File size: 1,493 Bytes
d487907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import pytest

import lm_eval.evaluator as evaluator
from lm_eval.api.registry import get_model


SPARSEML_MODELS_TASKS = [
    # loglikelihood
    ("facebook/opt-125m", "lambada_openai"),
    # loglikelihood_rolling
    ("hf-internal-testing/tiny-random-gpt2", "wikitext"),
    # generate_until
    ("mgoin/tiny-random-llama-2-quant", "gsm8k"),
]

DEEPSPARSE_MODELS_TASKS = [
    # loglikelihood
    ("hf:mgoin/llama2.c-stories15M-quant-ds", "lambada_openai"),
    # loglikelihood_rolling (not supported yet)
    # ("hf:mgoin/llama2.c-stories15M-quant-ds", "wikitext"),
    # generate_until
    ("hf:mgoin/llama2.c-stories15M-quant-ds", "gsm8k"),
]


@pytest.mark.parametrize("model_id,task", SPARSEML_MODELS_TASKS)
def test_sparseml_eval(model_id, task):
    lm = get_model("sparseml").create_from_arg_string(
        f"pretrained={model_id}",
        {
            "batch_size": 1,
            "device": "cpu",
            "dtype": "float32",
        },
    )

    limit = 5
    evaluator.simple_evaluate(
        model=lm,
        tasks=[task],
        num_fewshot=0,
        limit=limit,
    )


@pytest.mark.parametrize("model_id,task", DEEPSPARSE_MODELS_TASKS)
def test_deepsparse_eval(model_id, task):
    lm = get_model("deepsparse").create_from_arg_string(
        f"pretrained={model_id}",
        {
            "batch_size": 1,
        },
    )

    limit = 5
    evaluator.simple_evaluate(
        model=lm,
        tasks=[task],
        num_fewshot=0,
        limit=limit,
    )