File size: 7,500 Bytes
9ad9e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0

import os
from dataclasses import dataclass
from typing import List

import numpy as np
import torch
from torch import Tensor

from deepspeed import comm as dist
from deepspeed.accelerator import get_accelerator
from deepspeed.utils import logger


def _log_rank0(msg):
    if dist.get_rank() == 0:
        logger.info(msg)


@torch.jit.script
def scale_tensors(tensors: List[Tensor], scale: int):
    for t in tensors:
        t.div_(scale)


@dataclass
class MiCS_CommGroups:
    """"""
    param_shard_group = None
    param_shard_size = -1
    param_shard_rank = -1

    param_repli_group = None
    param_repli_size = -1
    param_repli_rank = -1

    param_intra_node_group = None
    param_inter_node_shard_group = None


def create_mics_comm_groups(
    shard_size,
    dp_group,
    hierarchical_allgather=False,
    mpu=None,
):
    """
    create shard-group, replicate-group from config_file
    TODO: consider broadcast the config from rank0

    Returns:
        MiCS_CommGroups
    """
    # env var for debugging purpose
    ndevices_per_node = int(os.environ.get("NDEV_PER_NODE", get_accelerator().device_count()))
    _log_rank0(f'creating MiCS communication groups with per node device size {ndevices_per_node}')
    groups = MiCS_CommGroups()

    if mpu is not None:
        assert dp_group == mpu.get_data_parallel_group()

    # full size of the world
    world_size = dist.get_world_size()
    # global rank
    global_rank = dist.get_rank()

    config = _generate_mics_config(world_size, ndevices_per_node, shard_size, 1)
    ranks_of_shard_group = config['shard_groups']
    ranks_of_repli_group = config['replicate_groups']
    if len(ranks_of_repli_group) == 0:
        assert len(ranks_of_shard_group) == 1, "replicate groups are empty only for single shard group"
        for r in ranks_of_shard_group[0]:
            ranks_of_repli_group.append([r])

    # for simplicity
    assert _sizes_all_same(ranks_of_repli_group), "replicate groups must have the same size"
    assert _sizes_all_same(ranks_of_shard_group), "shard groups must have the same size"

    assert sum([len(g) for g in ranks_of_shard_group]) == dist.get_world_size(), "all sharded ranks "
    if len(ranks_of_shard_group) > 1:  # if only shard on one group then no need for replicate groups
        assert len(ranks_of_shard_group) == len(
            ranks_of_repli_group[0]), "number of shard groups must equal to the size of each replicate group"

    global_rank = dist.get_rank()
    # create shard groups
    for shard_ranks in ranks_of_shard_group:
        _group = dist.new_group(shard_ranks)
        if global_rank in shard_ranks:
            groups.param_shard_group = _group
            groups.param_shard_size = len(shard_ranks)
            groups.param_shard_rank = dist.get_rank(_group)
            logger.info(f'rank {global_rank}, shard group'
                        f' {groups.param_shard_rank}/{dist.get_world_size(group=_group)}')

    # create replicate groups
    for repli_ranks in ranks_of_repli_group:
        if len(repli_ranks) > 1:
            _group = dist.new_group(repli_ranks)
            if global_rank in repli_ranks:
                groups.param_repli_group = _group
                groups.param_repli_size = len(repli_ranks)
                groups.param_repli_rank = dist.get_rank(group=_group)
                logger.info(f'rank {global_rank} '
                            f'replicate group {groups.param_repli_rank}/{dist.get_world_size(group=_group)}')
        else:
            groups.param_repli_group = None
            groups.param_repli_size = 1
            groups.param_repli_rank = 0
            logger.info(f'rank {global_rank} replicate group 0/1')

    # assign shard group size as world size
    assert groups.param_shard_size == len(ranks_of_shard_group[0])

    if hierarchical_allgather:
        # create hierarchy inter-node, intra-node groups
        # n_span_nodes = config['shard_span']
        n_span_nodes = config['span_nodes']
        assert n_span_nodes > 1, "sharding spans on single node, no need for hierarchy allgather"
        assert len(ranks_of_shard_group[0]) % n_span_nodes == 0

        n_gpu_per_node = len(ranks_of_shard_group[0]) // n_span_nodes
        intra_node_ranks_group = []
        inter_node_ranks_group = []
        for shard_group in ranks_of_shard_group:
            _intra_node_ranks = []
            for i in range(0, len(shard_group), n_gpu_per_node):
                _intra_node_ranks.append(shard_group[i:i + n_gpu_per_node])
            _inter_node_ranks = []
            for i in range(n_gpu_per_node):
                _ranks = [_g[i] for _g in _intra_node_ranks]
                _inter_node_ranks.append(_ranks)

            intra_node_ranks_group.append(_intra_node_ranks)
            inter_node_ranks_group.append(_inter_node_ranks)

        _log_rank0(f"create for hierarchy all-gather groups: intra nodes {intra_node_ranks_group}")
        _log_rank0(f"create for hierarchy all-gather groups: inter nodes {inter_node_ranks_group}")

        # create communicators
        for shard_group in intra_node_ranks_group:
            for intra_node_ranks in shard_group:
                _group = dist.new_group(intra_node_ranks)
                if global_rank in intra_node_ranks:
                    groups.param_intra_node_group = _group
                _log_rank0(f'create group for intra node ranks {intra_node_ranks}')

        for shard_group in inter_node_ranks_group:
            for inter_node_ranks in shard_group:
                _group = dist.new_group(inter_node_ranks)
                if global_rank in inter_node_ranks:
                    groups.param_inter_node_shard_group = _group
                _log_rank0(f'create group for inter node ranks {inter_node_ranks}')
    return groups


def _generate_mics_config(world_size, ndev_per_node, shard_size, pp_size=1):
    """Generating the configuration for sharding This shard config generation assume
    that the pipeline stages are partitioned in order, i.e., first ranks
    hold the stage0, etc.

    Args:

        shard_size (int): zero3 data-parallel shard size, FIXME:
        change the name later

        pp_size (int): pipeline parallel size, currently, only work with
        pipeline parallelism + zero

    """
    assert world_size % pp_size == 0
    assert (world_size // pp_size) % shard_size == 0, \
        f"dp group size is not dividable by dp_shard_size, "\
        f" (world_size {world_size}, pp_size {pp_size}, dp_shard_size {shard_size})"

    config = {}
    shard_groups = np.arange(world_size).reshape(-1, shard_size)
    replicate_groups = []
    for i in range(shard_size):
        same_shard_ranks = shard_groups[:, i].tolist()
        n_ranks = len(same_shard_ranks)
        replicate_size = n_ranks // pp_size
        replicate_groups.extend([same_shard_ranks[j:j + replicate_size] for j in range(0, n_ranks, replicate_size)])

    config['replicate_groups'] = replicate_groups
    config['shard_groups'] = shard_groups.tolist()
    config["span_nodes"] = len(shard_groups[0]) // ndev_per_node
    return config


def _sizes_all_same(groups):
    """all groups have same length"""
    all_same = True
    for g in groups:
        if len(g) != len(groups[0]):
            return False
    return all_same