File size: 2,727 Bytes
9ad9e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import torch
from deepspeed.runtime.zero.contiguous_memory_allocator import ContiguousMemoryAllocator


def test1():
    mem = ContiguousMemoryAllocator(1024, torch.half, 'cpu')
    mem.print_allocation(resolution=100)
    a1 = mem.allocate_tensor(64).mul_(0.0).add_(1.0)
    mem.print_allocation(resolution=100)
    mem.release_tensor(a1)
    mem.print_allocation(resolution=100)
    a2 = mem.allocate_tensor(64).mul_(0.0).add_(2.0)
    a3 = mem.allocate_tensor(256).mul_(0.0).add_(3.0)
    a4 = mem.allocate_tensor(128).mul_(0.0).add_(4.0)
    mem.print_allocation(resolution=100)
    mem.release_tensor(a3)
    mem.print_allocation(resolution=100)
    a5 = mem.allocate_tensor(64).mul_(0.0).add_(5.0)
    a6 = mem.allocate_tensor(256).mul_(0.0).add_(6.0)
    a7 = mem.allocate_tensor(128).mul_(0.0).add_(7.0)
    mem.print_allocation(resolution=100)
    a8 = mem.allocate_tensor(256).mul_(0.0).add_(8.0)
    a9 = mem.allocate_tensor(128).mul_(0.0).add_(9.0)
    mem.print_allocation(resolution=100)
    mem.release_tensor(a9)
    mem.release_tensor(a6)
    mem.release_tensor(a2)
    mem.release_tensor(a5)

    a10 = mem.allocate_tensor(512).mul_(0.0).add_(10.0)
    mem.print_allocation(resolution=100)
    #print(f"a4:{a4}")
    #print(f"a7:{a7}")
    #print(f"a8:{a8}")
    #print(f"a10:{a10}")
    assert (a4.norm() + a7.norm() + a8.norm() + a10.norm()).item() == 474.50, "Test failed"


def test2():
    mem = ContiguousMemoryAllocator(512, torch.half, 'cpu')
    a1 = mem.allocate_tensor(64).mul_(0.0).add_(1.0)
    a2 = mem.allocate_tensor(64).mul_(0.0).add_(2.0)
    a3 = mem.allocate_tensor(64).mul_(0.0).add_(3.0)
    a4 = mem.allocate_tensor(64).mul_(0.0).add_(4.0)
    a5 = mem.allocate_tensor(64).mul_(0.0).add_(5.0)
    a6 = mem.allocate_tensor(64).mul_(0.0).add_(6.0)
    a7 = mem.allocate_tensor(64).mul_(0.0).add_(7.0)
    a8 = mem.allocate_tensor(64).mul_(0.0).add_(8.0)
    mem.release_tensor(a2)
    mem.release_tensor(a4)
    mem.release_tensor(a6)
    mem.release_tensor(a8)
    mem.print_allocation(resolution=100)

    a9 = mem.allocate_tensor(128).mul_(0.0).add_(9.0)
    a10 = mem.allocate_tensor(64).mul_(0.0).add_(10.0)
    a11 = mem.allocate_tensor(64).mul_(0.0).add_(11.0)
    mem.release_tensor(a1)
    mem.release_tensor(a5)
    mem.print_allocation(resolution=100)
    a12 = mem.allocate_tensor(128).mul_(0.0).add_(12.0)
    mem.print_allocation(resolution=100)
    print(f"a7:{a7}")
    print(f"a9:{a9}")
    print(f"a10:{a10}")
    print(f"a11:{a11}")
    print(f"a12:{a12}")
    assert (a7.norm() + a9.norm() + a10.norm() + a11.norm() + a12.norm()) == 460.75, "TestFailed"


test1()
test2()