File size: 6,292 Bytes
cb0f9fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import numpy as np
from numpy.testing import assert_equal, assert_allclose
import pytest
from scipy.stats import variation
from scipy._lib._util import AxisError


class TestVariation:
    """
    Test class for scipy.stats.variation
    """

    def test_ddof(self):
        x = np.arange(9.0)
        assert_allclose(variation(x, ddof=1), np.sqrt(60/8)/4)

    @pytest.mark.parametrize('sgn', [1, -1])
    def test_sign(self, sgn):
        x = np.array([1, 2, 3, 4, 5])
        v = variation(sgn*x)
        expected = sgn*np.sqrt(2)/3
        assert_allclose(v, expected, rtol=1e-10)

    def test_scalar(self):
        # A scalar is treated like a 1-d sequence with length 1.
        assert_equal(variation(4.0), 0.0)

    @pytest.mark.parametrize('nan_policy, expected',
                             [('propagate', np.nan),
                              ('omit', np.sqrt(20/3)/4)])
    def test_variation_nan(self, nan_policy, expected):
        x = np.arange(10.)
        x[9] = np.nan
        assert_allclose(variation(x, nan_policy=nan_policy), expected)

    def test_nan_policy_raise(self):
        x = np.array([1.0, 2.0, np.nan, 3.0])
        with pytest.raises(ValueError, match='input contains nan'):
            variation(x, nan_policy='raise')

    def test_bad_nan_policy(self):
        with pytest.raises(ValueError, match='must be one of'):
            variation([1, 2, 3], nan_policy='foobar')

    def test_keepdims(self):
        x = np.arange(10).reshape(2, 5)
        y = variation(x, axis=1, keepdims=True)
        expected = np.array([[np.sqrt(2)/2],
                             [np.sqrt(2)/7]])
        assert_allclose(y, expected)

    @pytest.mark.parametrize('axis, expected',
                             [(0, np.empty((1, 0))),
                              (1, np.full((5, 1), fill_value=np.nan))])
    def test_keepdims_size0(self, axis, expected):
        x = np.zeros((5, 0))
        y = variation(x, axis=axis, keepdims=True)
        assert_equal(y, expected)

    @pytest.mark.parametrize('incr, expected_fill', [(0, np.inf), (1, np.nan)])
    def test_keepdims_and_ddof_eq_len_plus_incr(self, incr, expected_fill):
        x = np.array([[1, 1, 2, 2], [1, 2, 3, 3]])
        y = variation(x, axis=1, ddof=x.shape[1] + incr, keepdims=True)
        assert_equal(y, np.full((2, 1), fill_value=expected_fill))

    def test_propagate_nan(self):
        # Check that the shape of the result is the same for inputs
        # with and without nans, cf gh-5817
        a = np.arange(8).reshape(2, -1).astype(float)
        a[1, 0] = np.nan
        v = variation(a, axis=1, nan_policy="propagate")
        assert_allclose(v, [np.sqrt(5/4)/1.5, np.nan], atol=1e-15)

    def test_axis_none(self):
        # Check that `variation` computes the result on the flattened
        # input when axis is None.
        y = variation([[0, 1], [2, 3]], axis=None)
        assert_allclose(y, np.sqrt(5/4)/1.5)

    def test_bad_axis(self):
        # Check that an invalid axis raises np.exceptions.AxisError.
        x = np.array([[1, 2, 3], [4, 5, 6]])
        with pytest.raises(AxisError):
            variation(x, axis=10)

    def test_mean_zero(self):
        # Check that `variation` returns inf for a sequence that is not
        # identically zero but whose mean is zero.
        x = np.array([10, -3, 1, -4, -4])
        y = variation(x)
        assert_equal(y, np.inf)

        x2 = np.array([x, -10*x])
        y2 = variation(x2, axis=1)
        assert_equal(y2, [np.inf, np.inf])

    @pytest.mark.parametrize('x', [np.zeros(5), [], [1, 2, np.inf, 9]])
    def test_return_nan(self, x):
        # Test some cases where `variation` returns nan.
        y = variation(x)
        assert_equal(y, np.nan)

    @pytest.mark.parametrize('axis, expected',
                             [(0, []), (1, [np.nan]*3), (None, np.nan)])
    def test_2d_size_zero_with_axis(self, axis, expected):
        x = np.empty((3, 0))
        y = variation(x, axis=axis)
        assert_equal(y, expected)

    def test_neg_inf(self):
        # Edge case that produces -inf: ddof equals the number of non-nan
        # values, the values are not constant, and the mean is negative.
        x1 = np.array([-3, -5])
        assert_equal(variation(x1, ddof=2), -np.inf)

        x2 = np.array([[np.nan, 1, -10, np.nan],
                       [-20, -3, np.nan, np.nan]])
        assert_equal(variation(x2, axis=1, ddof=2, nan_policy='omit'),
                     [-np.inf, -np.inf])

    @pytest.mark.parametrize("nan_policy", ['propagate', 'omit'])
    def test_combined_edge_cases(self, nan_policy):
        x = np.array([[0, 10, np.nan, 1],
                      [0, -5, np.nan, 2],
                      [0, -5, np.nan, 3]])
        y = variation(x, axis=0, nan_policy=nan_policy)
        assert_allclose(y, [np.nan, np.inf, np.nan, np.sqrt(2/3)/2])

    @pytest.mark.parametrize(
        'ddof, expected',
        [(0, [np.sqrt(1/6), np.sqrt(5/8), np.inf, 0, np.nan, 0.0, np.nan]),
         (1, [0.5, np.sqrt(5/6), np.inf, 0, np.nan, 0, np.nan]),
         (2, [np.sqrt(0.5), np.sqrt(5/4), np.inf, np.nan, np.nan, 0, np.nan])]
    )
    def test_more_nan_policy_omit_tests(self, ddof, expected):
        # The slightly strange formatting in the follow array is my attempt to
        # maintain a clean tabular arrangement of the data while satisfying
        # the demands of pycodestyle.  Currently, E201 and E241 are not
        # disabled by the `# noqa` annotation.
        nan = np.nan
        x = np.array([[1.0, 2.0, nan, 3.0],
                      [0.0, 4.0, 3.0, 1.0],
                      [nan, -.5, 0.5, nan],
                      [nan, 9.0, 9.0, nan],
                      [nan, nan, nan, nan],
                      [3.0, 3.0, 3.0, 3.0],
                      [0.0, 0.0, 0.0, 0.0]])
        v = variation(x, axis=1, ddof=ddof, nan_policy='omit')
        assert_allclose(v, expected)

    def test_variation_ddof(self):
        # test variation with delta degrees of freedom
        # regression test for gh-13341
        a = np.array([1, 2, 3, 4, 5])
        nan_a = np.array([1, 2, 3, np.nan, 4, 5, np.nan])
        y = variation(a, ddof=1)
        nan_y = variation(nan_a, nan_policy="omit", ddof=1)
        assert_allclose(y, np.sqrt(5/2)/3)
        assert y == nan_y