File size: 6,545 Bytes
23c294a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
"""Principal Component Analysis Base Classes"""

# Author: Alexandre Gramfort <[email protected]>
#         Olivier Grisel <[email protected]>
#         Mathieu Blondel <[email protected]>
#         Denis A. Engemann <[email protected]>
#         Kyle Kastner <[email protected]>
#
# License: BSD 3 clause

from abc import ABCMeta, abstractmethod

import numpy as np
from scipy import linalg
from scipy.sparse import issparse

from ..base import BaseEstimator, ClassNamePrefixFeaturesOutMixin, TransformerMixin
from ..utils._array_api import _add_to_diagonal, device, get_namespace
from ..utils.sparsefuncs import _implicit_column_offset
from ..utils.validation import check_is_fitted


class _BasePCA(
    ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator, metaclass=ABCMeta
):
    """Base class for PCA methods.

    Warning: This class should not be used directly.
    Use derived classes instead.
    """

    def get_covariance(self):
        """Compute data covariance with the generative model.

        ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)``
        where S**2 contains the explained variances, and sigma2 contains the
        noise variances.

        Returns
        -------
        cov : array of shape=(n_features, n_features)
            Estimated covariance of data.
        """
        xp, _ = get_namespace(self.components_)

        components_ = self.components_
        exp_var = self.explained_variance_
        if self.whiten:
            components_ = components_ * xp.sqrt(exp_var[:, np.newaxis])
        exp_var_diff = exp_var - self.noise_variance_
        exp_var_diff = xp.where(
            exp_var > self.noise_variance_,
            exp_var_diff,
            xp.asarray(0.0, device=device(exp_var)),
        )
        cov = (components_.T * exp_var_diff) @ components_
        _add_to_diagonal(cov, self.noise_variance_, xp)
        return cov

    def get_precision(self):
        """Compute data precision matrix with the generative model.

        Equals the inverse of the covariance but computed with
        the matrix inversion lemma for efficiency.

        Returns
        -------
        precision : array, shape=(n_features, n_features)
            Estimated precision of data.
        """
        xp, is_array_api_compliant = get_namespace(self.components_)

        n_features = self.components_.shape[1]

        # handle corner cases first
        if self.n_components_ == 0:
            return xp.eye(n_features) / self.noise_variance_

        if is_array_api_compliant:
            linalg_inv = xp.linalg.inv
        else:
            linalg_inv = linalg.inv

        if self.noise_variance_ == 0.0:
            return linalg_inv(self.get_covariance())

        # Get precision using matrix inversion lemma
        components_ = self.components_
        exp_var = self.explained_variance_
        if self.whiten:
            components_ = components_ * xp.sqrt(exp_var[:, np.newaxis])
        exp_var_diff = exp_var - self.noise_variance_
        exp_var_diff = xp.where(
            exp_var > self.noise_variance_,
            exp_var_diff,
            xp.asarray(0.0, device=device(exp_var)),
        )
        precision = components_ @ components_.T / self.noise_variance_
        _add_to_diagonal(precision, 1.0 / exp_var_diff, xp)
        precision = components_.T @ linalg_inv(precision) @ components_
        precision /= -(self.noise_variance_**2)
        _add_to_diagonal(precision, 1.0 / self.noise_variance_, xp)
        return precision

    @abstractmethod
    def fit(self, X, y=None):
        """Placeholder for fit. Subclasses should implement this method!

        Fit the model with X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where `n_samples` is the number of samples and
            `n_features` is the number of features.

        Returns
        -------
        self : object
            Returns the instance itself.
        """

    def transform(self, X):
        """Apply dimensionality reduction to X.

        X is projected on the first principal components previously extracted
        from a training set.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            New data, where `n_samples` is the number of samples
            and `n_features` is the number of features.

        Returns
        -------
        X_new : array-like of shape (n_samples, n_components)
            Projection of X in the first principal components, where `n_samples`
            is the number of samples and `n_components` is the number of the components.
        """
        xp, _ = get_namespace(X)

        check_is_fitted(self)

        X = self._validate_data(
            X, accept_sparse=("csr", "csc"), dtype=[xp.float64, xp.float32], reset=False
        )
        if self.mean_ is not None:
            if issparse(X):
                X = _implicit_column_offset(X, self.mean_)
            else:
                X = X - self.mean_
        X_transformed = X @ self.components_.T
        if self.whiten:
            X_transformed /= xp.sqrt(self.explained_variance_)
        return X_transformed

    def inverse_transform(self, X):
        """Transform data back to its original space.

        In other words, return an input `X_original` whose transform would be X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_components)
            New data, where `n_samples` is the number of samples
            and `n_components` is the number of components.

        Returns
        -------
        X_original array-like of shape (n_samples, n_features)
            Original data, where `n_samples` is the number of samples
            and `n_features` is the number of features.

        Notes
        -----
        If whitening is enabled, inverse_transform will compute the
        exact inverse operation, which includes reversing whitening.
        """
        xp, _ = get_namespace(X)

        if self.whiten:
            scaled_components = (
                xp.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_
            )
            return X @ scaled_components + self.mean_
        else:
            return X @ self.components_ + self.mean_

    @property
    def _n_features_out(self):
        """Number of transformed output features."""
        return self.components_.shape[0]