             list(norm_rmse_std_cases.items()))
    def test_norm_rmse_std(self, method, expected):
        # test that RMSE and standard deviation of estimators matches values
        # given in differential_entropy reference [6]. Incidentally, also
        # tests vectorization.
        reps, n, m = 10000, 50, 7
        rmse_expected, std_expected = expected
        rvs = stats.norm.rvs(size=(reps, n), random_state=0)
        true_entropy = stats.norm.entropy()
        res = stats.differential_entropy(rvs, window_length=m,
                                         method=method, axis=-1)
        assert_allclose(np.sqrt(np.mean((res - true_entropy)**2)),
                        rmse_expected, atol=0.005)
        assert_allclose(np.std(res), std_expected, atol=0.002)

    # values from differential_entropy reference [6], table 2, n=50, m=7
    expon_rmse_std_cases = {  # method: (RMSE, STD)
                            'vasicek': (0.194, 0.148),
                            'van es': (0.179, 0.149),
                            'correa': (0.155, 0.152),
                            'ebrahimi': (0.151, 0.148)
                            }

    @pytest.mark.parametrize('method, expected',
                             list(expon_rmse_std_cases.items()))
    def test_expon_rmse_std(self, method, expected):
        # test that RMSE and standard deviation of estimators matches values
        # given in differential_entropy reference [6]. Incidentally, also
        # tests vectorization.
        reps, n, m = 10000, 50, 7
        rmse_expected, std_expected = expected
        rvs = stats.expon.rvs(size=(reps, n), random_state=0)
        true_entropy = stats.expon.entropy()
        res = stats.differential_entropy(rvs, window_length=m,
                                         method=method, axis=-1)
        assert_allclose(np.sqrt(np.mean((res - true_entropy)**2)),
                        rmse_expected, atol=0.005)
        assert_allclose(np.std(res), std_expected, atol=0.002)

    @pytest.mark.parametrize('n, method', [(8, 'van es'),
                                           (12, 'ebrahimi'),
                                           (1001, 'vasicek')])
    def test_method_auto(self, n, method):
        rvs = stats.norm.rvs(size=(n,), random_state=0)
        res1 = stats.differential_entropy(rvs)
        res2 = stats.differential_entropy(rvs, method=method)
        assert res1 == res2