Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- lm-evaluation-harness/tests/models/test_gguf.py +152 -0
- lm-evaluation-harness/tests/models/test_huggingface.py +143 -0
- lm-evaluation-harness/tests/models/test_neuralmagic.py +61 -0
- lm-evaluation-harness/tests/models/test_neuron_optimum.py +26 -0
- lm-evaluation-harness/tests/models/test_openvino.py +73 -0
- lm-evaluation-harness/tests/models/test_vllm.py +51 -0
- lm-evaluation-harness/tests/testdata/blimp_distractor_agreement_relational_noun-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/blimp_existential_there_subject_raising-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/blimp_expletive_it_object_raising-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/crows_pairs_english_race_color-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/hellaswag-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/hendrycksTest-econometrics-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/hendrycksTest-us_foreign_policy-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/multirc-v1-res.json +1 -0
- lm-evaluation-harness/tests/testdata/pile_arxiv-v0-loglikelihood_rolling +1 -0
- lm-evaluation-harness/tests/testdata/pile_philpapers-v1-res.json +1 -0
- lm-evaluation-harness/tests/testdata/pile_pubmed-central-v0-loglikelihood_rolling +1 -0
- lm-evaluation-harness/tests/testdata/pile_ubuntu-irc-v1-loglikelihood_rolling +1 -0
- lm-evaluation-harness/wandb/debug-cli.root.log +0 -0
- lm-evaluation-harness/wandb/debug-internal.log +0 -0
- lm-evaluation-harness/wandb/debug.log +36 -0
- lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/config.yaml +43 -0
- lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/output.log +34 -0
- lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/requirements.txt +155 -0
- lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/wandb-metadata.json +850 -0
- lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/wandb-summary.json +1 -0
- lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/logs/debug-internal.log +183 -0
- lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/logs/debug.log +29 -0
- lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/run-1oo0voi6.wandb +0 -0
- lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/config.yaml +43 -0
- lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/output.log +34 -0
- lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/requirements.txt +155 -0
- lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/wandb-metadata.json +850 -0
- lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/wandb-summary.json +1 -0
- lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/logs/debug-internal.log +183 -0
- lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/logs/debug.log +29 -0
- lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/run-vm5e7ag8.wandb +0 -0
- lm-evaluation-harness/wandb/run-20240530_125856-v5b29ywz/run-v5b29ywz.wandb +0 -0
- venv/lib/python3.10/site-packages/transformers/models/convnextv2/__init__.py +97 -0
- venv/lib/python3.10/site-packages/transformers/models/convnextv2/configuration_convnextv2.py +117 -0
- venv/lib/python3.10/site-packages/transformers/models/convnextv2/convert_convnextv2_to_pytorch.py +286 -0
- venv/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_convnextv2.py +574 -0
- venv/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_tf_convnextv2.py +681 -0
- venv/lib/python3.10/site-packages/transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +184 -0
- venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/convert_original_tf_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/modeling_mobilenet_v1.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/prophetnet/__init__.py +65 -0
- venv/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/configuration_prophetnet.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/convert_prophetnet_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc +0 -0
lm-evaluation-harness/tests/models/test_gguf.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import pickle
|
5 |
+
import unittest
|
6 |
+
from unittest.mock import patch
|
7 |
+
|
8 |
+
from lm_eval.api.instance import Instance
|
9 |
+
from lm_eval.models.gguf import GGUFLM
|
10 |
+
|
11 |
+
|
12 |
+
base_url = "https://matthoffner-ggml-llm-api.hf.space"
|
13 |
+
|
14 |
+
|
15 |
+
def gguf_completion_mock(base_url=None, **kwargs):
|
16 |
+
# Generate a hash from the parameters
|
17 |
+
hash_kwargs = {"base_url": base_url, **kwargs}
|
18 |
+
hash = hashlib.sha256(
|
19 |
+
json.dumps(hash_kwargs, sort_keys=True).encode("utf-8")
|
20 |
+
).hexdigest()
|
21 |
+
|
22 |
+
fname = f"./tests/testdata/gguf_test_{hash}.pkl"
|
23 |
+
|
24 |
+
if os.path.exists(fname):
|
25 |
+
with open(fname, "rb") as fh:
|
26 |
+
return pickle.load(fh)
|
27 |
+
else:
|
28 |
+
print("The file does not exist, attempting to write...")
|
29 |
+
if "stop" in kwargs:
|
30 |
+
result = {
|
31 |
+
"choices": [
|
32 |
+
{
|
33 |
+
"text": f"generated text until {kwargs['stop']}",
|
34 |
+
"logprobs": {"token_logprobs": [-1.2345], "text_offset": 0},
|
35 |
+
"finish_reason": "length",
|
36 |
+
}
|
37 |
+
]
|
38 |
+
}
|
39 |
+
else:
|
40 |
+
# generated with # curl -X 'POST' 'http://localhost:8000/v1/completions' -H 'accept: application/json' -H 'Content-Type: application/json' -d '{"prompt": "string", "logprobs": 10, "temperature": 0.0, "max_tokens": 1, "echo": true}'
|
41 |
+
result = {
|
42 |
+
"id": "cmpl-4023976b-bc6a-43b0-a5a9-629f4216c7f3",
|
43 |
+
"object": "text_completion",
|
44 |
+
"created": 1700511361,
|
45 |
+
"model": "../llama-2-7b.Q8_0.gguf",
|
46 |
+
"choices": [
|
47 |
+
{
|
48 |
+
"text": "string(",
|
49 |
+
"index": 0,
|
50 |
+
"logprobs": {
|
51 |
+
"text_offset": [0, 7],
|
52 |
+
"token_logprobs": [None, -1.033263319857306],
|
53 |
+
"tokens": [" string", "("],
|
54 |
+
"top_logprobs": [
|
55 |
+
None,
|
56 |
+
{
|
57 |
+
"(": -1.033263319857306,
|
58 |
+
"[]": -2.6530743779017394,
|
59 |
+
".": -3.0377145947291324,
|
60 |
+
"\n": -3.0399156750513976,
|
61 |
+
"_": -3.510376089937872,
|
62 |
+
" =": -3.6957918347193663,
|
63 |
+
",": -3.9309459866358702,
|
64 |
+
" of": -4.2834550083949035,
|
65 |
+
'("': -4.322762841112799,
|
66 |
+
"()": -4.426229113466925,
|
67 |
+
},
|
68 |
+
],
|
69 |
+
},
|
70 |
+
"finish_reason": "length",
|
71 |
+
}
|
72 |
+
],
|
73 |
+
"usage": {
|
74 |
+
"prompt_tokens": 2,
|
75 |
+
"completion_tokens": 1,
|
76 |
+
"total_tokens": 3,
|
77 |
+
},
|
78 |
+
}
|
79 |
+
|
80 |
+
try:
|
81 |
+
os.makedirs(os.path.dirname(fname), exist_ok=True)
|
82 |
+
print("Writing file at", fname)
|
83 |
+
with open(fname, "wb") as fh:
|
84 |
+
pickle.dump(result, fh)
|
85 |
+
print("File written successfully")
|
86 |
+
except Exception as e:
|
87 |
+
print("File writing failed:", e)
|
88 |
+
|
89 |
+
return result
|
90 |
+
|
91 |
+
|
92 |
+
class GGUFLMTest(unittest.TestCase):
|
93 |
+
@patch(
|
94 |
+
"lm_eval.models.gguf.GGUFLM.gguf_completion", side_effect=gguf_completion_mock
|
95 |
+
)
|
96 |
+
def test_loglikelihood(self, gguf_completion_mock):
|
97 |
+
lm = GGUFLM(base_url)
|
98 |
+
|
99 |
+
# Test loglikelihood
|
100 |
+
requests = [
|
101 |
+
Instance(
|
102 |
+
request_type="loglikelihood",
|
103 |
+
doc=args,
|
104 |
+
arguments=args,
|
105 |
+
idx=i,
|
106 |
+
)
|
107 |
+
for i, args in enumerate([("str", "ing"), ("str", "ing")])
|
108 |
+
]
|
109 |
+
res = lm.loglikelihood(requests)
|
110 |
+
|
111 |
+
# Assert the loglikelihood response is correct
|
112 |
+
expected_res = [(logprob, True) for logprob in [0, 0]]
|
113 |
+
self.assertEqual(res, expected_res)
|
114 |
+
|
115 |
+
@patch(
|
116 |
+
"lm_eval.models.gguf.GGUFLM.gguf_completion", side_effect=gguf_completion_mock
|
117 |
+
)
|
118 |
+
def test_generate_until(self, gguf_completion_mock):
|
119 |
+
lm = GGUFLM(base_url)
|
120 |
+
|
121 |
+
# Test generate_until
|
122 |
+
requests = [
|
123 |
+
Instance(
|
124 |
+
request_type="generate_until",
|
125 |
+
doc={"input": doc},
|
126 |
+
arguments=(doc, {"until": stop}),
|
127 |
+
idx=i,
|
128 |
+
)
|
129 |
+
for i, (doc, stop) in enumerate([("input1", "stop1"), ("input2", "stop2")])
|
130 |
+
]
|
131 |
+
|
132 |
+
res = lm.generate_until(requests)
|
133 |
+
|
134 |
+
# Assert the generate_until response is correct
|
135 |
+
expected_res = ["generated text until stop1", "generated text until stop2"]
|
136 |
+
self.assertEqual(res, expected_res)
|
137 |
+
|
138 |
+
# @patch('lm_eval.models.gguf.GGUFLM.gguf_completion', side_effect=gguf_completion_mock)
|
139 |
+
# def test_loglikelihood_rolling(self, gguf_completion_mock):
|
140 |
+
# lm = GGUFLM(base_url)
|
141 |
+
|
142 |
+
# # Test loglikelihood_rolling
|
143 |
+
# requests = ["input1", "input2"]
|
144 |
+
# res = lm.loglikelihood_rolling(requests)
|
145 |
+
|
146 |
+
# # Assert the loglikelihood_rolling response is correct
|
147 |
+
# expected_res = [(-1.2345, True), (-1.2345, True)]
|
148 |
+
# self.assertEqual(res, expected_res)
|
149 |
+
|
150 |
+
|
151 |
+
if __name__ == "__main__":
|
152 |
+
unittest.main()
|
lm-evaluation-harness/tests/models/test_huggingface.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import sys
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
|
9 |
+
import lm_eval.tasks as tasks
|
10 |
+
from lm_eval.api.instance import Instance
|
11 |
+
from lm_eval.models.huggingface import HFLM
|
12 |
+
|
13 |
+
|
14 |
+
task_manager = tasks.TaskManager()
|
15 |
+
|
16 |
+
|
17 |
+
class Test_HFLM:
|
18 |
+
torch.use_deterministic_algorithms(True)
|
19 |
+
task_list = task_manager.load_task_or_group(["arc_easy", "gsm8k", "wikitext"])
|
20 |
+
version_minor = sys.version_info.minor
|
21 |
+
multiple_choice_task = task_list["arc_easy"] # type: ignore
|
22 |
+
multiple_choice_task.build_all_requests(limit=10, rank=0, world_size=1)
|
23 |
+
MULTIPLE_CH: list[Instance] = multiple_choice_task.instances
|
24 |
+
generate_until_task = task_list["gsm8k"] # type: ignore
|
25 |
+
generate_until_task._config.generation_kwargs["max_gen_toks"] = 10
|
26 |
+
generate_until_task.build_all_requests(limit=10, rank=0, world_size=1)
|
27 |
+
generate_until: list[Instance] = generate_until_task.instances
|
28 |
+
rolling_task = task_list["wikitext"] # type: ignore
|
29 |
+
rolling_task.build_all_requests(limit=10, rank=0, world_size=1)
|
30 |
+
ROLLING: list[Instance] = rolling_task.instances
|
31 |
+
|
32 |
+
MULTIPLE_CH_RES = [
|
33 |
+
-41.902435302734375,
|
34 |
+
-42.939308166503906,
|
35 |
+
-33.914180755615234,
|
36 |
+
-37.07139205932617,
|
37 |
+
-22.95258331298828,
|
38 |
+
-20.342208862304688,
|
39 |
+
-14.818366050720215,
|
40 |
+
-27.942853927612305,
|
41 |
+
-15.80704116821289,
|
42 |
+
-15.936427116394043,
|
43 |
+
-13.052018165588379,
|
44 |
+
-18.04828453063965,
|
45 |
+
-13.345029830932617,
|
46 |
+
-13.366025924682617,
|
47 |
+
-12.127134323120117,
|
48 |
+
-11.872495651245117,
|
49 |
+
-47.10598373413086,
|
50 |
+
-47.76410675048828,
|
51 |
+
-36.4406852722168,
|
52 |
+
-50.0289421081543,
|
53 |
+
-16.72093963623047,
|
54 |
+
-18.535587310791016,
|
55 |
+
-26.46993637084961,
|
56 |
+
-20.355995178222656,
|
57 |
+
-17.757919311523438,
|
58 |
+
-21.80595588684082,
|
59 |
+
-33.1990852355957,
|
60 |
+
-39.28636932373047,
|
61 |
+
-14.759679794311523,
|
62 |
+
-16.753942489624023,
|
63 |
+
-11.486852645874023,
|
64 |
+
-15.42177677154541,
|
65 |
+
-13.15798282623291,
|
66 |
+
-15.887393951416016,
|
67 |
+
-15.28614616394043,
|
68 |
+
-12.339089393615723,
|
69 |
+
-44.59441375732422,
|
70 |
+
-55.40888214111328,
|
71 |
+
-52.70050811767578,
|
72 |
+
-56.25089645385742,
|
73 |
+
]
|
74 |
+
generate_until_RES = [
|
75 |
+
" The average of $2.50 each is $",
|
76 |
+
" A robe takes 2 bolts of blue fiber and half",
|
77 |
+
" $50,000 in repairs.\n\nQuestion",
|
78 |
+
" He runs 1 sprint 3 times a week.",
|
79 |
+
" They feed each of her chickens three cups of mixed",
|
80 |
+
" The price of the glasses is $5, but",
|
81 |
+
" The total percentage of students who said they like to",
|
82 |
+
" Carla is downloading a 200 GB file. Normally",
|
83 |
+
" John drives for 3 hours at a speed of 60",
|
84 |
+
" Eliza sells 4 tickets to 5 friends so she",
|
85 |
+
]
|
86 |
+
ROLLING_RES = [
|
87 |
+
-3603.6328125,
|
88 |
+
-19779.23974609375,
|
89 |
+
-8834.16455078125,
|
90 |
+
-27967.591796875,
|
91 |
+
-7636.794982910156,
|
92 |
+
-9491.93505859375,
|
93 |
+
-41043.4248046875,
|
94 |
+
-8397.689819335938,
|
95 |
+
-45969.47155761719,
|
96 |
+
-7158.90625,
|
97 |
+
]
|
98 |
+
LM = HFLM(pretrained="EleutherAI/pythia-70m", device="cpu", dtype="float32")
|
99 |
+
|
100 |
+
def test_logliklihood(self) -> None:
|
101 |
+
res = self.LM.loglikelihood(self.MULTIPLE_CH)
|
102 |
+
_RES, _res = self.MULTIPLE_CH_RES, [r[0] for r in res]
|
103 |
+
# log samples to CI
|
104 |
+
dir_path = Path("test_logs")
|
105 |
+
dir_path.mkdir(parents=True, exist_ok=True)
|
106 |
+
|
107 |
+
file_path = dir_path / f"outputs_log_{self.version_minor}.txt"
|
108 |
+
file_path = file_path.resolve()
|
109 |
+
with open(file_path, "w") as f:
|
110 |
+
f.write("\n".join(str(x) for x in _res))
|
111 |
+
assert np.allclose(_res, _RES, atol=1e-2)
|
112 |
+
# check indices for Multiple Choice
|
113 |
+
argmax_RES, argmax_res = (
|
114 |
+
np.argmax(np.array(_RES).reshape(-1, 4), axis=1),
|
115 |
+
np.argmax(np.array(_res).reshape(-1, 4), axis=1),
|
116 |
+
)
|
117 |
+
assert (argmax_RES == argmax_res).all()
|
118 |
+
|
119 |
+
def test_generate_until(self) -> None:
|
120 |
+
res = self.LM.generate_until(self.generate_until)
|
121 |
+
assert res == self.generate_until_RES
|
122 |
+
|
123 |
+
def test_logliklihood_rolling(self) -> None:
|
124 |
+
res = self.LM.loglikelihood_rolling(self.ROLLING)
|
125 |
+
assert np.allclose(res, self.ROLLING_RES, atol=1e-1)
|
126 |
+
|
127 |
+
def test_toc_encode(self) -> None:
|
128 |
+
res = self.LM.tok_encode("foo bar")
|
129 |
+
assert res == [12110, 2534]
|
130 |
+
|
131 |
+
def test_toc_decode(self) -> None:
|
132 |
+
res = self.LM.tok_decode([12110, 2534])
|
133 |
+
assert res == "foo bar"
|
134 |
+
|
135 |
+
def test_batch_encode(self) -> None:
|
136 |
+
res = self.LM.tok_batch_encode(["foo bar", "bar foo"])[0].tolist()
|
137 |
+
assert res == [[12110, 2534], [2009, 17374]]
|
138 |
+
|
139 |
+
def test_model_generate(self) -> None:
|
140 |
+
context = self.LM.tok_batch_encode(["foo bar"])[0]
|
141 |
+
res = self.LM._model_generate(context, max_length=10, stop=["\n\n"])
|
142 |
+
res = self.LM.tok_decode(res[0])
|
143 |
+
assert res == "foo bar\n<bazhang>!info bar"
|
lm-evaluation-harness/tests/models/test_neuralmagic.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
|
3 |
+
import lm_eval.evaluator as evaluator
|
4 |
+
from lm_eval.api.registry import get_model
|
5 |
+
|
6 |
+
|
7 |
+
SPARSEML_MODELS_TASKS = [
|
8 |
+
# loglikelihood
|
9 |
+
("facebook/opt-125m", "lambada_openai"),
|
10 |
+
# loglikelihood_rolling
|
11 |
+
("hf-internal-testing/tiny-random-gpt2", "wikitext"),
|
12 |
+
# generate_until
|
13 |
+
("mgoin/tiny-random-llama-2-quant", "gsm8k"),
|
14 |
+
]
|
15 |
+
|
16 |
+
DEEPSPARSE_MODELS_TASKS = [
|
17 |
+
# loglikelihood
|
18 |
+
("hf:mgoin/llama2.c-stories15M-quant-ds", "lambada_openai"),
|
19 |
+
# loglikelihood_rolling (not supported yet)
|
20 |
+
# ("hf:mgoin/llama2.c-stories15M-quant-ds", "wikitext"),
|
21 |
+
# generate_until
|
22 |
+
("hf:mgoin/llama2.c-stories15M-quant-ds", "gsm8k"),
|
23 |
+
]
|
24 |
+
|
25 |
+
|
26 |
+
@pytest.mark.parametrize("model_id,task", SPARSEML_MODELS_TASKS)
|
27 |
+
def test_sparseml_eval(model_id, task):
|
28 |
+
lm = get_model("sparseml").create_from_arg_string(
|
29 |
+
f"pretrained={model_id}",
|
30 |
+
{
|
31 |
+
"batch_size": 1,
|
32 |
+
"device": "cpu",
|
33 |
+
"dtype": "float32",
|
34 |
+
},
|
35 |
+
)
|
36 |
+
|
37 |
+
limit = 5
|
38 |
+
evaluator.simple_evaluate(
|
39 |
+
model=lm,
|
40 |
+
tasks=[task],
|
41 |
+
num_fewshot=0,
|
42 |
+
limit=limit,
|
43 |
+
)
|
44 |
+
|
45 |
+
|
46 |
+
@pytest.mark.parametrize("model_id,task", DEEPSPARSE_MODELS_TASKS)
|
47 |
+
def test_deepsparse_eval(model_id, task):
|
48 |
+
lm = get_model("deepsparse").create_from_arg_string(
|
49 |
+
f"pretrained={model_id}",
|
50 |
+
{
|
51 |
+
"batch_size": 1,
|
52 |
+
},
|
53 |
+
)
|
54 |
+
|
55 |
+
limit = 5
|
56 |
+
evaluator.simple_evaluate(
|
57 |
+
model=lm,
|
58 |
+
tasks=[task],
|
59 |
+
num_fewshot=0,
|
60 |
+
limit=limit,
|
61 |
+
)
|
lm-evaluation-harness/tests/models/test_neuron_optimum.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from lm_eval.models.neuron_optimum import wrap_constant_batch_size
|
5 |
+
|
6 |
+
|
7 |
+
def test_wrap_constant_batch_size():
|
8 |
+
class Tester:
|
9 |
+
def __init__(self, batch_size):
|
10 |
+
self.batch_size = batch_size
|
11 |
+
|
12 |
+
@wrap_constant_batch_size
|
13 |
+
def test_constant_batch_size(self, inputs):
|
14 |
+
assert len(inputs) == self.batch_size
|
15 |
+
return inputs
|
16 |
+
|
17 |
+
batch_size_test = 8
|
18 |
+
for i in range(1, batch_size_test + 1):
|
19 |
+
tensor = torch.ones([i, 2, 2])
|
20 |
+
out = Tester(batch_size=batch_size_test).test_constant_batch_size(tensor)
|
21 |
+
torch.testing.assert_allclose(out, tensor)
|
22 |
+
|
23 |
+
with pytest.raises(ValueError):
|
24 |
+
Tester(batch_size=batch_size_test).test_constant_batch_size(
|
25 |
+
torch.ones([batch_size_test + 1, 2, 2])
|
26 |
+
)
|
lm-evaluation-harness/tests/models/test_openvino.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import tempfile
|
3 |
+
|
4 |
+
import pytest
|
5 |
+
from optimum.intel import OVModelForCausalLM
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
|
8 |
+
import lm_eval.evaluator as evaluator
|
9 |
+
from lm_eval.api.registry import get_model
|
10 |
+
|
11 |
+
|
12 |
+
SUPPORTED_ARCHITECTURES_TASKS = {
|
13 |
+
"facebook/opt-125m": "lambada_openai",
|
14 |
+
"hf-internal-testing/tiny-random-gpt2": "wikitext",
|
15 |
+
}
|
16 |
+
|
17 |
+
|
18 |
+
@pytest.mark.parametrize("model_id,task", SUPPORTED_ARCHITECTURES_TASKS.items())
|
19 |
+
def test_evaluator(model_id, task):
|
20 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
21 |
+
model = OVModelForCausalLM.from_pretrained(
|
22 |
+
model_id, export=True, use_cache=True
|
23 |
+
)
|
24 |
+
model.save_pretrained(tmpdirname)
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
26 |
+
tokenizer.save_pretrained(tmpdirname)
|
27 |
+
|
28 |
+
lm = get_model("openvino").create_from_arg_string(
|
29 |
+
f"pretrained={tmpdirname}",
|
30 |
+
{
|
31 |
+
"batch_size": 1,
|
32 |
+
"device": "cpu",
|
33 |
+
},
|
34 |
+
)
|
35 |
+
|
36 |
+
def ll_fn(reqs):
|
37 |
+
for ctx, cont in [req.args for req in reqs]:
|
38 |
+
if len(ctx) == 0:
|
39 |
+
continue
|
40 |
+
# space convention
|
41 |
+
assert ctx[-1] != " "
|
42 |
+
assert cont[0] == " " or ctx[-1] == "\n"
|
43 |
+
|
44 |
+
res = []
|
45 |
+
|
46 |
+
random.seed(42)
|
47 |
+
for _ in reqs:
|
48 |
+
res.append((-random.random(), False))
|
49 |
+
|
50 |
+
return res
|
51 |
+
|
52 |
+
def ll_perp_fn(reqs):
|
53 |
+
for (string,) in [req.args for req in reqs]:
|
54 |
+
assert isinstance(string, str)
|
55 |
+
|
56 |
+
res = []
|
57 |
+
random.seed(42)
|
58 |
+
for _ in reqs:
|
59 |
+
res.append(-random.random())
|
60 |
+
|
61 |
+
return res
|
62 |
+
|
63 |
+
lm.loglikelihood = ll_fn
|
64 |
+
lm.loglikelihood_rolling = ll_perp_fn
|
65 |
+
|
66 |
+
limit = 10
|
67 |
+
evaluator.simple_evaluate(
|
68 |
+
model=lm,
|
69 |
+
tasks=[task],
|
70 |
+
num_fewshot=0,
|
71 |
+
limit=limit,
|
72 |
+
bootstrap_iters=10,
|
73 |
+
)
|
lm-evaluation-harness/tests/models/test_vllm.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
import pytest
|
4 |
+
import torch
|
5 |
+
|
6 |
+
import lm_eval.tasks as tasks
|
7 |
+
from lm_eval.api.instance import Instance
|
8 |
+
|
9 |
+
|
10 |
+
task_manager = tasks.TaskManager()
|
11 |
+
|
12 |
+
|
13 |
+
@pytest.mark.skip(reason="requires CUDA")
|
14 |
+
class TEST_VLLM:
|
15 |
+
vllm = pytest.importorskip("vllm")
|
16 |
+
try:
|
17 |
+
from lm_eval.models.vllm_causallms import VLLM
|
18 |
+
|
19 |
+
LM = VLLM(pretrained="EleutherAI/pythia-70m")
|
20 |
+
except ModuleNotFoundError:
|
21 |
+
pass
|
22 |
+
torch.use_deterministic_algorithms(True)
|
23 |
+
task_list = task_manager.load_task_or_group(["arc_easy", "gsm8k", "wikitext"])
|
24 |
+
multiple_choice_task = task_list["arc_easy"] # type: ignore
|
25 |
+
multiple_choice_task.build_all_requests(limit=10, rank=0, world_size=1)
|
26 |
+
MULTIPLE_CH: List[Instance] = multiple_choice_task.instances
|
27 |
+
generate_until_task = task_list["gsm8k"] # type: ignore
|
28 |
+
generate_until_task._config.generation_kwargs["max_gen_toks"] = 10
|
29 |
+
generate_until_task.build_all_requests(limit=10, rank=0, world_size=1)
|
30 |
+
generate_until: List[Instance] = generate_until_task.instances
|
31 |
+
rolling_task = task_list["wikitext"] # type: ignore
|
32 |
+
rolling_task.build_all_requests(limit=10, rank=0, world_size=1)
|
33 |
+
ROLLING: List[Instance] = rolling_task.instances
|
34 |
+
|
35 |
+
# TODO: make proper tests
|
36 |
+
def test_logliklihood(self) -> None:
|
37 |
+
res = self.LM.loglikelihood(self.MULTIPLE_CH)
|
38 |
+
assert len(res) == len(self.MULTIPLE_CH)
|
39 |
+
for x in res:
|
40 |
+
assert isinstance(x[0], float)
|
41 |
+
|
42 |
+
def test_generate_until(self) -> None:
|
43 |
+
res = self.LM.generate_until(self.generate_until)
|
44 |
+
assert len(res) == len(self.generate_until)
|
45 |
+
for x in res:
|
46 |
+
assert isinstance(x, str)
|
47 |
+
|
48 |
+
def test_logliklihood_rolling(self) -> None:
|
49 |
+
res = self.LM.loglikelihood_rolling(self.ROLLING)
|
50 |
+
for x in res:
|
51 |
+
assert isinstance(x, float)
|
lm-evaluation-harness/tests/testdata/blimp_distractor_agreement_relational_noun-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
8aab641bd5933f84f46a14f5c1208a3c855cace7e67b44abcd5aff8fec96717d
|
lm-evaluation-harness/tests/testdata/blimp_existential_there_subject_raising-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
9b324b28ae3e1b5d49ecf4b7b2a16c7bbc8ff38d000cf216fab75df633da2084
|
lm-evaluation-harness/tests/testdata/blimp_expletive_it_object_raising-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"blimp_expletive_it_object_raising": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_expletive_it_object_raising": 0}}
|
lm-evaluation-harness/tests/testdata/crows_pairs_english_race_color-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"crows_pairs_english_race_color": {"likelihood_difference": 0.3322827903840805, "likelihood_difference_stderr": 0.01019838186372816, "pct_stereotype": 0.4822834645669291, "pct_stereotype_stderr": 0.022191835500120254}}, "versions": {"crows_pairs_english_race_color": 0}}
|
lm-evaluation-harness/tests/testdata/hellaswag-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"hellaswag": {"acc": 0.24965146385182235, "acc_norm": 0.24756024696275641, "acc_norm_stderr": 0.004307128573285236, "acc_stderr": 0.004319267432460666}}, "versions": {"hellaswag": 0}}
|
lm-evaluation-harness/tests/testdata/hendrycksTest-econometrics-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"hendrycksTest-econometrics": {"acc": 0.24561403508771928, "acc_norm": 0.24561403508771928, "acc_norm_stderr": 0.04049339297748142, "acc_stderr": 0.040493392977481425}}, "versions": {"hendrycksTest-econometrics": 0}}
|
lm-evaluation-harness/tests/testdata/hendrycksTest-us_foreign_policy-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"hendrycksTest-us_foreign_policy": {"acc": 0.2, "acc_norm": 0.24, "acc_norm_stderr": 0.04292346959909283, "acc_stderr": 0.040201512610368445}}, "versions": {"hendrycksTest-us_foreign_policy": 0}}
|
lm-evaluation-harness/tests/testdata/multirc-v1-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"multirc": {"acc": 0.046169989506820566, "acc_stderr": 0.006801377886208738}}, "versions": {"multirc": 1}}
|
lm-evaluation-harness/tests/testdata/pile_arxiv-v0-loglikelihood_rolling
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
814f9954e44368559602c00f7e85fa3971acdfd0315f508ec7df6318a79c55ec
|
lm-evaluation-harness/tests/testdata/pile_philpapers-v1-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"pile_philpapers": {"bits_per_byte": 9.004690592465457e-06, "byte_perplexity": 1.0000062415953748, "word_perplexity": 1.0000409888564146}}, "versions": {"pile_philpapers": 1}}
|
lm-evaluation-harness/tests/testdata/pile_pubmed-central-v0-loglikelihood_rolling
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
40b39d120d99a145690444e86acc3e3e24d41e6e0538a75e26929ad84926e5e0
|
lm-evaluation-harness/tests/testdata/pile_ubuntu-irc-v1-loglikelihood_rolling
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
4eb69e314f0864ec8890e2323d7e76f8a8309692c4f090e2b41bf4be681a811d
|
lm-evaluation-harness/wandb/debug-cli.root.log
ADDED
File without changes
|
lm-evaluation-harness/wandb/debug-internal.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
lm-evaluation-harness/wandb/debug.log
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-06-08 19:03:33,772 INFO MainThread:30255 [wandb_setup.py:_flush():76] Current SDK version is 0.17.1
|
2 |
+
2024-06-08 19:03:33,772 INFO MainThread:30255 [wandb_setup.py:_flush():76] Configure stats pid to 30255
|
3 |
+
2024-06-08 19:03:33,772 INFO MainThread:30255 [wandb_setup.py:_flush():76] Loading settings from /root/.config/wandb/settings
|
4 |
+
2024-06-08 19:03:33,772 INFO MainThread:30255 [wandb_setup.py:_flush():76] Loading settings from /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/settings
|
5 |
+
2024-06-08 19:03:33,773 INFO MainThread:30255 [wandb_setup.py:_flush():76] Loading settings from environment variables: {}
|
6 |
+
2024-06-08 19:03:33,773 INFO MainThread:30255 [wandb_setup.py:_flush():76] Applying setup settings: {'_disable_service': False}
|
7 |
+
2024-06-08 19:03:33,773 WARNING MainThread:30255 [wandb_setup.py:_flush():76] Could not find program at -m lm_eval.__main__
|
8 |
+
2024-06-08 19:03:33,773 INFO MainThread:30255 [wandb_setup.py:_flush():76] Inferring run settings from compute environment: {'program_relpath': None, 'program': '-m lm_eval.__main__'}
|
9 |
+
2024-06-08 19:03:33,773 INFO MainThread:30255 [wandb_setup.py:_flush():76] Applying login settings: {}
|
10 |
+
2024-06-08 19:03:33,773 INFO MainThread:30255 [wandb_init.py:_log_setup():520] Logging user logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240608_190333-82mnef5m/logs/debug.log
|
11 |
+
2024-06-08 19:03:33,773 INFO MainThread:30255 [wandb_init.py:_log_setup():521] Logging internal logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240608_190333-82mnef5m/logs/debug-internal.log
|
12 |
+
2024-06-08 19:03:33,773 INFO MainThread:30255 [wandb_init.py:init():560] calling init triggers
|
13 |
+
2024-06-08 19:03:33,773 INFO MainThread:30255 [wandb_init.py:init():567] wandb.init called with sweep_config: {}
|
14 |
+
config: {}
|
15 |
+
2024-06-08 19:03:33,773 INFO MainThread:30255 [wandb_init.py:init():610] starting backend
|
16 |
+
2024-06-08 19:03:33,773 INFO MainThread:30255 [wandb_init.py:init():614] setting up manager
|
17 |
+
2024-06-08 19:03:33,776 INFO MainThread:30255 [backend.py:_multiprocessing_setup():105] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
|
18 |
+
2024-06-08 19:03:33,777 INFO MainThread:30255 [wandb_init.py:init():622] backend started and connected
|
19 |
+
2024-06-08 19:03:33,781 INFO MainThread:30255 [wandb_init.py:init():711] updated telemetry
|
20 |
+
2024-06-08 19:03:33,790 INFO MainThread:30255 [wandb_init.py:init():744] communicating run to backend with 90.0 second timeout
|
21 |
+
2024-06-08 19:03:33,992 INFO MainThread:30255 [wandb_run.py:_on_init():2402] communicating current version
|
22 |
+
2024-06-08 19:03:34,052 INFO MainThread:30255 [wandb_run.py:_on_init():2411] got version response
|
23 |
+
2024-06-08 19:03:34,052 INFO MainThread:30255 [wandb_init.py:init():795] starting run threads in backend
|
24 |
+
2024-06-08 19:03:34,350 INFO MainThread:30255 [wandb_run.py:_console_start():2380] atexit reg
|
25 |
+
2024-06-08 19:03:34,350 INFO MainThread:30255 [wandb_run.py:_redirect():2235] redirect: wrap_raw
|
26 |
+
2024-06-08 19:03:34,351 INFO MainThread:30255 [wandb_run.py:_redirect():2300] Wrapping output streams.
|
27 |
+
2024-06-08 19:03:34,351 INFO MainThread:30255 [wandb_run.py:_redirect():2325] Redirects installed.
|
28 |
+
2024-06-08 19:03:34,353 INFO MainThread:30255 [wandb_init.py:init():838] run started, returning control to user process
|
29 |
+
2024-06-08 20:15:51,241 INFO MainThread:30255 [wandb_run.py:_config_callback():1382] config_cb None None {'task_configs': {'arc_easy': {'task': 'arc_easy', 'group': ['ai2_arc'], 'dataset_path': 'allenai/ai2_arc', 'dataset_name': 'ARC-Easy', 'training_split': 'train', 'validation_split': 'validation', 'test_split': 'test', 'doc_to_text': 'Question: {{question}}\nAnswer:', 'doc_to_target': '{{choices.label.index(answerKey)}}', 'doc_to_choice': '{{choices.text}}', 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc', 'aggregation': 'mean', 'higher_is_better': True}, {'metric': 'acc_norm', 'aggregation': 'mean', 'higher_is_better': True}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': True, 'doc_to_decontamination_query': 'Question: {{question}}\nAnswer:', 'metadata': {'version': 1.0}}, 'boolq': {'task': 'boolq', 'group': ['super-glue-lm-eval-v1'], 'dataset_path': 'super_glue', 'dataset_name': 'boolq', 'training_split': 'train', 'validation_split': 'validation', 'doc_to_text': '{{passage}}\nQuestion: {{question}}?\nAnswer:', 'doc_to_target': 'label', 'doc_to_choice': ['no', 'yes'], 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc'}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': True, 'doc_to_decontamination_query': 'passage', 'metadata': {'version': 2.0}}, 'copa': {'task': 'copa', 'group': ['super-glue-lm-eval-v1'], 'dataset_path': 'super_glue', 'dataset_name': 'copa', 'training_split': 'train', 'validation_split': 'validation', 'doc_to_text': 'def doc_to_text(doc):\n # Drop the period\n connector = {\n "cause": "because",\n "effect": "therefore",\n }[doc["question"]]\n return doc["premise"].strip()[:-1] + f" {connector}"\n', 'doc_to_target': 'def doc_to_target(doc):\n correct_choice = doc["choice1"] if doc["label"] == 0 else doc["choice2"]\n # Connect the sentences\n return " " + convert_choice(correct_choice)\n', 'doc_to_choice': 'def doc_to_choice(doc):\n return [" " + convert_choice(doc["choice1"]), " " + convert_choice(doc["choice2"])]\n', 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc'}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': False, 'metadata': {'version': 1.0}}, 'indic_arc_challenge_hi': {'task': 'indic_arc_challenge_hi', 'group': 'Cognitive-Lab/Indic-ARC-Challenge', 'dataset_path': 'Cognitive-Lab/Indic-ARC-Challenge', 'dataset_name': 'hi', 'test_split': 'test', 'doc_to_text': 'Question: {{translated_question}}\nAnswer:', 'doc_to_target': '{{translated_choices.label.index(answerKey)}}', 'doc_to_choice': '{{translated_choices.text}}', 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc', 'aggregation': 'mean', 'higher_is_better': True}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': True, 'doc_to_decontamination_query': 'Question: {{translated_question}}\nAnswer:', 'metadata': {'version': 1.0}}, 'indic_arc_easy_hi': {'task': 'indic_arc_easy_hi', 'group': 'Cognitive-Lab/Indic-ARC-Easy', 'dataset_path': 'Cognitive-Lab/Indic-ARC-Easy', 'dataset_name': 'hi', 'test_split': 'test', 'doc_to_text': 'Question: {{translated_question}}\nAnswer:', 'doc_to_target': '{{translated_choices.label.index(answerKey)}}', 'doc_to_choice': '{{translated_choices.text}}', 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc', 'aggregation': 'mean', 'higher_is_better': True}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': True, 'doc_to_decontamination_query': 'Question: {{translated_question}}\nAnswer:', 'metadata': {'version': 1.0}}, 'indic_boolq_hi': {'task': 'indic_boolq_hi', 'group': 'Cognitive-Lab/Indic-BoolQ', 'dataset_path': 'Cognitive-Lab/Indic-BoolQ', 'dataset_name': 'hi', 'validation_split': 'validation', 'doc_to_text': 'Passage: {translated_passage}\nQuestion: {translated_question.strip()}\nAnswer:', 'doc_to_target': 'answer', 'doc_to_choice': ['true', 'false'], 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc', 'aggregation': 'mean', 'higher_is_better': True}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': False, 'metadata': {'version': 1.0}}, 'mrpc': {'task': 'mrpc', 'group': 'glue', 'dataset_path': 'glue', 'dataset_name': 'mrpc', 'training_split': 'train', 'validation_split': 'validation', 'doc_to_text': 'Sentence 1: {{sentence1}}\nSentence 2: {{sentence2}}\nQuestion: Do both sentences mean the same thing?\nAnswer:', 'doc_to_target': 'label', 'doc_to_choice': ['no', 'yes'], 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc'}, {'metric': 'f1'}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': False, 'metadata': {'version': 1.0}}, 'piqa': {'task': 'piqa', 'dataset_path': 'piqa', 'training_split': 'train', 'validation_split': 'validation', 'doc_to_text': 'Question: {{goal}}\nAnswer:', 'doc_to_target': 'label', 'doc_to_choice': '{{[sol1, sol2]}}', 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc', 'aggregation': 'mean', 'higher_is_better': True}, {'metric': 'acc_norm', 'aggregation': 'mean', 'higher_is_better': True}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': True, 'doc_to_decontamination_query': 'goal', 'metadata': {'version': 1.0}}, 'sst2': {'task': 'sst2', 'group': 'glue', 'dataset_path': 'glue', 'dataset_name': 'sst2', 'training_split': 'train', 'validation_split': 'validation', 'doc_to_text': '{{sentence}}\nQuestion: Is this sentence positive or negative?\nAnswer:', 'doc_to_target': 'label', 'doc_to_choice': ['negative', 'positive'], 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc'}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': False, 'metadata': {'version': 1.0}}, 'winogrande': {'task': 'winogrande', 'dataset_path': 'winogrande', 'dataset_name': 'winogrande_xl', 'training_split': 'train', 'validation_split': 'validation', 'doc_to_text': 'def doc_to_text(doc):\n answer_to_num = {"1": 0, "2": 1}\n return answer_to_num[doc["answer"]]\n', 'doc_to_target': 'def doc_to_target(doc):\n idx = doc["sentence"].index("_") + 1\n return doc["sentence"][idx:].strip()\n', 'doc_to_choice': 'def doc_to_choice(doc):\n idx = doc["sentence"].index("_")\n options = [doc["option1"], doc["option2"]]\n return [doc["sentence"][:idx] + opt for opt in options]\n', 'description': '', 'target_delimiter': ' ', 'fewshot_delimiter': '\n\n', 'num_fewshot': 0, 'metric_list': [{'metric': 'acc', 'aggregation': 'mean', 'higher_is_better': True}], 'output_type': 'multiple_choice', 'repeats': 1, 'should_decontaminate': True, 'doc_to_decontamination_query': 'sentence', 'metadata': {'version': 1.0}}}, 'cli_configs': {'model': 'hf', 'model_args': 'pretrained=/mnt/weka/peacock/experiments/llama/eval/checkpoint-enhibn-updated/llamav2-3b/hf/global_step240000,tokenizer=/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k_hf/ConvertedTokenizer', 'batch_size': 'auto', 'batch_sizes': [64], 'device': None, 'use_cache': None, 'limit': None, 'bootstrap_iters': 100000, 'gen_kwargs': None}}
|
30 |
+
2024-06-08 20:15:51,834 INFO MainThread:30255 [wandb_run.py:_finish():2109] finishing run smlgenai/engl-hi-eval/82mnef5m
|
31 |
+
2024-06-08 20:15:51,834 INFO MainThread:30255 [wandb_run.py:_atexit_cleanup():2349] got exitcode: 0
|
32 |
+
2024-06-08 20:15:51,835 INFO MainThread:30255 [wandb_run.py:_restore():2332] restore
|
33 |
+
2024-06-08 20:15:51,835 INFO MainThread:30255 [wandb_run.py:_restore():2338] restore done
|
34 |
+
2024-06-08 20:15:57,740 INFO MainThread:30255 [wandb_run.py:_footer_history_summary_info():4008] rendering history
|
35 |
+
2024-06-08 20:15:57,741 INFO MainThread:30255 [wandb_run.py:_footer_history_summary_info():4040] rendering summary
|
36 |
+
2024-06-08 20:15:57,748 INFO MainThread:30255 [wandb_run.py:_footer_sync_info():3967] logging synced files
|
lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/config.yaml
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb_version: 1
|
2 |
+
|
3 |
+
_wandb:
|
4 |
+
desc: null
|
5 |
+
value:
|
6 |
+
python_version: 3.10.12
|
7 |
+
cli_version: 0.17.0
|
8 |
+
framework: huggingface
|
9 |
+
huggingface_version: 4.41.1
|
10 |
+
is_jupyter_run: false
|
11 |
+
is_kaggle_kernel: false
|
12 |
+
start_time: 1716469406
|
13 |
+
t:
|
14 |
+
1:
|
15 |
+
- 1
|
16 |
+
- 5
|
17 |
+
- 11
|
18 |
+
- 49
|
19 |
+
- 51
|
20 |
+
- 53
|
21 |
+
- 55
|
22 |
+
- 71
|
23 |
+
- 98
|
24 |
+
- 100
|
25 |
+
2:
|
26 |
+
- 1
|
27 |
+
- 5
|
28 |
+
- 11
|
29 |
+
- 49
|
30 |
+
- 51
|
31 |
+
- 53
|
32 |
+
- 55
|
33 |
+
- 71
|
34 |
+
- 98
|
35 |
+
- 100
|
36 |
+
3:
|
37 |
+
- 23
|
38 |
+
4: 3.10.12
|
39 |
+
5: 0.17.0
|
40 |
+
6: 4.41.1
|
41 |
+
8:
|
42 |
+
- 5
|
43 |
+
13: linux-x86_64
|
lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/output.log
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
2024-05-23:13:03:27,131 INFO [__main__.py:251] Verbosity set to INFO
|
3 |
+
2024-05-23:13:03:35,583 INFO [__main__.py:335] Selected Tasks: ['arc_easy', 'hellaswag', 'mrpc', 'openbookqa', 'sst2', 'winogrande']
|
4 |
+
2024-05-23:13:03:35,584 INFO [evaluator.py:131] Setting random seed to 0 | Setting numpy seed to 1234 | Setting torch manual seed to 1234
|
5 |
+
2024-05-23:13:03:35,584 INFO [evaluator.py:177] Initializing hf model, with arguments: {'pretrained': '/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step10000'}
|
6 |
+
2024-05-23:13:03:37,878 INFO [huggingface.py:164] Using device 'cuda'
|
7 |
+
Traceback (most recent call last):
|
8 |
+
File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main
|
9 |
+
return _run_code(code, main_globals, None,
|
10 |
+
File "/usr/lib/python3.10/runpy.py", line 86, in _run_code
|
11 |
+
exec(code, run_globals)
|
12 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/__main__.py", line 417, in <module>
|
13 |
+
cli_evaluate()
|
14 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/__main__.py", line 341, in cli_evaluate
|
15 |
+
results = evaluator.simple_evaluate(
|
16 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/utils.py", line 288, in _wrapper
|
17 |
+
return fn(*args, **kwargs)
|
18 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/evaluator.py", line 180, in simple_evaluate
|
19 |
+
lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
|
20 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/api/model.py", line 134, in create_from_arg_string
|
21 |
+
return cls(**args, **args2)
|
22 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/models/huggingface.py", line 190, in __init__
|
23 |
+
self._get_config(
|
24 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/models/huggingface.py", line 471, in _get_config
|
25 |
+
self._config = transformers.AutoConfig.from_pretrained(
|
26 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py", line 934, in from_pretrained
|
27 |
+
config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
28 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py", line 632, in get_config_dict
|
29 |
+
config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs)
|
30 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py", line 689, in _get_config_dict
|
31 |
+
resolved_config_file = cached_file(
|
32 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py", line 370, in cached_file
|
33 |
+
raise EnvironmentError(
|
34 |
+
OSError: /mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step10000 does not appear to have a file named config.json. Checkout 'https://huggingface.co//mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step10000/tree/main' for available files.
|
lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/requirements.txt
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DataProperty==1.0.1
|
2 |
+
GitPython==3.1.43
|
3 |
+
Jinja2==3.1.4
|
4 |
+
Markdown==3.6
|
5 |
+
MarkupSafe==2.1.5
|
6 |
+
Pillow-SIMD==7.0.0.post3
|
7 |
+
PyYAML==6.0
|
8 |
+
Werkzeug==3.0.3
|
9 |
+
absl-py==2.1.0
|
10 |
+
accelerate==0.30.1
|
11 |
+
aiohttp==3.9.5
|
12 |
+
aiosignal==1.3.1
|
13 |
+
async-timeout==4.0.3
|
14 |
+
attrs==23.2.0
|
15 |
+
av==9.2.0
|
16 |
+
cachetools==5.3.3
|
17 |
+
certifi==2024.2.2
|
18 |
+
cffi==1.15.1
|
19 |
+
cfgv==3.4.0
|
20 |
+
chardet==5.2.0
|
21 |
+
charset-normalizer==3.3.2
|
22 |
+
click==8.1.7
|
23 |
+
cmake==3.29.2
|
24 |
+
colorama==0.4.6
|
25 |
+
datasets==2.19.1
|
26 |
+
deepspeed==0.12.4+hpu.synapse.v1.15.1
|
27 |
+
dill==0.3.8
|
28 |
+
distlib==0.3.8
|
29 |
+
docker-pycreds==0.4.0
|
30 |
+
einops==0.8.0
|
31 |
+
evaluate==0.4.2
|
32 |
+
exceptiongroup==1.2.1
|
33 |
+
expecttest==0.2.1
|
34 |
+
filelock==3.14.0
|
35 |
+
frozenlist==1.4.1
|
36 |
+
fsspec==2024.3.1
|
37 |
+
gitdb==4.0.11
|
38 |
+
google-auth-oauthlib==0.4.6
|
39 |
+
google-auth==2.29.0
|
40 |
+
grpcio==1.63.0
|
41 |
+
habana-media-loader==1.15.1.15
|
42 |
+
habana-pyhlml==1.15.1.15
|
43 |
+
habana-torch-dataloader==1.15.1.15
|
44 |
+
habana-torch-plugin==1.15.1.15
|
45 |
+
habana_gpu_migration==1.15.1.15
|
46 |
+
habana_quantization_toolkit==1.15.1.15
|
47 |
+
hjson==3.1.0
|
48 |
+
huggingface-hub==0.23.1
|
49 |
+
identify==2.5.36
|
50 |
+
idna==3.7
|
51 |
+
iniconfig==2.0.0
|
52 |
+
joblib==1.4.2
|
53 |
+
jsonlines==4.0.0
|
54 |
+
lightning-habana==1.4.0
|
55 |
+
lightning-utilities==0.11.2
|
56 |
+
lightning==2.2.0.post0
|
57 |
+
lm_eval==0.4.2
|
58 |
+
lm_eval==0.4.2
|
59 |
+
lm_eval==0.4.2
|
60 |
+
lxml==5.2.2
|
61 |
+
mbstrdecoder==1.1.3
|
62 |
+
more-itertools==10.2.0
|
63 |
+
mpi4py==3.1.4
|
64 |
+
mpmath==1.3.0
|
65 |
+
multidict==6.0.5
|
66 |
+
multiprocess==0.70.16
|
67 |
+
networkx==3.3
|
68 |
+
ninja==1.11.1.1
|
69 |
+
nltk==3.8.1
|
70 |
+
nodeenv==1.8.0
|
71 |
+
numexpr==2.10.0
|
72 |
+
numpy==1.23.5
|
73 |
+
oauthlib==3.2.2
|
74 |
+
packaging==24.0
|
75 |
+
pandas==2.0.1
|
76 |
+
pathspec==0.12.1
|
77 |
+
pathvalidate==3.2.0
|
78 |
+
peft==0.11.1
|
79 |
+
perfetto==0.7.0
|
80 |
+
pillow==10.3.0
|
81 |
+
pip==22.0.2
|
82 |
+
pip==23.3.1
|
83 |
+
platformdirs==4.2.1
|
84 |
+
pluggy==1.5.0
|
85 |
+
portalocker==2.8.2
|
86 |
+
pre-commit==3.3.3
|
87 |
+
pretty-errors==1.2.25
|
88 |
+
protobuf==3.20.3
|
89 |
+
psutil==5.9.8
|
90 |
+
py-cpuinfo==9.0.0
|
91 |
+
pyarrow-hotfix==0.6
|
92 |
+
pyarrow==16.1.0
|
93 |
+
pyasn1==0.6.0
|
94 |
+
pyasn1_modules==0.4.0
|
95 |
+
pybind11==2.10.4
|
96 |
+
pycparser==2.22
|
97 |
+
pydantic==1.10.13
|
98 |
+
pynvml==8.0.4
|
99 |
+
pytablewriter==1.2.0
|
100 |
+
pytest==8.2.0
|
101 |
+
python-dateutil==2.9.0.post0
|
102 |
+
pytorch-lightning==2.2.4
|
103 |
+
pytz==2024.1
|
104 |
+
regex==2023.5.5
|
105 |
+
requests-oauthlib==2.0.0
|
106 |
+
requests==2.31.0
|
107 |
+
rouge_score==0.1.2
|
108 |
+
rsa==4.9
|
109 |
+
sacrebleu==2.4.2
|
110 |
+
safetensors==0.4.3
|
111 |
+
scikit-learn==1.5.0
|
112 |
+
scipy==1.13.1
|
113 |
+
sentencepiece==0.2.0
|
114 |
+
sentry-sdk==2.3.0
|
115 |
+
setproctitle==1.3.3
|
116 |
+
setuptools==59.6.0
|
117 |
+
setuptools==69.5.1
|
118 |
+
six==1.16.0
|
119 |
+
smmap==5.0.1
|
120 |
+
sqlitedict==2.1.0
|
121 |
+
symengine==0.11.0
|
122 |
+
sympy==1.12
|
123 |
+
tabledata==1.3.3
|
124 |
+
tabulate==0.9.0
|
125 |
+
tcolorpy==0.1.6
|
126 |
+
tdqm==0.0.1
|
127 |
+
tensorboard-data-server==0.6.1
|
128 |
+
tensorboard-plugin-wit==1.8.1
|
129 |
+
tensorboard==2.11.2
|
130 |
+
threadpoolctl==3.5.0
|
131 |
+
tokenizers==0.19.1
|
132 |
+
tomli==2.0.1
|
133 |
+
torch==2.2.0a0+git8964477
|
134 |
+
torch_tb_profiler==0.4.0
|
135 |
+
torchaudio==2.2.0+08901ad
|
136 |
+
torchdata==0.7.1+5e6f7b7
|
137 |
+
torchmetrics==1.4.0
|
138 |
+
torchtext==0.17.0+400da5c
|
139 |
+
torchvision==0.17.0+b2383d4
|
140 |
+
tqdm-multiprocess==0.0.11
|
141 |
+
tqdm==4.66.4
|
142 |
+
transformers==4.41.1
|
143 |
+
typepy==1.3.2
|
144 |
+
typing_extensions==4.11.0
|
145 |
+
tzdata==2024.1
|
146 |
+
urllib3==1.26.18
|
147 |
+
virtualenv==20.26.1
|
148 |
+
wandb==0.17.0
|
149 |
+
wheel==0.37.1
|
150 |
+
wheel==0.43.0
|
151 |
+
word2number==1.1
|
152 |
+
xxhash==3.4.1
|
153 |
+
yamllint==1.35.1
|
154 |
+
yarl==1.9.4
|
155 |
+
zstandard==0.22.0
|
lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/wandb-metadata.json
ADDED
@@ -0,0 +1,850 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"os": "Linux-5.15.0-92-generic-x86_64-with-glibc2.35",
|
3 |
+
"python": "3.10.12",
|
4 |
+
"heartbeatAt": "2024-05-23T13:03:26.924960",
|
5 |
+
"startedAt": "2024-05-23T13:03:26.400431",
|
6 |
+
"docker": null,
|
7 |
+
"cuda": null,
|
8 |
+
"args": [
|
9 |
+
"--model",
|
10 |
+
"hf",
|
11 |
+
"--model_args",
|
12 |
+
"pretrained=/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step10000",
|
13 |
+
"--tasks",
|
14 |
+
"hellaswag,arc_easy,openbookqa,winogrande,sst2,mrpc",
|
15 |
+
"--batch_size",
|
16 |
+
"auto",
|
17 |
+
"--wandb_args",
|
18 |
+
"project=bharatgpt,group=trial_expt_2"
|
19 |
+
],
|
20 |
+
"state": "running",
|
21 |
+
"program": "-m lm_eval.__main__",
|
22 |
+
"codePathLocal": null,
|
23 |
+
"git": {
|
24 |
+
"remote": "https://github.com/EleutherAI/lm-evaluation-harness",
|
25 |
+
"commit": null
|
26 |
+
},
|
27 |
+
"email": null,
|
28 |
+
"root": "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness",
|
29 |
+
"host": "peacock-evaluation-worker-0",
|
30 |
+
"username": "root",
|
31 |
+
"executable": "/usr/bin/python3",
|
32 |
+
"cpu_count": 80,
|
33 |
+
"cpu_count_logical": 160,
|
34 |
+
"cpu_freq": {
|
35 |
+
"current": 2332.72725,
|
36 |
+
"min": 800.0,
|
37 |
+
"max": 3400.0
|
38 |
+
},
|
39 |
+
"cpu_freq_per_core": [
|
40 |
+
{
|
41 |
+
"current": 3400.0,
|
42 |
+
"min": 800.0,
|
43 |
+
"max": 3400.0
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"current": 3400.0,
|
47 |
+
"min": 800.0,
|
48 |
+
"max": 3400.0
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"current": 2300.0,
|
52 |
+
"min": 800.0,
|
53 |
+
"max": 3400.0
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"current": 2300.0,
|
57 |
+
"min": 800.0,
|
58 |
+
"max": 3400.0
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"current": 2300.0,
|
62 |
+
"min": 800.0,
|
63 |
+
"max": 3400.0
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"current": 2300.0,
|
67 |
+
"min": 800.0,
|
68 |
+
"max": 3400.0
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"current": 2300.0,
|
72 |
+
"min": 800.0,
|
73 |
+
"max": 3400.0
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"current": 2300.0,
|
77 |
+
"min": 800.0,
|
78 |
+
"max": 3400.0
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"current": 2300.0,
|
82 |
+
"min": 800.0,
|
83 |
+
"max": 3400.0
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"current": 2300.0,
|
87 |
+
"min": 800.0,
|
88 |
+
"max": 3400.0
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"current": 2300.0,
|
92 |
+
"min": 800.0,
|
93 |
+
"max": 3400.0
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"current": 2300.0,
|
97 |
+
"min": 800.0,
|
98 |
+
"max": 3400.0
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"current": 2300.0,
|
102 |
+
"min": 800.0,
|
103 |
+
"max": 3400.0
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"current": 2300.0,
|
107 |
+
"min": 800.0,
|
108 |
+
"max": 3400.0
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"current": 2300.0,
|
112 |
+
"min": 800.0,
|
113 |
+
"max": 3400.0
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"current": 2300.0,
|
117 |
+
"min": 800.0,
|
118 |
+
"max": 3400.0
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"current": 2300.0,
|
122 |
+
"min": 800.0,
|
123 |
+
"max": 3400.0
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"current": 2300.0,
|
127 |
+
"min": 800.0,
|
128 |
+
"max": 3400.0
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"current": 2300.0,
|
132 |
+
"min": 800.0,
|
133 |
+
"max": 3400.0
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"current": 2300.0,
|
137 |
+
"min": 800.0,
|
138 |
+
"max": 3400.0
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"current": 2300.0,
|
142 |
+
"min": 800.0,
|
143 |
+
"max": 3400.0
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"current": 2300.0,
|
147 |
+
"min": 800.0,
|
148 |
+
"max": 3400.0
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"current": 2300.0,
|
152 |
+
"min": 800.0,
|
153 |
+
"max": 3400.0
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"current": 2300.0,
|
157 |
+
"min": 800.0,
|
158 |
+
"max": 3400.0
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"current": 2300.0,
|
162 |
+
"min": 800.0,
|
163 |
+
"max": 3400.0
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"current": 2300.0,
|
167 |
+
"min": 800.0,
|
168 |
+
"max": 3400.0
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"current": 2300.0,
|
172 |
+
"min": 800.0,
|
173 |
+
"max": 3400.0
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"current": 2300.0,
|
177 |
+
"min": 800.0,
|
178 |
+
"max": 3400.0
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"current": 2300.0,
|
182 |
+
"min": 800.0,
|
183 |
+
"max": 3400.0
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"current": 2300.0,
|
187 |
+
"min": 800.0,
|
188 |
+
"max": 3400.0
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"current": 2300.0,
|
192 |
+
"min": 800.0,
|
193 |
+
"max": 3400.0
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"current": 2300.0,
|
197 |
+
"min": 800.0,
|
198 |
+
"max": 3400.0
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"current": 2300.0,
|
202 |
+
"min": 800.0,
|
203 |
+
"max": 3400.0
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"current": 2300.0,
|
207 |
+
"min": 800.0,
|
208 |
+
"max": 3400.0
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"current": 2300.0,
|
212 |
+
"min": 800.0,
|
213 |
+
"max": 3400.0
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"current": 2300.0,
|
217 |
+
"min": 800.0,
|
218 |
+
"max": 3400.0
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"current": 2300.0,
|
222 |
+
"min": 800.0,
|
223 |
+
"max": 3400.0
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"current": 2300.0,
|
227 |
+
"min": 800.0,
|
228 |
+
"max": 3400.0
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"current": 2300.0,
|
232 |
+
"min": 800.0,
|
233 |
+
"max": 3400.0
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"current": 2300.0,
|
237 |
+
"min": 800.0,
|
238 |
+
"max": 3400.0
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"current": 3198.822,
|
242 |
+
"min": 800.0,
|
243 |
+
"max": 3400.0
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"current": 2300.0,
|
247 |
+
"min": 800.0,
|
248 |
+
"max": 3400.0
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"current": 2300.0,
|
252 |
+
"min": 800.0,
|
253 |
+
"max": 3400.0
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"current": 2300.0,
|
257 |
+
"min": 800.0,
|
258 |
+
"max": 3400.0
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"current": 2300.0,
|
262 |
+
"min": 800.0,
|
263 |
+
"max": 3400.0
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"current": 2300.0,
|
267 |
+
"min": 800.0,
|
268 |
+
"max": 3400.0
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"current": 2300.0,
|
272 |
+
"min": 800.0,
|
273 |
+
"max": 3400.0
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"current": 2300.0,
|
277 |
+
"min": 800.0,
|
278 |
+
"max": 3400.0
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"current": 2300.0,
|
282 |
+
"min": 800.0,
|
283 |
+
"max": 3400.0
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"current": 2300.0,
|
287 |
+
"min": 800.0,
|
288 |
+
"max": 3400.0
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"current": 2300.0,
|
292 |
+
"min": 800.0,
|
293 |
+
"max": 3400.0
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"current": 2300.0,
|
297 |
+
"min": 800.0,
|
298 |
+
"max": 3400.0
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"current": 2300.0,
|
302 |
+
"min": 800.0,
|
303 |
+
"max": 3400.0
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"current": 2300.0,
|
307 |
+
"min": 800.0,
|
308 |
+
"max": 3400.0
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"current": 2300.0,
|
312 |
+
"min": 800.0,
|
313 |
+
"max": 3400.0
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"current": 2300.0,
|
317 |
+
"min": 800.0,
|
318 |
+
"max": 3400.0
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"current": 2300.0,
|
322 |
+
"min": 800.0,
|
323 |
+
"max": 3400.0
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"current": 2300.0,
|
327 |
+
"min": 800.0,
|
328 |
+
"max": 3400.0
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"current": 2300.0,
|
332 |
+
"min": 800.0,
|
333 |
+
"max": 3400.0
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"current": 2300.0,
|
337 |
+
"min": 800.0,
|
338 |
+
"max": 3400.0
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"current": 2300.0,
|
342 |
+
"min": 800.0,
|
343 |
+
"max": 3400.0
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"current": 2300.0,
|
347 |
+
"min": 800.0,
|
348 |
+
"max": 3400.0
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"current": 2300.0,
|
352 |
+
"min": 800.0,
|
353 |
+
"max": 3400.0
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"current": 2300.0,
|
357 |
+
"min": 800.0,
|
358 |
+
"max": 3400.0
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"current": 2300.0,
|
362 |
+
"min": 800.0,
|
363 |
+
"max": 3400.0
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"current": 2300.0,
|
367 |
+
"min": 800.0,
|
368 |
+
"max": 3400.0
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"current": 2300.0,
|
372 |
+
"min": 800.0,
|
373 |
+
"max": 3400.0
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"current": 2300.0,
|
377 |
+
"min": 800.0,
|
378 |
+
"max": 3400.0
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"current": 2300.0,
|
382 |
+
"min": 800.0,
|
383 |
+
"max": 3400.0
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"current": 2300.0,
|
387 |
+
"min": 800.0,
|
388 |
+
"max": 3400.0
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"current": 2300.0,
|
392 |
+
"min": 800.0,
|
393 |
+
"max": 3400.0
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"current": 2300.0,
|
397 |
+
"min": 800.0,
|
398 |
+
"max": 3400.0
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"current": 2300.0,
|
402 |
+
"min": 800.0,
|
403 |
+
"max": 3400.0
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"current": 2300.0,
|
407 |
+
"min": 800.0,
|
408 |
+
"max": 3400.0
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"current": 2300.0,
|
412 |
+
"min": 800.0,
|
413 |
+
"max": 3400.0
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"current": 2300.0,
|
417 |
+
"min": 800.0,
|
418 |
+
"max": 3400.0
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"current": 2300.0,
|
422 |
+
"min": 800.0,
|
423 |
+
"max": 3400.0
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"current": 2300.0,
|
427 |
+
"min": 800.0,
|
428 |
+
"max": 3400.0
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"current": 2300.0,
|
432 |
+
"min": 800.0,
|
433 |
+
"max": 3400.0
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"current": 2300.0,
|
437 |
+
"min": 800.0,
|
438 |
+
"max": 3400.0
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"current": 3400.0,
|
442 |
+
"min": 800.0,
|
443 |
+
"max": 3400.0
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"current": 2300.0,
|
447 |
+
"min": 800.0,
|
448 |
+
"max": 3400.0
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"current": 2300.0,
|
452 |
+
"min": 800.0,
|
453 |
+
"max": 3400.0
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"current": 2300.0,
|
457 |
+
"min": 800.0,
|
458 |
+
"max": 3400.0
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"current": 2300.0,
|
462 |
+
"min": 800.0,
|
463 |
+
"max": 3400.0
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"current": 2300.0,
|
467 |
+
"min": 800.0,
|
468 |
+
"max": 3400.0
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"current": 2300.0,
|
472 |
+
"min": 800.0,
|
473 |
+
"max": 3400.0
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"current": 2300.0,
|
477 |
+
"min": 800.0,
|
478 |
+
"max": 3400.0
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"current": 2300.0,
|
482 |
+
"min": 800.0,
|
483 |
+
"max": 3400.0
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"current": 2300.0,
|
487 |
+
"min": 800.0,
|
488 |
+
"max": 3400.0
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"current": 2300.0,
|
492 |
+
"min": 800.0,
|
493 |
+
"max": 3400.0
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"current": 2300.0,
|
497 |
+
"min": 800.0,
|
498 |
+
"max": 3400.0
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"current": 2300.0,
|
502 |
+
"min": 800.0,
|
503 |
+
"max": 3400.0
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"current": 2300.0,
|
507 |
+
"min": 800.0,
|
508 |
+
"max": 3400.0
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"current": 2300.0,
|
512 |
+
"min": 800.0,
|
513 |
+
"max": 3400.0
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"current": 2300.0,
|
517 |
+
"min": 800.0,
|
518 |
+
"max": 3400.0
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"current": 2300.0,
|
522 |
+
"min": 800.0,
|
523 |
+
"max": 3400.0
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"current": 2300.0,
|
527 |
+
"min": 800.0,
|
528 |
+
"max": 3400.0
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"current": 2300.0,
|
532 |
+
"min": 800.0,
|
533 |
+
"max": 3400.0
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"current": 2300.0,
|
537 |
+
"min": 800.0,
|
538 |
+
"max": 3400.0
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"current": 2300.0,
|
542 |
+
"min": 800.0,
|
543 |
+
"max": 3400.0
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"current": 2300.0,
|
547 |
+
"min": 800.0,
|
548 |
+
"max": 3400.0
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"current": 2300.0,
|
552 |
+
"min": 800.0,
|
553 |
+
"max": 3400.0
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"current": 2300.0,
|
557 |
+
"min": 800.0,
|
558 |
+
"max": 3400.0
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"current": 2300.0,
|
562 |
+
"min": 800.0,
|
563 |
+
"max": 3400.0
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"current": 2300.0,
|
567 |
+
"min": 800.0,
|
568 |
+
"max": 3400.0
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"current": 2300.0,
|
572 |
+
"min": 800.0,
|
573 |
+
"max": 3400.0
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"current": 2300.0,
|
577 |
+
"min": 800.0,
|
578 |
+
"max": 3400.0
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"current": 2300.0,
|
582 |
+
"min": 800.0,
|
583 |
+
"max": 3400.0
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"current": 2300.0,
|
587 |
+
"min": 800.0,
|
588 |
+
"max": 3400.0
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"current": 2300.0,
|
592 |
+
"min": 800.0,
|
593 |
+
"max": 3400.0
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"current": 2300.0,
|
597 |
+
"min": 800.0,
|
598 |
+
"max": 3400.0
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"current": 2300.0,
|
602 |
+
"min": 800.0,
|
603 |
+
"max": 3400.0
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"current": 2300.0,
|
607 |
+
"min": 800.0,
|
608 |
+
"max": 3400.0
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"current": 2300.0,
|
612 |
+
"min": 800.0,
|
613 |
+
"max": 3400.0
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"current": 2300.0,
|
617 |
+
"min": 800.0,
|
618 |
+
"max": 3400.0
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"current": 2300.0,
|
622 |
+
"min": 800.0,
|
623 |
+
"max": 3400.0
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"current": 2300.0,
|
627 |
+
"min": 800.0,
|
628 |
+
"max": 3400.0
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"current": 2300.0,
|
632 |
+
"min": 800.0,
|
633 |
+
"max": 3400.0
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"current": 2300.0,
|
637 |
+
"min": 800.0,
|
638 |
+
"max": 3400.0
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"current": 2300.0,
|
642 |
+
"min": 800.0,
|
643 |
+
"max": 3400.0
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"current": 2300.0,
|
647 |
+
"min": 800.0,
|
648 |
+
"max": 3400.0
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"current": 2300.0,
|
652 |
+
"min": 800.0,
|
653 |
+
"max": 3400.0
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"current": 2300.0,
|
657 |
+
"min": 800.0,
|
658 |
+
"max": 3400.0
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"current": 2300.0,
|
662 |
+
"min": 800.0,
|
663 |
+
"max": 3400.0
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"current": 2300.0,
|
667 |
+
"min": 800.0,
|
668 |
+
"max": 3400.0
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"current": 2300.0,
|
672 |
+
"min": 800.0,
|
673 |
+
"max": 3400.0
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"current": 2300.0,
|
677 |
+
"min": 800.0,
|
678 |
+
"max": 3400.0
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"current": 2300.0,
|
682 |
+
"min": 800.0,
|
683 |
+
"max": 3400.0
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"current": 2300.0,
|
687 |
+
"min": 800.0,
|
688 |
+
"max": 3400.0
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"current": 2300.0,
|
692 |
+
"min": 800.0,
|
693 |
+
"max": 3400.0
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"current": 2300.0,
|
697 |
+
"min": 800.0,
|
698 |
+
"max": 3400.0
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"current": 2300.0,
|
702 |
+
"min": 800.0,
|
703 |
+
"max": 3400.0
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"current": 2300.0,
|
707 |
+
"min": 800.0,
|
708 |
+
"max": 3400.0
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"current": 2300.0,
|
712 |
+
"min": 800.0,
|
713 |
+
"max": 3400.0
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"current": 2300.0,
|
717 |
+
"min": 800.0,
|
718 |
+
"max": 3400.0
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"current": 2300.0,
|
722 |
+
"min": 800.0,
|
723 |
+
"max": 3400.0
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"current": 2300.0,
|
727 |
+
"min": 800.0,
|
728 |
+
"max": 3400.0
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"current": 2300.0,
|
732 |
+
"min": 800.0,
|
733 |
+
"max": 3400.0
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"current": 2300.0,
|
737 |
+
"min": 800.0,
|
738 |
+
"max": 3400.0
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"current": 2300.0,
|
742 |
+
"min": 800.0,
|
743 |
+
"max": 3400.0
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"current": 2300.0,
|
747 |
+
"min": 800.0,
|
748 |
+
"max": 3400.0
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"current": 2300.0,
|
752 |
+
"min": 800.0,
|
753 |
+
"max": 3400.0
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"current": 2300.0,
|
757 |
+
"min": 800.0,
|
758 |
+
"max": 3400.0
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"current": 2300.0,
|
762 |
+
"min": 800.0,
|
763 |
+
"max": 3400.0
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"current": 2300.0,
|
767 |
+
"min": 800.0,
|
768 |
+
"max": 3400.0
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"current": 2300.0,
|
772 |
+
"min": 800.0,
|
773 |
+
"max": 3400.0
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"current": 2300.0,
|
777 |
+
"min": 800.0,
|
778 |
+
"max": 3400.0
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"current": 2300.0,
|
782 |
+
"min": 800.0,
|
783 |
+
"max": 3400.0
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"current": 2300.0,
|
787 |
+
"min": 800.0,
|
788 |
+
"max": 3400.0
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"current": 2300.0,
|
792 |
+
"min": 800.0,
|
793 |
+
"max": 3400.0
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"current": 2300.0,
|
797 |
+
"min": 800.0,
|
798 |
+
"max": 3400.0
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"current": 2300.0,
|
802 |
+
"min": 800.0,
|
803 |
+
"max": 3400.0
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"current": 2300.0,
|
807 |
+
"min": 800.0,
|
808 |
+
"max": 3400.0
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"current": 2300.0,
|
812 |
+
"min": 800.0,
|
813 |
+
"max": 3400.0
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"current": 2300.0,
|
817 |
+
"min": 800.0,
|
818 |
+
"max": 3400.0
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"current": 2300.0,
|
822 |
+
"min": 800.0,
|
823 |
+
"max": 3400.0
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"current": 2300.0,
|
827 |
+
"min": 800.0,
|
828 |
+
"max": 3400.0
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"current": 2300.0,
|
832 |
+
"min": 800.0,
|
833 |
+
"max": 3400.0
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"current": 2300.0,
|
837 |
+
"min": 800.0,
|
838 |
+
"max": 3400.0
|
839 |
+
}
|
840 |
+
],
|
841 |
+
"disk": {
|
842 |
+
"/": {
|
843 |
+
"total": 877.6341285705566,
|
844 |
+
"used": 211.61690521240234
|
845 |
+
}
|
846 |
+
},
|
847 |
+
"memory": {
|
848 |
+
"total": 1007.4379539489746
|
849 |
+
}
|
850 |
+
}
|
lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/wandb-summary.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"_wandb": {"runtime": 11}}
|
lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/logs/debug-internal.log
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-23 13:03:26,421 INFO StreamThr :1072 [internal.py:wandb_internal():85] W&B internal server running at pid: 1072, started at: 2024-05-23 13:03:26.419743
|
2 |
+
2024-05-23 13:03:26,426 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: status
|
3 |
+
2024-05-23 13:03:26,427 INFO WriterThread:1072 [datastore.py:open_for_write():87] open: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/run-1oo0voi6.wandb
|
4 |
+
2024-05-23 13:03:26,429 DEBUG SenderThread:1072 [sender.py:send():378] send: header
|
5 |
+
2024-05-23 13:03:26,433 DEBUG SenderThread:1072 [sender.py:send():378] send: run
|
6 |
+
2024-05-23 13:03:26,724 INFO SenderThread:1072 [dir_watcher.py:__init__():211] watching files in: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files
|
7 |
+
2024-05-23 13:03:26,725 INFO SenderThread:1072 [sender.py:_start_run_threads():1123] run started: 1oo0voi6 with start time 1716469406.420894
|
8 |
+
2024-05-23 13:03:26,726 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: check_version
|
9 |
+
2024-05-23 13:03:26,726 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: check_version
|
10 |
+
2024-05-23 13:03:26,850 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: run_start
|
11 |
+
2024-05-23 13:03:26,852 DEBUG HandlerThread:1072 [system_info.py:__init__():26] System info init
|
12 |
+
2024-05-23 13:03:26,852 DEBUG HandlerThread:1072 [system_info.py:__init__():41] System info init done
|
13 |
+
2024-05-23 13:03:26,852 INFO HandlerThread:1072 [system_monitor.py:start():194] Starting system monitor
|
14 |
+
2024-05-23 13:03:26,852 INFO SystemMonitor:1072 [system_monitor.py:_start():158] Starting system asset monitoring threads
|
15 |
+
2024-05-23 13:03:26,853 INFO HandlerThread:1072 [system_monitor.py:probe():214] Collecting system info
|
16 |
+
2024-05-23 13:03:26,859 INFO SystemMonitor:1072 [interfaces.py:start():188] Started cpu monitoring
|
17 |
+
2024-05-23 13:03:26,860 INFO SystemMonitor:1072 [interfaces.py:start():188] Started disk monitoring
|
18 |
+
2024-05-23 13:03:26,860 INFO SystemMonitor:1072 [interfaces.py:start():188] Started memory monitoring
|
19 |
+
2024-05-23 13:03:26,860 INFO SystemMonitor:1072 [interfaces.py:start():188] Started network monitoring
|
20 |
+
2024-05-23 13:03:26,924 DEBUG HandlerThread:1072 [system_info.py:probe():150] Probing system
|
21 |
+
2024-05-23 13:03:26,928 DEBUG HandlerThread:1072 [system_info.py:_probe_git():135] Probing git
|
22 |
+
2024-05-23 13:03:26,938 ERROR HandlerThread:1072 [gitlib.py:root():92] git root error: Cmd('git') failed due to: exit code(128)
|
23 |
+
cmdline: git rev-parse --show-toplevel
|
24 |
+
stderr: 'fatal: detected dubious ownership in repository at '/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness'
|
25 |
+
To add an exception for this directory, call:
|
26 |
+
|
27 |
+
git config --global --add safe.directory /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness'
|
28 |
+
2024-05-23 13:03:26,938 DEBUG HandlerThread:1072 [system_info.py:_probe_git():143] Probing git done
|
29 |
+
2024-05-23 13:03:26,938 DEBUG HandlerThread:1072 [system_info.py:probe():198] Probing system done
|
30 |
+
2024-05-23 13:03:26,938 DEBUG HandlerThread:1072 [system_monitor.py:probe():223] {'os': 'Linux-5.15.0-92-generic-x86_64-with-glibc2.35', 'python': '3.10.12', 'heartbeatAt': '2024-05-23T13:03:26.924960', 'startedAt': '2024-05-23T13:03:26.400431', 'docker': None, 'cuda': None, 'args': ('--model', 'hf', '--model_args', 'pretrained=/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step10000', '--tasks', 'hellaswag,arc_easy,openbookqa,winogrande,sst2,mrpc', '--batch_size', 'auto', '--wandb_args', 'project=bharatgpt,group=trial_expt_2'), 'state': 'running', 'program': '-m lm_eval.__main__', 'codePathLocal': None, 'git': {'remote': 'https://github.com/EleutherAI/lm-evaluation-harness', 'commit': None}, 'email': None, 'root': '/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness', 'host': 'peacock-evaluation-worker-0', 'username': 'root', 'executable': '/usr/bin/python3', 'cpu_count': 80, 'cpu_count_logical': 160, 'cpu_freq': {'current': 2332.72725, 'min': 800.0, 'max': 3400.0}, 'cpu_freq_per_core': [{'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3198.822, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}], 'disk': {'/': {'total': 877.6341285705566, 'used': 211.61690521240234}}, 'memory': {'total': 1007.4379539489746}}
|
31 |
+
2024-05-23 13:03:26,938 INFO HandlerThread:1072 [system_monitor.py:probe():224] Finished collecting system info
|
32 |
+
2024-05-23 13:03:26,938 INFO HandlerThread:1072 [system_monitor.py:probe():227] Publishing system info
|
33 |
+
2024-05-23 13:03:26,941 INFO HandlerThread:1072 [system_monitor.py:probe():229] Finished publishing system info
|
34 |
+
2024-05-23 13:03:26,946 DEBUG SenderThread:1072 [sender.py:send():378] send: files
|
35 |
+
2024-05-23 13:03:26,946 INFO SenderThread:1072 [sender.py:_save_file():1389] saving file wandb-metadata.json with policy now
|
36 |
+
2024-05-23 13:03:27,125 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: python_packages
|
37 |
+
2024-05-23 13:03:27,125 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: python_packages
|
38 |
+
2024-05-23 13:03:27,126 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: stop_status
|
39 |
+
2024-05-23 13:03:27,127 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: stop_status
|
40 |
+
2024-05-23 13:03:27,218 DEBUG SenderThread:1072 [sender.py:send():378] send: telemetry
|
41 |
+
2024-05-23 13:03:27,522 INFO wandb-upload_0:1072 [upload_job.py:push():130] Uploaded file /tmp/tmpzbrvci8cwandb/r70fz28y-wandb-metadata.json
|
42 |
+
2024-05-23 13:03:27,725 INFO Thread-12 :1072 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/wandb-metadata.json
|
43 |
+
2024-05-23 13:03:27,725 INFO Thread-12 :1072 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/output.log
|
44 |
+
2024-05-23 13:03:27,726 INFO Thread-12 :1072 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/requirements.txt
|
45 |
+
2024-05-23 13:03:29,725 INFO Thread-12 :1072 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/output.log
|
46 |
+
2024-05-23 13:03:32,223 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: status_report
|
47 |
+
2024-05-23 13:03:37,585 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: status_report
|
48 |
+
2024-05-23 13:03:37,732 INFO Thread-12 :1072 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/output.log
|
49 |
+
2024-05-23 13:03:37,887 DEBUG SenderThread:1072 [sender.py:send():378] send: exit
|
50 |
+
2024-05-23 13:03:37,887 INFO SenderThread:1072 [sender.py:send_exit():585] handling exit code: 1
|
51 |
+
2024-05-23 13:03:37,887 INFO SenderThread:1072 [sender.py:send_exit():587] handling runtime: 11
|
52 |
+
2024-05-23 13:03:37,889 INFO SenderThread:1072 [sender.py:_save_file():1389] saving file wandb-summary.json with policy end
|
53 |
+
2024-05-23 13:03:37,889 INFO SenderThread:1072 [sender.py:send_exit():593] send defer
|
54 |
+
2024-05-23 13:03:37,889 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: defer
|
55 |
+
2024-05-23 13:03:37,889 INFO HandlerThread:1072 [handler.py:handle_request_defer():184] handle defer: 0
|
56 |
+
2024-05-23 13:03:37,890 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: defer
|
57 |
+
2024-05-23 13:03:37,890 INFO SenderThread:1072 [sender.py:send_request_defer():609] handle sender defer: 0
|
58 |
+
2024-05-23 13:03:37,890 INFO SenderThread:1072 [sender.py:transition_state():613] send defer: 1
|
59 |
+
2024-05-23 13:03:37,890 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: defer
|
60 |
+
2024-05-23 13:03:37,890 INFO HandlerThread:1072 [handler.py:handle_request_defer():184] handle defer: 1
|
61 |
+
2024-05-23 13:03:37,890 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: defer
|
62 |
+
2024-05-23 13:03:37,890 INFO SenderThread:1072 [sender.py:send_request_defer():609] handle sender defer: 1
|
63 |
+
2024-05-23 13:03:37,890 INFO SenderThread:1072 [sender.py:transition_state():613] send defer: 2
|
64 |
+
2024-05-23 13:03:37,890 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: defer
|
65 |
+
2024-05-23 13:03:37,890 INFO HandlerThread:1072 [handler.py:handle_request_defer():184] handle defer: 2
|
66 |
+
2024-05-23 13:03:37,890 INFO HandlerThread:1072 [system_monitor.py:finish():203] Stopping system monitor
|
67 |
+
2024-05-23 13:03:37,890 DEBUG SystemMonitor:1072 [system_monitor.py:_start():172] Starting system metrics aggregation loop
|
68 |
+
2024-05-23 13:03:37,890 DEBUG SystemMonitor:1072 [system_monitor.py:_start():179] Finished system metrics aggregation loop
|
69 |
+
2024-05-23 13:03:37,891 DEBUG SystemMonitor:1072 [system_monitor.py:_start():183] Publishing last batch of metrics
|
70 |
+
2024-05-23 13:03:37,893 INFO HandlerThread:1072 [interfaces.py:finish():200] Joined cpu monitor
|
71 |
+
2024-05-23 13:03:37,893 INFO HandlerThread:1072 [interfaces.py:finish():200] Joined disk monitor
|
72 |
+
2024-05-23 13:03:37,893 INFO HandlerThread:1072 [interfaces.py:finish():200] Joined memory monitor
|
73 |
+
2024-05-23 13:03:37,894 INFO HandlerThread:1072 [interfaces.py:finish():200] Joined network monitor
|
74 |
+
2024-05-23 13:03:37,894 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: defer
|
75 |
+
2024-05-23 13:03:37,894 INFO SenderThread:1072 [sender.py:send_request_defer():609] handle sender defer: 2
|
76 |
+
2024-05-23 13:03:37,894 INFO SenderThread:1072 [sender.py:transition_state():613] send defer: 3
|
77 |
+
2024-05-23 13:03:37,894 DEBUG SenderThread:1072 [sender.py:send():378] send: stats
|
78 |
+
2024-05-23 13:03:37,895 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: defer
|
79 |
+
2024-05-23 13:03:37,895 INFO HandlerThread:1072 [handler.py:handle_request_defer():184] handle defer: 3
|
80 |
+
2024-05-23 13:03:37,895 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: defer
|
81 |
+
2024-05-23 13:03:37,895 INFO SenderThread:1072 [sender.py:send_request_defer():609] handle sender defer: 3
|
82 |
+
2024-05-23 13:03:37,896 INFO SenderThread:1072 [sender.py:transition_state():613] send defer: 4
|
83 |
+
2024-05-23 13:03:37,896 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: defer
|
84 |
+
2024-05-23 13:03:37,896 INFO HandlerThread:1072 [handler.py:handle_request_defer():184] handle defer: 4
|
85 |
+
2024-05-23 13:03:37,896 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: defer
|
86 |
+
2024-05-23 13:03:37,896 INFO SenderThread:1072 [sender.py:send_request_defer():609] handle sender defer: 4
|
87 |
+
2024-05-23 13:03:37,896 INFO SenderThread:1072 [sender.py:transition_state():613] send defer: 5
|
88 |
+
2024-05-23 13:03:37,896 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: defer
|
89 |
+
2024-05-23 13:03:37,896 INFO HandlerThread:1072 [handler.py:handle_request_defer():184] handle defer: 5
|
90 |
+
2024-05-23 13:03:37,896 DEBUG SenderThread:1072 [sender.py:send():378] send: summary
|
91 |
+
2024-05-23 13:03:37,897 INFO SenderThread:1072 [sender.py:_save_file():1389] saving file wandb-summary.json with policy end
|
92 |
+
2024-05-23 13:03:37,897 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: defer
|
93 |
+
2024-05-23 13:03:37,897 INFO SenderThread:1072 [sender.py:send_request_defer():609] handle sender defer: 5
|
94 |
+
2024-05-23 13:03:37,897 INFO SenderThread:1072 [sender.py:transition_state():613] send defer: 6
|
95 |
+
2024-05-23 13:03:37,897 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: defer
|
96 |
+
2024-05-23 13:03:37,897 INFO HandlerThread:1072 [handler.py:handle_request_defer():184] handle defer: 6
|
97 |
+
2024-05-23 13:03:37,897 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: defer
|
98 |
+
2024-05-23 13:03:37,897 INFO SenderThread:1072 [sender.py:send_request_defer():609] handle sender defer: 6
|
99 |
+
2024-05-23 13:03:37,902 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: status_report
|
100 |
+
2024-05-23 13:03:37,997 INFO SenderThread:1072 [sender.py:transition_state():613] send defer: 7
|
101 |
+
2024-05-23 13:03:37,997 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: defer
|
102 |
+
2024-05-23 13:03:37,997 INFO HandlerThread:1072 [handler.py:handle_request_defer():184] handle defer: 7
|
103 |
+
2024-05-23 13:03:37,997 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: defer
|
104 |
+
2024-05-23 13:03:37,998 INFO SenderThread:1072 [sender.py:send_request_defer():609] handle sender defer: 7
|
105 |
+
2024-05-23 13:03:38,733 INFO Thread-12 :1072 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/config.yaml
|
106 |
+
2024-05-23 13:03:38,734 INFO Thread-12 :1072 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/wandb-summary.json
|
107 |
+
2024-05-23 13:03:38,887 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: poll_exit
|
108 |
+
2024-05-23 13:03:39,246 INFO SenderThread:1072 [sender.py:transition_state():613] send defer: 8
|
109 |
+
2024-05-23 13:03:39,246 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: poll_exit
|
110 |
+
2024-05-23 13:03:39,246 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: defer
|
111 |
+
2024-05-23 13:03:39,246 INFO HandlerThread:1072 [handler.py:handle_request_defer():184] handle defer: 8
|
112 |
+
2024-05-23 13:03:39,246 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: defer
|
113 |
+
2024-05-23 13:03:39,246 INFO SenderThread:1072 [sender.py:send_request_defer():609] handle sender defer: 8
|
114 |
+
2024-05-23 13:03:39,246 INFO SenderThread:1072 [job_builder.py:build():432] Attempting to build job artifact
|
115 |
+
2024-05-23 13:03:39,247 INFO SenderThread:1072 [job_builder.py:_get_source_type():576] no source found
|
116 |
+
2024-05-23 13:03:39,247 INFO SenderThread:1072 [sender.py:transition_state():613] send defer: 9
|
117 |
+
2024-05-23 13:03:39,247 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: defer
|
118 |
+
2024-05-23 13:03:39,247 INFO HandlerThread:1072 [handler.py:handle_request_defer():184] handle defer: 9
|
119 |
+
2024-05-23 13:03:39,247 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: defer
|
120 |
+
2024-05-23 13:03:39,247 INFO SenderThread:1072 [sender.py:send_request_defer():609] handle sender defer: 9
|
121 |
+
2024-05-23 13:03:39,247 INFO SenderThread:1072 [dir_watcher.py:finish():358] shutting down directory watcher
|
122 |
+
2024-05-23 13:03:39,735 INFO SenderThread:1072 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/output.log
|
123 |
+
2024-05-23 13:03:39,735 INFO SenderThread:1072 [dir_watcher.py:finish():388] scan: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files
|
124 |
+
2024-05-23 13:03:39,735 INFO SenderThread:1072 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/wandb-summary.json wandb-summary.json
|
125 |
+
2024-05-23 13:03:39,735 INFO SenderThread:1072 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/wandb-metadata.json wandb-metadata.json
|
126 |
+
2024-05-23 13:03:39,736 INFO SenderThread:1072 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/requirements.txt requirements.txt
|
127 |
+
2024-05-23 13:03:39,738 INFO SenderThread:1072 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/output.log output.log
|
128 |
+
2024-05-23 13:03:39,740 INFO SenderThread:1072 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/config.yaml config.yaml
|
129 |
+
2024-05-23 13:03:39,742 INFO SenderThread:1072 [sender.py:transition_state():613] send defer: 10
|
130 |
+
2024-05-23 13:03:39,743 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: defer
|
131 |
+
2024-05-23 13:03:39,743 INFO HandlerThread:1072 [handler.py:handle_request_defer():184] handle defer: 10
|
132 |
+
2024-05-23 13:03:39,743 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: defer
|
133 |
+
2024-05-23 13:03:39,745 INFO SenderThread:1072 [sender.py:send_request_defer():609] handle sender defer: 10
|
134 |
+
2024-05-23 13:03:39,745 INFO SenderThread:1072 [file_pusher.py:finish():169] shutting down file pusher
|
135 |
+
2024-05-23 13:03:39,888 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: poll_exit
|
136 |
+
2024-05-23 13:03:39,888 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: poll_exit
|
137 |
+
2024-05-23 13:03:40,056 INFO wandb-upload_0:1072 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/wandb-summary.json
|
138 |
+
2024-05-23 13:03:40,347 INFO wandb-upload_2:1072 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/output.log
|
139 |
+
2024-05-23 13:03:40,355 INFO wandb-upload_1:1072 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/requirements.txt
|
140 |
+
2024-05-23 13:03:40,407 INFO wandb-upload_3:1072 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/files/config.yaml
|
141 |
+
2024-05-23 13:03:40,607 INFO Thread-11 (_thread_body):1072 [sender.py:transition_state():613] send defer: 11
|
142 |
+
2024-05-23 13:03:40,608 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: defer
|
143 |
+
2024-05-23 13:03:40,608 INFO HandlerThread:1072 [handler.py:handle_request_defer():184] handle defer: 11
|
144 |
+
2024-05-23 13:03:40,608 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: defer
|
145 |
+
2024-05-23 13:03:40,608 INFO SenderThread:1072 [sender.py:send_request_defer():609] handle sender defer: 11
|
146 |
+
2024-05-23 13:03:40,608 INFO SenderThread:1072 [file_pusher.py:join():175] waiting for file pusher
|
147 |
+
2024-05-23 13:03:40,608 INFO SenderThread:1072 [sender.py:transition_state():613] send defer: 12
|
148 |
+
2024-05-23 13:03:40,608 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: defer
|
149 |
+
2024-05-23 13:03:40,608 INFO HandlerThread:1072 [handler.py:handle_request_defer():184] handle defer: 12
|
150 |
+
2024-05-23 13:03:40,609 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: defer
|
151 |
+
2024-05-23 13:03:40,609 INFO SenderThread:1072 [sender.py:send_request_defer():609] handle sender defer: 12
|
152 |
+
2024-05-23 13:03:40,609 INFO SenderThread:1072 [file_stream.py:finish():601] file stream finish called
|
153 |
+
2024-05-23 13:03:40,670 INFO SenderThread:1072 [file_stream.py:finish():605] file stream finish is done
|
154 |
+
2024-05-23 13:03:40,670 INFO SenderThread:1072 [sender.py:transition_state():613] send defer: 13
|
155 |
+
2024-05-23 13:03:40,670 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: defer
|
156 |
+
2024-05-23 13:03:40,670 INFO HandlerThread:1072 [handler.py:handle_request_defer():184] handle defer: 13
|
157 |
+
2024-05-23 13:03:40,671 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: defer
|
158 |
+
2024-05-23 13:03:40,671 INFO SenderThread:1072 [sender.py:send_request_defer():609] handle sender defer: 13
|
159 |
+
2024-05-23 13:03:40,671 INFO SenderThread:1072 [sender.py:transition_state():613] send defer: 14
|
160 |
+
2024-05-23 13:03:40,671 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: defer
|
161 |
+
2024-05-23 13:03:40,671 INFO HandlerThread:1072 [handler.py:handle_request_defer():184] handle defer: 14
|
162 |
+
2024-05-23 13:03:40,671 DEBUG SenderThread:1072 [sender.py:send():378] send: final
|
163 |
+
2024-05-23 13:03:40,671 DEBUG SenderThread:1072 [sender.py:send():378] send: footer
|
164 |
+
2024-05-23 13:03:40,671 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: defer
|
165 |
+
2024-05-23 13:03:40,671 INFO SenderThread:1072 [sender.py:send_request_defer():609] handle sender defer: 14
|
166 |
+
2024-05-23 13:03:40,672 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: poll_exit
|
167 |
+
2024-05-23 13:03:40,672 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: poll_exit
|
168 |
+
2024-05-23 13:03:40,672 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: poll_exit
|
169 |
+
2024-05-23 13:03:40,672 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: server_info
|
170 |
+
2024-05-23 13:03:40,672 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: get_summary
|
171 |
+
2024-05-23 13:03:40,672 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: sampled_history
|
172 |
+
2024-05-23 13:03:40,673 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: internal_messages
|
173 |
+
2024-05-23 13:03:40,673 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: poll_exit
|
174 |
+
2024-05-23 13:03:40,673 DEBUG SenderThread:1072 [sender.py:send_request():405] send_request: server_info
|
175 |
+
2024-05-23 13:03:40,727 INFO MainThread:1072 [wandb_run.py:_footer_history_summary_info():3994] rendering history
|
176 |
+
2024-05-23 13:03:40,727 INFO MainThread:1072 [wandb_run.py:_footer_history_summary_info():4026] rendering summary
|
177 |
+
2024-05-23 13:03:40,727 INFO MainThread:1072 [wandb_run.py:_footer_sync_info():3953] logging synced files
|
178 |
+
2024-05-23 13:03:40,727 DEBUG HandlerThread:1072 [handler.py:handle_request():158] handle_request: shutdown
|
179 |
+
2024-05-23 13:03:40,728 INFO HandlerThread:1072 [handler.py:finish():882] shutting down handler
|
180 |
+
2024-05-23 13:03:41,673 INFO WriterThread:1072 [datastore.py:close():296] close: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/run-1oo0voi6.wandb
|
181 |
+
2024-05-23 13:03:41,727 INFO SenderThread:1072 [sender.py:finish():1545] shutting down sender
|
182 |
+
2024-05-23 13:03:41,727 INFO SenderThread:1072 [file_pusher.py:finish():169] shutting down file pusher
|
183 |
+
2024-05-23 13:03:41,727 INFO SenderThread:1072 [file_pusher.py:join():175] waiting for file pusher
|
lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/logs/debug.log
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-23 13:03:26,415 INFO MainThread:917 [wandb_setup.py:_flush():76] Current SDK version is 0.17.0
|
2 |
+
2024-05-23 13:03:26,415 INFO MainThread:917 [wandb_setup.py:_flush():76] Configure stats pid to 917
|
3 |
+
2024-05-23 13:03:26,415 INFO MainThread:917 [wandb_setup.py:_flush():76] Loading settings from /root/.config/wandb/settings
|
4 |
+
2024-05-23 13:03:26,415 INFO MainThread:917 [wandb_setup.py:_flush():76] Loading settings from /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/settings
|
5 |
+
2024-05-23 13:03:26,415 INFO MainThread:917 [wandb_setup.py:_flush():76] Loading settings from environment variables: {}
|
6 |
+
2024-05-23 13:03:26,415 INFO MainThread:917 [wandb_setup.py:_flush():76] Applying setup settings: {'_disable_service': False}
|
7 |
+
2024-05-23 13:03:26,415 WARNING MainThread:917 [wandb_setup.py:_flush():76] Could not find program at -m lm_eval.__main__
|
8 |
+
2024-05-23 13:03:26,415 INFO MainThread:917 [wandb_setup.py:_flush():76] Inferring run settings from compute environment: {'program_relpath': None, 'program': '-m lm_eval.__main__'}
|
9 |
+
2024-05-23 13:03:26,416 INFO MainThread:917 [wandb_setup.py:_flush():76] Applying login settings: {}
|
10 |
+
2024-05-23 13:03:26,416 INFO MainThread:917 [wandb_init.py:_log_setup():520] Logging user logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/logs/debug.log
|
11 |
+
2024-05-23 13:03:26,416 INFO MainThread:917 [wandb_init.py:_log_setup():521] Logging internal logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/logs/debug-internal.log
|
12 |
+
2024-05-23 13:03:26,416 INFO MainThread:917 [wandb_init.py:init():560] calling init triggers
|
13 |
+
2024-05-23 13:03:26,416 INFO MainThread:917 [wandb_init.py:init():567] wandb.init called with sweep_config: {}
|
14 |
+
config: {}
|
15 |
+
2024-05-23 13:03:26,416 INFO MainThread:917 [wandb_init.py:init():610] starting backend
|
16 |
+
2024-05-23 13:03:26,416 INFO MainThread:917 [wandb_init.py:init():614] setting up manager
|
17 |
+
2024-05-23 13:03:26,419 INFO MainThread:917 [backend.py:_multiprocessing_setup():105] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
|
18 |
+
2024-05-23 13:03:26,420 INFO MainThread:917 [wandb_init.py:init():622] backend started and connected
|
19 |
+
2024-05-23 13:03:26,424 INFO MainThread:917 [wandb_init.py:init():711] updated telemetry
|
20 |
+
2024-05-23 13:03:26,432 INFO MainThread:917 [wandb_init.py:init():744] communicating run to backend with 90.0 second timeout
|
21 |
+
2024-05-23 13:03:26,726 INFO MainThread:917 [wandb_run.py:_on_init():2396] communicating current version
|
22 |
+
2024-05-23 13:03:26,843 INFO MainThread:917 [wandb_run.py:_on_init():2405] got version response
|
23 |
+
2024-05-23 13:03:26,844 INFO MainThread:917 [wandb_init.py:init():795] starting run threads in backend
|
24 |
+
2024-05-23 13:03:27,126 INFO MainThread:917 [wandb_run.py:_console_start():2374] atexit reg
|
25 |
+
2024-05-23 13:03:27,126 INFO MainThread:917 [wandb_run.py:_redirect():2229] redirect: wrap_raw
|
26 |
+
2024-05-23 13:03:27,126 INFO MainThread:917 [wandb_run.py:_redirect():2294] Wrapping output streams.
|
27 |
+
2024-05-23 13:03:27,127 INFO MainThread:917 [wandb_run.py:_redirect():2319] Redirects installed.
|
28 |
+
2024-05-23 13:03:27,129 INFO MainThread:917 [wandb_init.py:init():838] run started, returning control to user process
|
29 |
+
2024-05-23 13:03:41,728 WARNING MsgRouterThr:917 [router.py:message_loop():77] message_loop has been closed
|
lm-evaluation-harness/wandb/run-20240523_130326-1oo0voi6/run-1oo0voi6.wandb
ADDED
Binary file (11.1 kB). View file
|
|
lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/config.yaml
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb_version: 1
|
2 |
+
|
3 |
+
_wandb:
|
4 |
+
desc: null
|
5 |
+
value:
|
6 |
+
python_version: 3.10.12
|
7 |
+
cli_version: 0.17.0
|
8 |
+
framework: huggingface
|
9 |
+
huggingface_version: 4.41.1
|
10 |
+
is_jupyter_run: false
|
11 |
+
is_kaggle_kernel: false
|
12 |
+
start_time: 1716469488
|
13 |
+
t:
|
14 |
+
1:
|
15 |
+
- 1
|
16 |
+
- 5
|
17 |
+
- 11
|
18 |
+
- 49
|
19 |
+
- 51
|
20 |
+
- 53
|
21 |
+
- 55
|
22 |
+
- 71
|
23 |
+
- 98
|
24 |
+
- 100
|
25 |
+
2:
|
26 |
+
- 1
|
27 |
+
- 5
|
28 |
+
- 11
|
29 |
+
- 49
|
30 |
+
- 51
|
31 |
+
- 53
|
32 |
+
- 55
|
33 |
+
- 71
|
34 |
+
- 98
|
35 |
+
- 100
|
36 |
+
3:
|
37 |
+
- 23
|
38 |
+
4: 3.10.12
|
39 |
+
5: 0.17.0
|
40 |
+
6: 4.41.1
|
41 |
+
8:
|
42 |
+
- 5
|
43 |
+
13: linux-x86_64
|
lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/output.log
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
2024-05-23:13:04:48,983 INFO [__main__.py:251] Verbosity set to INFO
|
3 |
+
2024-05-23:13:04:57,475 INFO [__main__.py:335] Selected Tasks: ['arc_easy', 'hellaswag', 'mrpc', 'openbookqa', 'sst2', 'winogrande']
|
4 |
+
2024-05-23:13:04:57,476 INFO [evaluator.py:131] Setting random seed to 0 | Setting numpy seed to 1234 | Setting torch manual seed to 1234
|
5 |
+
2024-05-23:13:04:57,477 INFO [evaluator.py:177] Initializing hf model, with arguments: {'pretrained': '/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step14000'}
|
6 |
+
2024-05-23:13:04:59,760 INFO [huggingface.py:164] Using device 'cuda'
|
7 |
+
Traceback (most recent call last):
|
8 |
+
File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main
|
9 |
+
return _run_code(code, main_globals, None,
|
10 |
+
File "/usr/lib/python3.10/runpy.py", line 86, in _run_code
|
11 |
+
exec(code, run_globals)
|
12 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/__main__.py", line 417, in <module>
|
13 |
+
cli_evaluate()
|
14 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/__main__.py", line 341, in cli_evaluate
|
15 |
+
results = evaluator.simple_evaluate(
|
16 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/utils.py", line 288, in _wrapper
|
17 |
+
return fn(*args, **kwargs)
|
18 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/evaluator.py", line 180, in simple_evaluate
|
19 |
+
lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
|
20 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/api/model.py", line 134, in create_from_arg_string
|
21 |
+
return cls(**args, **args2)
|
22 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/models/huggingface.py", line 190, in __init__
|
23 |
+
self._get_config(
|
24 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/models/huggingface.py", line 471, in _get_config
|
25 |
+
self._config = transformers.AutoConfig.from_pretrained(
|
26 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py", line 934, in from_pretrained
|
27 |
+
config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
28 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py", line 632, in get_config_dict
|
29 |
+
config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs)
|
30 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py", line 689, in _get_config_dict
|
31 |
+
resolved_config_file = cached_file(
|
32 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py", line 370, in cached_file
|
33 |
+
raise EnvironmentError(
|
34 |
+
OSError: /mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step14000 does not appear to have a file named config.json. Checkout 'https://huggingface.co//mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step14000/tree/main' for available files.
|
lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/requirements.txt
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DataProperty==1.0.1
|
2 |
+
GitPython==3.1.43
|
3 |
+
Jinja2==3.1.4
|
4 |
+
Markdown==3.6
|
5 |
+
MarkupSafe==2.1.5
|
6 |
+
Pillow-SIMD==7.0.0.post3
|
7 |
+
PyYAML==6.0
|
8 |
+
Werkzeug==3.0.3
|
9 |
+
absl-py==2.1.0
|
10 |
+
accelerate==0.30.1
|
11 |
+
aiohttp==3.9.5
|
12 |
+
aiosignal==1.3.1
|
13 |
+
async-timeout==4.0.3
|
14 |
+
attrs==23.2.0
|
15 |
+
av==9.2.0
|
16 |
+
cachetools==5.3.3
|
17 |
+
certifi==2024.2.2
|
18 |
+
cffi==1.15.1
|
19 |
+
cfgv==3.4.0
|
20 |
+
chardet==5.2.0
|
21 |
+
charset-normalizer==3.3.2
|
22 |
+
click==8.1.7
|
23 |
+
cmake==3.29.2
|
24 |
+
colorama==0.4.6
|
25 |
+
datasets==2.19.1
|
26 |
+
deepspeed==0.12.4+hpu.synapse.v1.15.1
|
27 |
+
dill==0.3.8
|
28 |
+
distlib==0.3.8
|
29 |
+
docker-pycreds==0.4.0
|
30 |
+
einops==0.8.0
|
31 |
+
evaluate==0.4.2
|
32 |
+
exceptiongroup==1.2.1
|
33 |
+
expecttest==0.2.1
|
34 |
+
filelock==3.14.0
|
35 |
+
frozenlist==1.4.1
|
36 |
+
fsspec==2024.3.1
|
37 |
+
gitdb==4.0.11
|
38 |
+
google-auth-oauthlib==0.4.6
|
39 |
+
google-auth==2.29.0
|
40 |
+
grpcio==1.63.0
|
41 |
+
habana-media-loader==1.15.1.15
|
42 |
+
habana-pyhlml==1.15.1.15
|
43 |
+
habana-torch-dataloader==1.15.1.15
|
44 |
+
habana-torch-plugin==1.15.1.15
|
45 |
+
habana_gpu_migration==1.15.1.15
|
46 |
+
habana_quantization_toolkit==1.15.1.15
|
47 |
+
hjson==3.1.0
|
48 |
+
huggingface-hub==0.23.1
|
49 |
+
identify==2.5.36
|
50 |
+
idna==3.7
|
51 |
+
iniconfig==2.0.0
|
52 |
+
joblib==1.4.2
|
53 |
+
jsonlines==4.0.0
|
54 |
+
lightning-habana==1.4.0
|
55 |
+
lightning-utilities==0.11.2
|
56 |
+
lightning==2.2.0.post0
|
57 |
+
lm_eval==0.4.2
|
58 |
+
lm_eval==0.4.2
|
59 |
+
lm_eval==0.4.2
|
60 |
+
lxml==5.2.2
|
61 |
+
mbstrdecoder==1.1.3
|
62 |
+
more-itertools==10.2.0
|
63 |
+
mpi4py==3.1.4
|
64 |
+
mpmath==1.3.0
|
65 |
+
multidict==6.0.5
|
66 |
+
multiprocess==0.70.16
|
67 |
+
networkx==3.3
|
68 |
+
ninja==1.11.1.1
|
69 |
+
nltk==3.8.1
|
70 |
+
nodeenv==1.8.0
|
71 |
+
numexpr==2.10.0
|
72 |
+
numpy==1.23.5
|
73 |
+
oauthlib==3.2.2
|
74 |
+
packaging==24.0
|
75 |
+
pandas==2.0.1
|
76 |
+
pathspec==0.12.1
|
77 |
+
pathvalidate==3.2.0
|
78 |
+
peft==0.11.1
|
79 |
+
perfetto==0.7.0
|
80 |
+
pillow==10.3.0
|
81 |
+
pip==22.0.2
|
82 |
+
pip==23.3.1
|
83 |
+
platformdirs==4.2.1
|
84 |
+
pluggy==1.5.0
|
85 |
+
portalocker==2.8.2
|
86 |
+
pre-commit==3.3.3
|
87 |
+
pretty-errors==1.2.25
|
88 |
+
protobuf==3.20.3
|
89 |
+
psutil==5.9.8
|
90 |
+
py-cpuinfo==9.0.0
|
91 |
+
pyarrow-hotfix==0.6
|
92 |
+
pyarrow==16.1.0
|
93 |
+
pyasn1==0.6.0
|
94 |
+
pyasn1_modules==0.4.0
|
95 |
+
pybind11==2.10.4
|
96 |
+
pycparser==2.22
|
97 |
+
pydantic==1.10.13
|
98 |
+
pynvml==8.0.4
|
99 |
+
pytablewriter==1.2.0
|
100 |
+
pytest==8.2.0
|
101 |
+
python-dateutil==2.9.0.post0
|
102 |
+
pytorch-lightning==2.2.4
|
103 |
+
pytz==2024.1
|
104 |
+
regex==2023.5.5
|
105 |
+
requests-oauthlib==2.0.0
|
106 |
+
requests==2.31.0
|
107 |
+
rouge_score==0.1.2
|
108 |
+
rsa==4.9
|
109 |
+
sacrebleu==2.4.2
|
110 |
+
safetensors==0.4.3
|
111 |
+
scikit-learn==1.5.0
|
112 |
+
scipy==1.13.1
|
113 |
+
sentencepiece==0.2.0
|
114 |
+
sentry-sdk==2.3.0
|
115 |
+
setproctitle==1.3.3
|
116 |
+
setuptools==59.6.0
|
117 |
+
setuptools==69.5.1
|
118 |
+
six==1.16.0
|
119 |
+
smmap==5.0.1
|
120 |
+
sqlitedict==2.1.0
|
121 |
+
symengine==0.11.0
|
122 |
+
sympy==1.12
|
123 |
+
tabledata==1.3.3
|
124 |
+
tabulate==0.9.0
|
125 |
+
tcolorpy==0.1.6
|
126 |
+
tdqm==0.0.1
|
127 |
+
tensorboard-data-server==0.6.1
|
128 |
+
tensorboard-plugin-wit==1.8.1
|
129 |
+
tensorboard==2.11.2
|
130 |
+
threadpoolctl==3.5.0
|
131 |
+
tokenizers==0.19.1
|
132 |
+
tomli==2.0.1
|
133 |
+
torch==2.2.0a0+git8964477
|
134 |
+
torch_tb_profiler==0.4.0
|
135 |
+
torchaudio==2.2.0+08901ad
|
136 |
+
torchdata==0.7.1+5e6f7b7
|
137 |
+
torchmetrics==1.4.0
|
138 |
+
torchtext==0.17.0+400da5c
|
139 |
+
torchvision==0.17.0+b2383d4
|
140 |
+
tqdm-multiprocess==0.0.11
|
141 |
+
tqdm==4.66.4
|
142 |
+
transformers==4.41.1
|
143 |
+
typepy==1.3.2
|
144 |
+
typing_extensions==4.11.0
|
145 |
+
tzdata==2024.1
|
146 |
+
urllib3==1.26.18
|
147 |
+
virtualenv==20.26.1
|
148 |
+
wandb==0.17.0
|
149 |
+
wheel==0.37.1
|
150 |
+
wheel==0.43.0
|
151 |
+
word2number==1.1
|
152 |
+
xxhash==3.4.1
|
153 |
+
yamllint==1.35.1
|
154 |
+
yarl==1.9.4
|
155 |
+
zstandard==0.22.0
|
lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/wandb-metadata.json
ADDED
@@ -0,0 +1,850 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"os": "Linux-5.15.0-92-generic-x86_64-with-glibc2.35",
|
3 |
+
"python": "3.10.12",
|
4 |
+
"heartbeatAt": "2024-05-23T13:04:48.781263",
|
5 |
+
"startedAt": "2024-05-23T13:04:48.261491",
|
6 |
+
"docker": null,
|
7 |
+
"cuda": null,
|
8 |
+
"args": [
|
9 |
+
"--model",
|
10 |
+
"hf",
|
11 |
+
"--model_args",
|
12 |
+
"pretrained=/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step14000",
|
13 |
+
"--tasks",
|
14 |
+
"hellaswag,arc_easy,openbookqa,winogrande,sst2,mrpc",
|
15 |
+
"--batch_size",
|
16 |
+
"auto",
|
17 |
+
"--wandb_args",
|
18 |
+
"project=bharatgpt,group=trial_expt_2"
|
19 |
+
],
|
20 |
+
"state": "running",
|
21 |
+
"program": "-m lm_eval.__main__",
|
22 |
+
"codePathLocal": null,
|
23 |
+
"git": {
|
24 |
+
"remote": "https://github.com/EleutherAI/lm-evaluation-harness",
|
25 |
+
"commit": null
|
26 |
+
},
|
27 |
+
"email": null,
|
28 |
+
"root": "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness",
|
29 |
+
"host": "peacock-evaluation-worker-0",
|
30 |
+
"username": "root",
|
31 |
+
"executable": "/usr/bin/python3",
|
32 |
+
"cpu_count": 80,
|
33 |
+
"cpu_count_logical": 160,
|
34 |
+
"cpu_freq": {
|
35 |
+
"current": 2365.89415,
|
36 |
+
"min": 800.0,
|
37 |
+
"max": 3400.0
|
38 |
+
},
|
39 |
+
"cpu_freq_per_core": [
|
40 |
+
{
|
41 |
+
"current": 3400.0,
|
42 |
+
"min": 800.0,
|
43 |
+
"max": 3400.0
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"current": 3400.0,
|
47 |
+
"min": 800.0,
|
48 |
+
"max": 3400.0
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"current": 2300.0,
|
52 |
+
"min": 800.0,
|
53 |
+
"max": 3400.0
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"current": 2300.0,
|
57 |
+
"min": 800.0,
|
58 |
+
"max": 3400.0
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"current": 2300.0,
|
62 |
+
"min": 800.0,
|
63 |
+
"max": 3400.0
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"current": 2300.0,
|
67 |
+
"min": 800.0,
|
68 |
+
"max": 3400.0
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"current": 2300.0,
|
72 |
+
"min": 800.0,
|
73 |
+
"max": 3400.0
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"current": 2300.0,
|
77 |
+
"min": 800.0,
|
78 |
+
"max": 3400.0
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"current": 2300.0,
|
82 |
+
"min": 800.0,
|
83 |
+
"max": 3400.0
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"current": 2300.0,
|
87 |
+
"min": 800.0,
|
88 |
+
"max": 3400.0
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"current": 2300.0,
|
92 |
+
"min": 800.0,
|
93 |
+
"max": 3400.0
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"current": 2300.0,
|
97 |
+
"min": 800.0,
|
98 |
+
"max": 3400.0
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"current": 2300.0,
|
102 |
+
"min": 800.0,
|
103 |
+
"max": 3400.0
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"current": 2300.0,
|
107 |
+
"min": 800.0,
|
108 |
+
"max": 3400.0
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"current": 2300.0,
|
112 |
+
"min": 800.0,
|
113 |
+
"max": 3400.0
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"current": 2300.0,
|
117 |
+
"min": 800.0,
|
118 |
+
"max": 3400.0
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"current": 2300.0,
|
122 |
+
"min": 800.0,
|
123 |
+
"max": 3400.0
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"current": 2300.0,
|
127 |
+
"min": 800.0,
|
128 |
+
"max": 3400.0
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"current": 2300.0,
|
132 |
+
"min": 800.0,
|
133 |
+
"max": 3400.0
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"current": 2300.0,
|
137 |
+
"min": 800.0,
|
138 |
+
"max": 3400.0
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"current": 2300.0,
|
142 |
+
"min": 800.0,
|
143 |
+
"max": 3400.0
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"current": 2300.0,
|
147 |
+
"min": 800.0,
|
148 |
+
"max": 3400.0
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"current": 2300.0,
|
152 |
+
"min": 800.0,
|
153 |
+
"max": 3400.0
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"current": 2300.0,
|
157 |
+
"min": 800.0,
|
158 |
+
"max": 3400.0
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"current": 2300.0,
|
162 |
+
"min": 800.0,
|
163 |
+
"max": 3400.0
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"current": 2300.0,
|
167 |
+
"min": 800.0,
|
168 |
+
"max": 3400.0
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"current": 2300.0,
|
172 |
+
"min": 800.0,
|
173 |
+
"max": 3400.0
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"current": 2300.0,
|
177 |
+
"min": 800.0,
|
178 |
+
"max": 3400.0
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"current": 2300.0,
|
182 |
+
"min": 800.0,
|
183 |
+
"max": 3400.0
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"current": 2300.0,
|
187 |
+
"min": 800.0,
|
188 |
+
"max": 3400.0
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"current": 2300.0,
|
192 |
+
"min": 800.0,
|
193 |
+
"max": 3400.0
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"current": 2300.0,
|
197 |
+
"min": 800.0,
|
198 |
+
"max": 3400.0
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"current": 2300.0,
|
202 |
+
"min": 800.0,
|
203 |
+
"max": 3400.0
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"current": 2300.0,
|
207 |
+
"min": 800.0,
|
208 |
+
"max": 3400.0
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"current": 2300.0,
|
212 |
+
"min": 800.0,
|
213 |
+
"max": 3400.0
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"current": 2300.0,
|
217 |
+
"min": 800.0,
|
218 |
+
"max": 3400.0
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"current": 2300.0,
|
222 |
+
"min": 800.0,
|
223 |
+
"max": 3400.0
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"current": 2300.0,
|
227 |
+
"min": 800.0,
|
228 |
+
"max": 3400.0
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"current": 2300.0,
|
232 |
+
"min": 800.0,
|
233 |
+
"max": 3400.0
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"current": 2300.0,
|
237 |
+
"min": 800.0,
|
238 |
+
"max": 3400.0
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"current": 3400.0,
|
242 |
+
"min": 800.0,
|
243 |
+
"max": 3400.0
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"current": 2300.0,
|
247 |
+
"min": 800.0,
|
248 |
+
"max": 3400.0
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"current": 2300.0,
|
252 |
+
"min": 800.0,
|
253 |
+
"max": 3400.0
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"current": 2300.0,
|
257 |
+
"min": 800.0,
|
258 |
+
"max": 3400.0
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"current": 2300.0,
|
262 |
+
"min": 800.0,
|
263 |
+
"max": 3400.0
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"current": 2300.0,
|
267 |
+
"min": 800.0,
|
268 |
+
"max": 3400.0
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"current": 2300.0,
|
272 |
+
"min": 800.0,
|
273 |
+
"max": 3400.0
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"current": 2300.0,
|
277 |
+
"min": 800.0,
|
278 |
+
"max": 3400.0
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"current": 2300.0,
|
282 |
+
"min": 800.0,
|
283 |
+
"max": 3400.0
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"current": 2300.0,
|
287 |
+
"min": 800.0,
|
288 |
+
"max": 3400.0
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"current": 2300.0,
|
292 |
+
"min": 800.0,
|
293 |
+
"max": 3400.0
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"current": 2300.0,
|
297 |
+
"min": 800.0,
|
298 |
+
"max": 3400.0
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"current": 2300.0,
|
302 |
+
"min": 800.0,
|
303 |
+
"max": 3400.0
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"current": 2300.0,
|
307 |
+
"min": 800.0,
|
308 |
+
"max": 3400.0
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"current": 2300.0,
|
312 |
+
"min": 800.0,
|
313 |
+
"max": 3400.0
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"current": 2300.0,
|
317 |
+
"min": 800.0,
|
318 |
+
"max": 3400.0
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"current": 2300.0,
|
322 |
+
"min": 800.0,
|
323 |
+
"max": 3400.0
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"current": 2300.0,
|
327 |
+
"min": 800.0,
|
328 |
+
"max": 3400.0
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"current": 2300.0,
|
332 |
+
"min": 800.0,
|
333 |
+
"max": 3400.0
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"current": 2300.0,
|
337 |
+
"min": 800.0,
|
338 |
+
"max": 3400.0
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"current": 2300.0,
|
342 |
+
"min": 800.0,
|
343 |
+
"max": 3400.0
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"current": 2300.0,
|
347 |
+
"min": 800.0,
|
348 |
+
"max": 3400.0
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"current": 2300.0,
|
352 |
+
"min": 800.0,
|
353 |
+
"max": 3400.0
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"current": 2300.0,
|
357 |
+
"min": 800.0,
|
358 |
+
"max": 3400.0
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"current": 2300.0,
|
362 |
+
"min": 800.0,
|
363 |
+
"max": 3400.0
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"current": 2300.0,
|
367 |
+
"min": 800.0,
|
368 |
+
"max": 3400.0
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"current": 2300.0,
|
372 |
+
"min": 800.0,
|
373 |
+
"max": 3400.0
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"current": 2300.0,
|
377 |
+
"min": 800.0,
|
378 |
+
"max": 3400.0
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"current": 2300.0,
|
382 |
+
"min": 800.0,
|
383 |
+
"max": 3400.0
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"current": 2300.0,
|
387 |
+
"min": 800.0,
|
388 |
+
"max": 3400.0
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"current": 2300.0,
|
392 |
+
"min": 800.0,
|
393 |
+
"max": 3400.0
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"current": 2300.0,
|
397 |
+
"min": 800.0,
|
398 |
+
"max": 3400.0
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"current": 2300.0,
|
402 |
+
"min": 800.0,
|
403 |
+
"max": 3400.0
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"current": 2300.0,
|
407 |
+
"min": 800.0,
|
408 |
+
"max": 3400.0
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"current": 2300.0,
|
412 |
+
"min": 800.0,
|
413 |
+
"max": 3400.0
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"current": 2300.0,
|
417 |
+
"min": 800.0,
|
418 |
+
"max": 3400.0
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"current": 2300.0,
|
422 |
+
"min": 800.0,
|
423 |
+
"max": 3400.0
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"current": 2300.0,
|
427 |
+
"min": 800.0,
|
428 |
+
"max": 3400.0
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"current": 2300.0,
|
432 |
+
"min": 800.0,
|
433 |
+
"max": 3400.0
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"current": 2300.0,
|
437 |
+
"min": 800.0,
|
438 |
+
"max": 3400.0
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"current": 3400.0,
|
442 |
+
"min": 800.0,
|
443 |
+
"max": 3400.0
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"current": 2300.0,
|
447 |
+
"min": 800.0,
|
448 |
+
"max": 3400.0
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"current": 2300.0,
|
452 |
+
"min": 800.0,
|
453 |
+
"max": 3400.0
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"current": 2300.0,
|
457 |
+
"min": 800.0,
|
458 |
+
"max": 3400.0
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"current": 2300.0,
|
462 |
+
"min": 800.0,
|
463 |
+
"max": 3400.0
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"current": 2300.0,
|
467 |
+
"min": 800.0,
|
468 |
+
"max": 3400.0
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"current": 2300.0,
|
472 |
+
"min": 800.0,
|
473 |
+
"max": 3400.0
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"current": 2300.0,
|
477 |
+
"min": 800.0,
|
478 |
+
"max": 3400.0
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"current": 2300.0,
|
482 |
+
"min": 800.0,
|
483 |
+
"max": 3400.0
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"current": 2300.0,
|
487 |
+
"min": 800.0,
|
488 |
+
"max": 3400.0
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"current": 2300.0,
|
492 |
+
"min": 800.0,
|
493 |
+
"max": 3400.0
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"current": 2300.0,
|
497 |
+
"min": 800.0,
|
498 |
+
"max": 3400.0
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"current": 2300.0,
|
502 |
+
"min": 800.0,
|
503 |
+
"max": 3400.0
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"current": 2300.0,
|
507 |
+
"min": 800.0,
|
508 |
+
"max": 3400.0
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"current": 2300.0,
|
512 |
+
"min": 800.0,
|
513 |
+
"max": 3400.0
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"current": 2300.0,
|
517 |
+
"min": 800.0,
|
518 |
+
"max": 3400.0
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"current": 2300.0,
|
522 |
+
"min": 800.0,
|
523 |
+
"max": 3400.0
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"current": 2300.0,
|
527 |
+
"min": 800.0,
|
528 |
+
"max": 3400.0
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"current": 2300.0,
|
532 |
+
"min": 800.0,
|
533 |
+
"max": 3400.0
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"current": 2300.0,
|
537 |
+
"min": 800.0,
|
538 |
+
"max": 3400.0
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"current": 2300.0,
|
542 |
+
"min": 800.0,
|
543 |
+
"max": 3400.0
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"current": 2300.0,
|
547 |
+
"min": 800.0,
|
548 |
+
"max": 3400.0
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"current": 2300.0,
|
552 |
+
"min": 800.0,
|
553 |
+
"max": 3400.0
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"current": 2300.0,
|
557 |
+
"min": 800.0,
|
558 |
+
"max": 3400.0
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"current": 2300.0,
|
562 |
+
"min": 800.0,
|
563 |
+
"max": 3400.0
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"current": 2300.0,
|
567 |
+
"min": 800.0,
|
568 |
+
"max": 3400.0
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"current": 2300.0,
|
572 |
+
"min": 800.0,
|
573 |
+
"max": 3400.0
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"current": 2300.0,
|
577 |
+
"min": 800.0,
|
578 |
+
"max": 3400.0
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"current": 2300.0,
|
582 |
+
"min": 800.0,
|
583 |
+
"max": 3400.0
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"current": 2300.0,
|
587 |
+
"min": 800.0,
|
588 |
+
"max": 3400.0
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"current": 2300.0,
|
592 |
+
"min": 800.0,
|
593 |
+
"max": 3400.0
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"current": 2300.0,
|
597 |
+
"min": 800.0,
|
598 |
+
"max": 3400.0
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"current": 2300.0,
|
602 |
+
"min": 800.0,
|
603 |
+
"max": 3400.0
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"current": 2300.0,
|
607 |
+
"min": 800.0,
|
608 |
+
"max": 3400.0
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"current": 2300.0,
|
612 |
+
"min": 800.0,
|
613 |
+
"max": 3400.0
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"current": 2300.0,
|
617 |
+
"min": 800.0,
|
618 |
+
"max": 3400.0
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"current": 2300.0,
|
622 |
+
"min": 800.0,
|
623 |
+
"max": 3400.0
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"current": 2300.0,
|
627 |
+
"min": 800.0,
|
628 |
+
"max": 3400.0
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"current": 2300.0,
|
632 |
+
"min": 800.0,
|
633 |
+
"max": 3400.0
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"current": 2300.0,
|
637 |
+
"min": 800.0,
|
638 |
+
"max": 3400.0
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"current": 2300.0,
|
642 |
+
"min": 800.0,
|
643 |
+
"max": 3400.0
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"current": 2300.0,
|
647 |
+
"min": 800.0,
|
648 |
+
"max": 3400.0
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"current": 2300.0,
|
652 |
+
"min": 800.0,
|
653 |
+
"max": 3400.0
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"current": 2300.0,
|
657 |
+
"min": 800.0,
|
658 |
+
"max": 3400.0
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"current": 2300.0,
|
662 |
+
"min": 800.0,
|
663 |
+
"max": 3400.0
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"current": 2300.0,
|
667 |
+
"min": 800.0,
|
668 |
+
"max": 3400.0
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"current": 2300.0,
|
672 |
+
"min": 800.0,
|
673 |
+
"max": 3400.0
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"current": 2300.0,
|
677 |
+
"min": 800.0,
|
678 |
+
"max": 3400.0
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"current": 2300.0,
|
682 |
+
"min": 800.0,
|
683 |
+
"max": 3400.0
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"current": 2300.0,
|
687 |
+
"min": 800.0,
|
688 |
+
"max": 3400.0
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"current": 2300.0,
|
692 |
+
"min": 800.0,
|
693 |
+
"max": 3400.0
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"current": 2300.0,
|
697 |
+
"min": 800.0,
|
698 |
+
"max": 3400.0
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"current": 2300.0,
|
702 |
+
"min": 800.0,
|
703 |
+
"max": 3400.0
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"current": 2300.0,
|
707 |
+
"min": 800.0,
|
708 |
+
"max": 3400.0
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"current": 2300.0,
|
712 |
+
"min": 800.0,
|
713 |
+
"max": 3400.0
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"current": 2300.0,
|
717 |
+
"min": 800.0,
|
718 |
+
"max": 3400.0
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"current": 2300.0,
|
722 |
+
"min": 800.0,
|
723 |
+
"max": 3400.0
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"current": 2300.0,
|
727 |
+
"min": 800.0,
|
728 |
+
"max": 3400.0
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"current": 2300.0,
|
732 |
+
"min": 800.0,
|
733 |
+
"max": 3400.0
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"current": 2300.0,
|
737 |
+
"min": 800.0,
|
738 |
+
"max": 3400.0
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"current": 2300.0,
|
742 |
+
"min": 800.0,
|
743 |
+
"max": 3400.0
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"current": 2300.0,
|
747 |
+
"min": 800.0,
|
748 |
+
"max": 3400.0
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"current": 2300.0,
|
752 |
+
"min": 800.0,
|
753 |
+
"max": 3400.0
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"current": 2300.0,
|
757 |
+
"min": 800.0,
|
758 |
+
"max": 3400.0
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"current": 2300.0,
|
762 |
+
"min": 800.0,
|
763 |
+
"max": 3400.0
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"current": 2300.0,
|
767 |
+
"min": 800.0,
|
768 |
+
"max": 3400.0
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"current": 2300.0,
|
772 |
+
"min": 800.0,
|
773 |
+
"max": 3400.0
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"current": 2300.0,
|
777 |
+
"min": 800.0,
|
778 |
+
"max": 3400.0
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"current": 2300.0,
|
782 |
+
"min": 800.0,
|
783 |
+
"max": 3400.0
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"current": 2300.0,
|
787 |
+
"min": 800.0,
|
788 |
+
"max": 3400.0
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"current": 2300.0,
|
792 |
+
"min": 800.0,
|
793 |
+
"max": 3400.0
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"current": 2300.0,
|
797 |
+
"min": 800.0,
|
798 |
+
"max": 3400.0
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"current": 2300.0,
|
802 |
+
"min": 800.0,
|
803 |
+
"max": 3400.0
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"current": 2300.0,
|
807 |
+
"min": 800.0,
|
808 |
+
"max": 3400.0
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"current": 2300.0,
|
812 |
+
"min": 800.0,
|
813 |
+
"max": 3400.0
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"current": 2300.0,
|
817 |
+
"min": 800.0,
|
818 |
+
"max": 3400.0
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"current": 2300.0,
|
822 |
+
"min": 800.0,
|
823 |
+
"max": 3400.0
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"current": 2300.0,
|
827 |
+
"min": 800.0,
|
828 |
+
"max": 3400.0
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"current": 2300.0,
|
832 |
+
"min": 800.0,
|
833 |
+
"max": 3400.0
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"current": 2300.0,
|
837 |
+
"min": 800.0,
|
838 |
+
"max": 3400.0
|
839 |
+
}
|
840 |
+
],
|
841 |
+
"disk": {
|
842 |
+
"/": {
|
843 |
+
"total": 877.6341285705566,
|
844 |
+
"used": 211.62759399414062
|
845 |
+
}
|
846 |
+
},
|
847 |
+
"memory": {
|
848 |
+
"total": 1007.4379539489746
|
849 |
+
}
|
850 |
+
}
|
lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/wandb-summary.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"_wandb": {"runtime": 11}}
|
lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/logs/debug-internal.log
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-23 13:04:48,284 INFO StreamThr :1586 [internal.py:wandb_internal():85] W&B internal server running at pid: 1586, started at: 2024-05-23 13:04:48.281109
|
2 |
+
2024-05-23 13:04:48,288 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: status
|
3 |
+
2024-05-23 13:04:48,288 INFO WriterThread:1586 [datastore.py:open_for_write():87] open: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/run-vm5e7ag8.wandb
|
4 |
+
2024-05-23 13:04:48,293 DEBUG SenderThread:1586 [sender.py:send():378] send: header
|
5 |
+
2024-05-23 13:04:48,294 DEBUG SenderThread:1586 [sender.py:send():378] send: run
|
6 |
+
2024-05-23 13:04:48,541 INFO SenderThread:1586 [dir_watcher.py:__init__():211] watching files in: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files
|
7 |
+
2024-05-23 13:04:48,541 INFO SenderThread:1586 [sender.py:_start_run_threads():1123] run started: vm5e7ag8 with start time 1716469488.280964
|
8 |
+
2024-05-23 13:04:48,542 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: check_version
|
9 |
+
2024-05-23 13:04:48,542 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: check_version
|
10 |
+
2024-05-23 13:04:48,704 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: run_start
|
11 |
+
2024-05-23 13:04:48,706 DEBUG HandlerThread:1586 [system_info.py:__init__():26] System info init
|
12 |
+
2024-05-23 13:04:48,706 DEBUG HandlerThread:1586 [system_info.py:__init__():41] System info init done
|
13 |
+
2024-05-23 13:04:48,706 INFO HandlerThread:1586 [system_monitor.py:start():194] Starting system monitor
|
14 |
+
2024-05-23 13:04:48,706 INFO SystemMonitor:1586 [system_monitor.py:_start():158] Starting system asset monitoring threads
|
15 |
+
2024-05-23 13:04:48,706 INFO HandlerThread:1586 [system_monitor.py:probe():214] Collecting system info
|
16 |
+
2024-05-23 13:04:48,713 INFO SystemMonitor:1586 [interfaces.py:start():188] Started cpu monitoring
|
17 |
+
2024-05-23 13:04:48,719 INFO SystemMonitor:1586 [interfaces.py:start():188] Started disk monitoring
|
18 |
+
2024-05-23 13:04:48,719 INFO SystemMonitor:1586 [interfaces.py:start():188] Started memory monitoring
|
19 |
+
2024-05-23 13:04:48,719 INFO SystemMonitor:1586 [interfaces.py:start():188] Started network monitoring
|
20 |
+
2024-05-23 13:04:48,781 DEBUG HandlerThread:1586 [system_info.py:probe():150] Probing system
|
21 |
+
2024-05-23 13:04:48,784 DEBUG HandlerThread:1586 [system_info.py:_probe_git():135] Probing git
|
22 |
+
2024-05-23 13:04:48,794 ERROR HandlerThread:1586 [gitlib.py:root():92] git root error: Cmd('git') failed due to: exit code(128)
|
23 |
+
cmdline: git rev-parse --show-toplevel
|
24 |
+
stderr: 'fatal: detected dubious ownership in repository at '/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness'
|
25 |
+
To add an exception for this directory, call:
|
26 |
+
|
27 |
+
git config --global --add safe.directory /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness'
|
28 |
+
2024-05-23 13:04:48,794 DEBUG HandlerThread:1586 [system_info.py:_probe_git():143] Probing git done
|
29 |
+
2024-05-23 13:04:48,794 DEBUG HandlerThread:1586 [system_info.py:probe():198] Probing system done
|
30 |
+
2024-05-23 13:04:48,794 DEBUG HandlerThread:1586 [system_monitor.py:probe():223] {'os': 'Linux-5.15.0-92-generic-x86_64-with-glibc2.35', 'python': '3.10.12', 'heartbeatAt': '2024-05-23T13:04:48.781263', 'startedAt': '2024-05-23T13:04:48.261491', 'docker': None, 'cuda': None, 'args': ('--model', 'hf', '--model_args', 'pretrained=/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step14000', '--tasks', 'hellaswag,arc_easy,openbookqa,winogrande,sst2,mrpc', '--batch_size', 'auto', '--wandb_args', 'project=bharatgpt,group=trial_expt_2'), 'state': 'running', 'program': '-m lm_eval.__main__', 'codePathLocal': None, 'git': {'remote': 'https://github.com/EleutherAI/lm-evaluation-harness', 'commit': None}, 'email': None, 'root': '/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness', 'host': 'peacock-evaluation-worker-0', 'username': 'root', 'executable': '/usr/bin/python3', 'cpu_count': 80, 'cpu_count_logical': 160, 'cpu_freq': {'current': 2365.89415, 'min': 800.0, 'max': 3400.0}, 'cpu_freq_per_core': [{'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}], 'disk': {'/': {'total': 877.6341285705566, 'used': 211.62759399414062}}, 'memory': {'total': 1007.4379539489746}}
|
31 |
+
2024-05-23 13:04:48,794 INFO HandlerThread:1586 [system_monitor.py:probe():224] Finished collecting system info
|
32 |
+
2024-05-23 13:04:48,794 INFO HandlerThread:1586 [system_monitor.py:probe():227] Publishing system info
|
33 |
+
2024-05-23 13:04:48,797 INFO HandlerThread:1586 [system_monitor.py:probe():229] Finished publishing system info
|
34 |
+
2024-05-23 13:04:48,802 DEBUG SenderThread:1586 [sender.py:send():378] send: files
|
35 |
+
2024-05-23 13:04:48,803 INFO SenderThread:1586 [sender.py:_save_file():1389] saving file wandb-metadata.json with policy now
|
36 |
+
2024-05-23 13:04:48,976 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: python_packages
|
37 |
+
2024-05-23 13:04:48,976 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: python_packages
|
38 |
+
2024-05-23 13:04:48,977 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: stop_status
|
39 |
+
2024-05-23 13:04:48,978 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: stop_status
|
40 |
+
2024-05-23 13:04:49,135 DEBUG SenderThread:1586 [sender.py:send():378] send: telemetry
|
41 |
+
2024-05-23 13:04:49,355 INFO wandb-upload_0:1586 [upload_job.py:push():130] Uploaded file /tmp/tmpj2js6yoqwandb/bh6r6bog-wandb-metadata.json
|
42 |
+
2024-05-23 13:04:49,543 INFO Thread-12 :1586 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/requirements.txt
|
43 |
+
2024-05-23 13:04:49,543 INFO Thread-12 :1586 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/output.log
|
44 |
+
2024-05-23 13:04:49,543 INFO Thread-12 :1586 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/wandb-metadata.json
|
45 |
+
2024-05-23 13:04:51,542 INFO Thread-12 :1586 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/output.log
|
46 |
+
2024-05-23 13:04:54,140 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: status_report
|
47 |
+
2024-05-23 13:04:59,478 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: status_report
|
48 |
+
2024-05-23 13:04:59,551 INFO Thread-12 :1586 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/output.log
|
49 |
+
2024-05-23 13:04:59,771 DEBUG SenderThread:1586 [sender.py:send():378] send: exit
|
50 |
+
2024-05-23 13:04:59,771 INFO SenderThread:1586 [sender.py:send_exit():585] handling exit code: 1
|
51 |
+
2024-05-23 13:04:59,772 INFO SenderThread:1586 [sender.py:send_exit():587] handling runtime: 11
|
52 |
+
2024-05-23 13:04:59,773 INFO SenderThread:1586 [sender.py:_save_file():1389] saving file wandb-summary.json with policy end
|
53 |
+
2024-05-23 13:04:59,773 INFO SenderThread:1586 [sender.py:send_exit():593] send defer
|
54 |
+
2024-05-23 13:04:59,773 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: defer
|
55 |
+
2024-05-23 13:04:59,774 INFO HandlerThread:1586 [handler.py:handle_request_defer():184] handle defer: 0
|
56 |
+
2024-05-23 13:04:59,774 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: defer
|
57 |
+
2024-05-23 13:04:59,774 INFO SenderThread:1586 [sender.py:send_request_defer():609] handle sender defer: 0
|
58 |
+
2024-05-23 13:04:59,774 INFO SenderThread:1586 [sender.py:transition_state():613] send defer: 1
|
59 |
+
2024-05-23 13:04:59,774 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: defer
|
60 |
+
2024-05-23 13:04:59,774 INFO HandlerThread:1586 [handler.py:handle_request_defer():184] handle defer: 1
|
61 |
+
2024-05-23 13:04:59,774 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: defer
|
62 |
+
2024-05-23 13:04:59,774 INFO SenderThread:1586 [sender.py:send_request_defer():609] handle sender defer: 1
|
63 |
+
2024-05-23 13:04:59,774 INFO SenderThread:1586 [sender.py:transition_state():613] send defer: 2
|
64 |
+
2024-05-23 13:04:59,774 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: defer
|
65 |
+
2024-05-23 13:04:59,774 INFO HandlerThread:1586 [handler.py:handle_request_defer():184] handle defer: 2
|
66 |
+
2024-05-23 13:04:59,774 INFO HandlerThread:1586 [system_monitor.py:finish():203] Stopping system monitor
|
67 |
+
2024-05-23 13:04:59,775 DEBUG SystemMonitor:1586 [system_monitor.py:_start():172] Starting system metrics aggregation loop
|
68 |
+
2024-05-23 13:04:59,775 DEBUG SystemMonitor:1586 [system_monitor.py:_start():179] Finished system metrics aggregation loop
|
69 |
+
2024-05-23 13:04:59,775 DEBUG SystemMonitor:1586 [system_monitor.py:_start():183] Publishing last batch of metrics
|
70 |
+
2024-05-23 13:04:59,777 INFO HandlerThread:1586 [interfaces.py:finish():200] Joined cpu monitor
|
71 |
+
2024-05-23 13:04:59,778 INFO HandlerThread:1586 [interfaces.py:finish():200] Joined disk monitor
|
72 |
+
2024-05-23 13:04:59,778 INFO HandlerThread:1586 [interfaces.py:finish():200] Joined memory monitor
|
73 |
+
2024-05-23 13:04:59,778 INFO HandlerThread:1586 [interfaces.py:finish():200] Joined network monitor
|
74 |
+
2024-05-23 13:04:59,778 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: defer
|
75 |
+
2024-05-23 13:04:59,778 INFO SenderThread:1586 [sender.py:send_request_defer():609] handle sender defer: 2
|
76 |
+
2024-05-23 13:04:59,778 INFO SenderThread:1586 [sender.py:transition_state():613] send defer: 3
|
77 |
+
2024-05-23 13:04:59,778 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: defer
|
78 |
+
2024-05-23 13:04:59,779 INFO HandlerThread:1586 [handler.py:handle_request_defer():184] handle defer: 3
|
79 |
+
2024-05-23 13:04:59,779 DEBUG SenderThread:1586 [sender.py:send():378] send: stats
|
80 |
+
2024-05-23 13:04:59,780 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: defer
|
81 |
+
2024-05-23 13:04:59,780 INFO SenderThread:1586 [sender.py:send_request_defer():609] handle sender defer: 3
|
82 |
+
2024-05-23 13:04:59,780 INFO SenderThread:1586 [sender.py:transition_state():613] send defer: 4
|
83 |
+
2024-05-23 13:04:59,780 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: defer
|
84 |
+
2024-05-23 13:04:59,780 INFO HandlerThread:1586 [handler.py:handle_request_defer():184] handle defer: 4
|
85 |
+
2024-05-23 13:04:59,780 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: defer
|
86 |
+
2024-05-23 13:04:59,780 INFO SenderThread:1586 [sender.py:send_request_defer():609] handle sender defer: 4
|
87 |
+
2024-05-23 13:04:59,780 INFO SenderThread:1586 [sender.py:transition_state():613] send defer: 5
|
88 |
+
2024-05-23 13:04:59,780 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: defer
|
89 |
+
2024-05-23 13:04:59,780 INFO HandlerThread:1586 [handler.py:handle_request_defer():184] handle defer: 5
|
90 |
+
2024-05-23 13:04:59,780 DEBUG SenderThread:1586 [sender.py:send():378] send: summary
|
91 |
+
2024-05-23 13:04:59,781 INFO SenderThread:1586 [sender.py:_save_file():1389] saving file wandb-summary.json with policy end
|
92 |
+
2024-05-23 13:04:59,781 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: defer
|
93 |
+
2024-05-23 13:04:59,781 INFO SenderThread:1586 [sender.py:send_request_defer():609] handle sender defer: 5
|
94 |
+
2024-05-23 13:04:59,781 INFO SenderThread:1586 [sender.py:transition_state():613] send defer: 6
|
95 |
+
2024-05-23 13:04:59,781 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: defer
|
96 |
+
2024-05-23 13:04:59,782 INFO HandlerThread:1586 [handler.py:handle_request_defer():184] handle defer: 6
|
97 |
+
2024-05-23 13:04:59,782 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: defer
|
98 |
+
2024-05-23 13:04:59,782 INFO SenderThread:1586 [sender.py:send_request_defer():609] handle sender defer: 6
|
99 |
+
2024-05-23 13:04:59,786 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: status_report
|
100 |
+
2024-05-23 13:04:59,874 INFO SenderThread:1586 [sender.py:transition_state():613] send defer: 7
|
101 |
+
2024-05-23 13:04:59,874 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: defer
|
102 |
+
2024-05-23 13:04:59,874 INFO HandlerThread:1586 [handler.py:handle_request_defer():184] handle defer: 7
|
103 |
+
2024-05-23 13:04:59,874 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: defer
|
104 |
+
2024-05-23 13:04:59,874 INFO SenderThread:1586 [sender.py:send_request_defer():609] handle sender defer: 7
|
105 |
+
2024-05-23 13:05:00,552 INFO Thread-12 :1586 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/config.yaml
|
106 |
+
2024-05-23 13:05:00,552 INFO Thread-12 :1586 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/wandb-summary.json
|
107 |
+
2024-05-23 13:05:00,772 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: poll_exit
|
108 |
+
2024-05-23 13:05:01,161 INFO SenderThread:1586 [sender.py:transition_state():613] send defer: 8
|
109 |
+
2024-05-23 13:05:01,161 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: poll_exit
|
110 |
+
2024-05-23 13:05:01,161 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: defer
|
111 |
+
2024-05-23 13:05:01,161 INFO HandlerThread:1586 [handler.py:handle_request_defer():184] handle defer: 8
|
112 |
+
2024-05-23 13:05:01,161 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: defer
|
113 |
+
2024-05-23 13:05:01,161 INFO SenderThread:1586 [sender.py:send_request_defer():609] handle sender defer: 8
|
114 |
+
2024-05-23 13:05:01,161 INFO SenderThread:1586 [job_builder.py:build():432] Attempting to build job artifact
|
115 |
+
2024-05-23 13:05:01,162 INFO SenderThread:1586 [job_builder.py:_get_source_type():576] no source found
|
116 |
+
2024-05-23 13:05:01,162 INFO SenderThread:1586 [sender.py:transition_state():613] send defer: 9
|
117 |
+
2024-05-23 13:05:01,162 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: defer
|
118 |
+
2024-05-23 13:05:01,162 INFO HandlerThread:1586 [handler.py:handle_request_defer():184] handle defer: 9
|
119 |
+
2024-05-23 13:05:01,162 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: defer
|
120 |
+
2024-05-23 13:05:01,162 INFO SenderThread:1586 [sender.py:send_request_defer():609] handle sender defer: 9
|
121 |
+
2024-05-23 13:05:01,162 INFO SenderThread:1586 [dir_watcher.py:finish():358] shutting down directory watcher
|
122 |
+
2024-05-23 13:05:01,554 INFO SenderThread:1586 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/output.log
|
123 |
+
2024-05-23 13:05:01,554 INFO SenderThread:1586 [dir_watcher.py:finish():388] scan: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files
|
124 |
+
2024-05-23 13:05:01,556 INFO SenderThread:1586 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/wandb-metadata.json wandb-metadata.json
|
125 |
+
2024-05-23 13:05:01,556 INFO SenderThread:1586 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/output.log output.log
|
126 |
+
2024-05-23 13:05:01,556 INFO SenderThread:1586 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/wandb-summary.json wandb-summary.json
|
127 |
+
2024-05-23 13:05:01,559 INFO SenderThread:1586 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/config.yaml config.yaml
|
128 |
+
2024-05-23 13:05:01,561 INFO SenderThread:1586 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/requirements.txt requirements.txt
|
129 |
+
2024-05-23 13:05:01,563 INFO SenderThread:1586 [sender.py:transition_state():613] send defer: 10
|
130 |
+
2024-05-23 13:05:01,563 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: defer
|
131 |
+
2024-05-23 13:05:01,564 INFO HandlerThread:1586 [handler.py:handle_request_defer():184] handle defer: 10
|
132 |
+
2024-05-23 13:05:01,564 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: defer
|
133 |
+
2024-05-23 13:05:01,566 INFO SenderThread:1586 [sender.py:send_request_defer():609] handle sender defer: 10
|
134 |
+
2024-05-23 13:05:01,566 INFO SenderThread:1586 [file_pusher.py:finish():169] shutting down file pusher
|
135 |
+
2024-05-23 13:05:01,772 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: poll_exit
|
136 |
+
2024-05-23 13:05:01,772 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: poll_exit
|
137 |
+
2024-05-23 13:05:01,819 INFO wandb-upload_0:1586 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/output.log
|
138 |
+
2024-05-23 13:05:02,170 INFO wandb-upload_2:1586 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/config.yaml
|
139 |
+
2024-05-23 13:05:02,209 INFO wandb-upload_3:1586 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/requirements.txt
|
140 |
+
2024-05-23 13:05:02,275 INFO wandb-upload_1:1586 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/files/wandb-summary.json
|
141 |
+
2024-05-23 13:05:02,475 INFO Thread-11 (_thread_body):1586 [sender.py:transition_state():613] send defer: 11
|
142 |
+
2024-05-23 13:05:02,475 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: defer
|
143 |
+
2024-05-23 13:05:02,475 INFO HandlerThread:1586 [handler.py:handle_request_defer():184] handle defer: 11
|
144 |
+
2024-05-23 13:05:02,475 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: defer
|
145 |
+
2024-05-23 13:05:02,475 INFO SenderThread:1586 [sender.py:send_request_defer():609] handle sender defer: 11
|
146 |
+
2024-05-23 13:05:02,476 INFO SenderThread:1586 [file_pusher.py:join():175] waiting for file pusher
|
147 |
+
2024-05-23 13:05:02,476 INFO SenderThread:1586 [sender.py:transition_state():613] send defer: 12
|
148 |
+
2024-05-23 13:05:02,476 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: defer
|
149 |
+
2024-05-23 13:05:02,476 INFO HandlerThread:1586 [handler.py:handle_request_defer():184] handle defer: 12
|
150 |
+
2024-05-23 13:05:02,476 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: defer
|
151 |
+
2024-05-23 13:05:02,476 INFO SenderThread:1586 [sender.py:send_request_defer():609] handle sender defer: 12
|
152 |
+
2024-05-23 13:05:02,476 INFO SenderThread:1586 [file_stream.py:finish():601] file stream finish called
|
153 |
+
2024-05-23 13:05:02,535 INFO SenderThread:1586 [file_stream.py:finish():605] file stream finish is done
|
154 |
+
2024-05-23 13:05:02,535 INFO SenderThread:1586 [sender.py:transition_state():613] send defer: 13
|
155 |
+
2024-05-23 13:05:02,535 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: defer
|
156 |
+
2024-05-23 13:05:02,535 INFO HandlerThread:1586 [handler.py:handle_request_defer():184] handle defer: 13
|
157 |
+
2024-05-23 13:05:02,535 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: defer
|
158 |
+
2024-05-23 13:05:02,535 INFO SenderThread:1586 [sender.py:send_request_defer():609] handle sender defer: 13
|
159 |
+
2024-05-23 13:05:02,535 INFO SenderThread:1586 [sender.py:transition_state():613] send defer: 14
|
160 |
+
2024-05-23 13:05:02,535 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: defer
|
161 |
+
2024-05-23 13:05:02,535 INFO HandlerThread:1586 [handler.py:handle_request_defer():184] handle defer: 14
|
162 |
+
2024-05-23 13:05:02,536 DEBUG SenderThread:1586 [sender.py:send():378] send: final
|
163 |
+
2024-05-23 13:05:02,536 DEBUG SenderThread:1586 [sender.py:send():378] send: footer
|
164 |
+
2024-05-23 13:05:02,536 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: defer
|
165 |
+
2024-05-23 13:05:02,536 INFO SenderThread:1586 [sender.py:send_request_defer():609] handle sender defer: 14
|
166 |
+
2024-05-23 13:05:02,536 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: poll_exit
|
167 |
+
2024-05-23 13:05:02,536 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: poll_exit
|
168 |
+
2024-05-23 13:05:02,537 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: poll_exit
|
169 |
+
2024-05-23 13:05:02,537 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: server_info
|
170 |
+
2024-05-23 13:05:02,537 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: get_summary
|
171 |
+
2024-05-23 13:05:02,537 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: sampled_history
|
172 |
+
2024-05-23 13:05:02,537 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: internal_messages
|
173 |
+
2024-05-23 13:05:02,537 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: poll_exit
|
174 |
+
2024-05-23 13:05:02,537 DEBUG SenderThread:1586 [sender.py:send_request():405] send_request: server_info
|
175 |
+
2024-05-23 13:05:02,593 INFO MainThread:1586 [wandb_run.py:_footer_history_summary_info():3994] rendering history
|
176 |
+
2024-05-23 13:05:02,593 INFO MainThread:1586 [wandb_run.py:_footer_history_summary_info():4026] rendering summary
|
177 |
+
2024-05-23 13:05:02,593 INFO MainThread:1586 [wandb_run.py:_footer_sync_info():3953] logging synced files
|
178 |
+
2024-05-23 13:05:02,596 DEBUG HandlerThread:1586 [handler.py:handle_request():158] handle_request: shutdown
|
179 |
+
2024-05-23 13:05:02,596 INFO HandlerThread:1586 [handler.py:finish():882] shutting down handler
|
180 |
+
2024-05-23 13:05:03,537 INFO WriterThread:1586 [datastore.py:close():296] close: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/run-vm5e7ag8.wandb
|
181 |
+
2024-05-23 13:05:03,593 INFO SenderThread:1586 [sender.py:finish():1545] shutting down sender
|
182 |
+
2024-05-23 13:05:03,593 INFO SenderThread:1586 [file_pusher.py:finish():169] shutting down file pusher
|
183 |
+
2024-05-23 13:05:03,593 INFO SenderThread:1586 [file_pusher.py:join():175] waiting for file pusher
|
lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/logs/debug.log
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-23 13:04:48,276 INFO MainThread:1431 [wandb_setup.py:_flush():76] Current SDK version is 0.17.0
|
2 |
+
2024-05-23 13:04:48,276 INFO MainThread:1431 [wandb_setup.py:_flush():76] Configure stats pid to 1431
|
3 |
+
2024-05-23 13:04:48,276 INFO MainThread:1431 [wandb_setup.py:_flush():76] Loading settings from /root/.config/wandb/settings
|
4 |
+
2024-05-23 13:04:48,276 INFO MainThread:1431 [wandb_setup.py:_flush():76] Loading settings from /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/settings
|
5 |
+
2024-05-23 13:04:48,276 INFO MainThread:1431 [wandb_setup.py:_flush():76] Loading settings from environment variables: {}
|
6 |
+
2024-05-23 13:04:48,276 INFO MainThread:1431 [wandb_setup.py:_flush():76] Applying setup settings: {'_disable_service': False}
|
7 |
+
2024-05-23 13:04:48,276 WARNING MainThread:1431 [wandb_setup.py:_flush():76] Could not find program at -m lm_eval.__main__
|
8 |
+
2024-05-23 13:04:48,276 INFO MainThread:1431 [wandb_setup.py:_flush():76] Inferring run settings from compute environment: {'program_relpath': None, 'program': '-m lm_eval.__main__'}
|
9 |
+
2024-05-23 13:04:48,276 INFO MainThread:1431 [wandb_setup.py:_flush():76] Applying login settings: {}
|
10 |
+
2024-05-23 13:04:48,276 INFO MainThread:1431 [wandb_init.py:_log_setup():520] Logging user logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/logs/debug.log
|
11 |
+
2024-05-23 13:04:48,276 INFO MainThread:1431 [wandb_init.py:_log_setup():521] Logging internal logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/logs/debug-internal.log
|
12 |
+
2024-05-23 13:04:48,276 INFO MainThread:1431 [wandb_init.py:init():560] calling init triggers
|
13 |
+
2024-05-23 13:04:48,276 INFO MainThread:1431 [wandb_init.py:init():567] wandb.init called with sweep_config: {}
|
14 |
+
config: {}
|
15 |
+
2024-05-23 13:04:48,276 INFO MainThread:1431 [wandb_init.py:init():610] starting backend
|
16 |
+
2024-05-23 13:04:48,276 INFO MainThread:1431 [wandb_init.py:init():614] setting up manager
|
17 |
+
2024-05-23 13:04:48,279 INFO MainThread:1431 [backend.py:_multiprocessing_setup():105] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
|
18 |
+
2024-05-23 13:04:48,280 INFO MainThread:1431 [wandb_init.py:init():622] backend started and connected
|
19 |
+
2024-05-23 13:04:48,284 INFO MainThread:1431 [wandb_init.py:init():711] updated telemetry
|
20 |
+
2024-05-23 13:04:48,292 INFO MainThread:1431 [wandb_init.py:init():744] communicating run to backend with 90.0 second timeout
|
21 |
+
2024-05-23 13:04:48,542 INFO MainThread:1431 [wandb_run.py:_on_init():2396] communicating current version
|
22 |
+
2024-05-23 13:04:48,698 INFO MainThread:1431 [wandb_run.py:_on_init():2405] got version response
|
23 |
+
2024-05-23 13:04:48,698 INFO MainThread:1431 [wandb_init.py:init():795] starting run threads in backend
|
24 |
+
2024-05-23 13:04:48,977 INFO MainThread:1431 [wandb_run.py:_console_start():2374] atexit reg
|
25 |
+
2024-05-23 13:04:48,977 INFO MainThread:1431 [wandb_run.py:_redirect():2229] redirect: wrap_raw
|
26 |
+
2024-05-23 13:04:48,977 INFO MainThread:1431 [wandb_run.py:_redirect():2294] Wrapping output streams.
|
27 |
+
2024-05-23 13:04:48,977 INFO MainThread:1431 [wandb_run.py:_redirect():2319] Redirects installed.
|
28 |
+
2024-05-23 13:04:48,980 INFO MainThread:1431 [wandb_init.py:init():838] run started, returning control to user process
|
29 |
+
2024-05-23 13:05:03,597 WARNING MsgRouterThr:1431 [router.py:message_loop():77] message_loop has been closed
|
lm-evaluation-harness/wandb/run-20240523_130448-vm5e7ag8/run-vm5e7ag8.wandb
ADDED
Binary file (11.2 kB). View file
|
|
lm-evaluation-harness/wandb/run-20240530_125856-v5b29ywz/run-v5b29ywz.wandb
ADDED
Binary file (962 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/convnextv2/__init__.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa
|
2 |
+
# There's no way to ignore "F401 '...' imported but unused" warnings in this
|
3 |
+
# module, but to preserve other warnings. So, don't check this module at all.
|
4 |
+
|
5 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
6 |
+
#
|
7 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
8 |
+
# you may not use this file except in compliance with the License.
|
9 |
+
# You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing, software
|
14 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
15 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
16 |
+
# See the License for the specific language governing permissions and
|
17 |
+
# limitations under the License.
|
18 |
+
from typing import TYPE_CHECKING
|
19 |
+
|
20 |
+
# rely on isort to merge the imports
|
21 |
+
from ...utils import (
|
22 |
+
OptionalDependencyNotAvailable,
|
23 |
+
_LazyModule,
|
24 |
+
is_torch_available,
|
25 |
+
is_tf_available,
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
_import_structure = {
|
30 |
+
"configuration_convnextv2": [
|
31 |
+
"CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
32 |
+
"ConvNextV2Config",
|
33 |
+
]
|
34 |
+
}
|
35 |
+
|
36 |
+
try:
|
37 |
+
if not is_torch_available():
|
38 |
+
raise OptionalDependencyNotAvailable()
|
39 |
+
except OptionalDependencyNotAvailable:
|
40 |
+
pass
|
41 |
+
else:
|
42 |
+
_import_structure["modeling_convnextv2"] = [
|
43 |
+
"CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST",
|
44 |
+
"ConvNextV2ForImageClassification",
|
45 |
+
"ConvNextV2Model",
|
46 |
+
"ConvNextV2PreTrainedModel",
|
47 |
+
"ConvNextV2Backbone",
|
48 |
+
]
|
49 |
+
|
50 |
+
try:
|
51 |
+
if not is_tf_available():
|
52 |
+
raise OptionalDependencyNotAvailable()
|
53 |
+
except OptionalDependencyNotAvailable:
|
54 |
+
pass
|
55 |
+
else:
|
56 |
+
_import_structure["modeling_tf_convnextv2"] = [
|
57 |
+
"TFConvNextV2ForImageClassification",
|
58 |
+
"TFConvNextV2Model",
|
59 |
+
"TFConvNextV2PreTrainedModel",
|
60 |
+
]
|
61 |
+
|
62 |
+
if TYPE_CHECKING:
|
63 |
+
from .configuration_convnextv2 import (
|
64 |
+
CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
65 |
+
ConvNextV2Config,
|
66 |
+
)
|
67 |
+
|
68 |
+
try:
|
69 |
+
if not is_torch_available():
|
70 |
+
raise OptionalDependencyNotAvailable()
|
71 |
+
except OptionalDependencyNotAvailable:
|
72 |
+
pass
|
73 |
+
else:
|
74 |
+
from .modeling_convnextv2 import (
|
75 |
+
CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST,
|
76 |
+
ConvNextV2Backbone,
|
77 |
+
ConvNextV2ForImageClassification,
|
78 |
+
ConvNextV2Model,
|
79 |
+
ConvNextV2PreTrainedModel,
|
80 |
+
)
|
81 |
+
|
82 |
+
try:
|
83 |
+
if not is_tf_available():
|
84 |
+
raise OptionalDependencyNotAvailable()
|
85 |
+
except OptionalDependencyNotAvailable:
|
86 |
+
pass
|
87 |
+
else:
|
88 |
+
from .modeling_tf_convnextv2 import (
|
89 |
+
TFConvNextV2ForImageClassification,
|
90 |
+
TFConvNextV2Model,
|
91 |
+
TFConvNextV2PreTrainedModel,
|
92 |
+
)
|
93 |
+
|
94 |
+
else:
|
95 |
+
import sys
|
96 |
+
|
97 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
venv/lib/python3.10/site-packages/transformers/models/convnextv2/configuration_convnextv2.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" ConvNeXTV2 model configuration"""
|
16 |
+
|
17 |
+
|
18 |
+
from ...configuration_utils import PretrainedConfig
|
19 |
+
from ...utils import logging
|
20 |
+
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
|
26 |
+
from ..deprecated._archive_maps import CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
27 |
+
|
28 |
+
|
29 |
+
class ConvNextV2Config(BackboneConfigMixin, PretrainedConfig):
|
30 |
+
r"""
|
31 |
+
This is the configuration class to store the configuration of a [`ConvNextV2Model`]. It is used to instantiate an
|
32 |
+
ConvNeXTV2 model according to the specified arguments, defining the model architecture. Instantiating a
|
33 |
+
configuration with the defaults will yield a similar configuration to that of the ConvNeXTV2
|
34 |
+
[facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) architecture.
|
35 |
+
|
36 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
37 |
+
documentation from [`PretrainedConfig`] for more information.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
num_channels (`int`, *optional*, defaults to 3):
|
41 |
+
The number of input channels.
|
42 |
+
patch_size (`int`, optional, defaults to 4):
|
43 |
+
Patch size to use in the patch embedding layer.
|
44 |
+
num_stages (`int`, optional, defaults to 4):
|
45 |
+
The number of stages in the model.
|
46 |
+
hidden_sizes (`List[int]`, *optional*, defaults to `[96, 192, 384, 768]`):
|
47 |
+
Dimensionality (hidden size) at each stage.
|
48 |
+
depths (`List[int]`, *optional*, defaults to `[3, 3, 9, 3]`):
|
49 |
+
Depth (number of blocks) for each stage.
|
50 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
51 |
+
The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`,
|
52 |
+
`"selu"` and `"gelu_new"` are supported.
|
53 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
54 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
55 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
56 |
+
The epsilon used by the layer normalization layers.
|
57 |
+
drop_path_rate (`float`, *optional*, defaults to 0.0):
|
58 |
+
The drop rate for stochastic depth.
|
59 |
+
out_features (`List[str]`, *optional*):
|
60 |
+
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
|
61 |
+
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
|
62 |
+
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
|
63 |
+
same order as defined in the `stage_names` attribute.
|
64 |
+
out_indices (`List[int]`, *optional*):
|
65 |
+
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
|
66 |
+
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
|
67 |
+
If unset and `out_features` is unset, will default to the last stage. Must be in the
|
68 |
+
same order as defined in the `stage_names` attribute.
|
69 |
+
|
70 |
+
Example:
|
71 |
+
```python
|
72 |
+
>>> from transformers import ConvNeXTV2Config, ConvNextV2Model
|
73 |
+
|
74 |
+
>>> # Initializing a ConvNeXTV2 convnextv2-tiny-1k-224 style configuration
|
75 |
+
>>> configuration = ConvNeXTV2Config()
|
76 |
+
|
77 |
+
>>> # Initializing a model (with random weights) from the convnextv2-tiny-1k-224 style configuration
|
78 |
+
>>> model = ConvNextV2Model(configuration)
|
79 |
+
|
80 |
+
>>> # Accessing the model configuration
|
81 |
+
>>> configuration = model.config
|
82 |
+
```"""
|
83 |
+
|
84 |
+
model_type = "convnextv2"
|
85 |
+
|
86 |
+
def __init__(
|
87 |
+
self,
|
88 |
+
num_channels=3,
|
89 |
+
patch_size=4,
|
90 |
+
num_stages=4,
|
91 |
+
hidden_sizes=None,
|
92 |
+
depths=None,
|
93 |
+
hidden_act="gelu",
|
94 |
+
initializer_range=0.02,
|
95 |
+
layer_norm_eps=1e-12,
|
96 |
+
drop_path_rate=0.0,
|
97 |
+
image_size=224,
|
98 |
+
out_features=None,
|
99 |
+
out_indices=None,
|
100 |
+
**kwargs,
|
101 |
+
):
|
102 |
+
super().__init__(**kwargs)
|
103 |
+
|
104 |
+
self.num_channels = num_channels
|
105 |
+
self.patch_size = patch_size
|
106 |
+
self.num_stages = num_stages
|
107 |
+
self.hidden_sizes = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes
|
108 |
+
self.depths = [3, 3, 9, 3] if depths is None else depths
|
109 |
+
self.hidden_act = hidden_act
|
110 |
+
self.initializer_range = initializer_range
|
111 |
+
self.layer_norm_eps = layer_norm_eps
|
112 |
+
self.drop_path_rate = drop_path_rate
|
113 |
+
self.image_size = image_size
|
114 |
+
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(self.depths) + 1)]
|
115 |
+
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
|
116 |
+
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
|
117 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/convnextv2/convert_convnextv2_to_pytorch.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert ConvNeXTV2 checkpoints from the original repository.
|
16 |
+
|
17 |
+
URL: https://github.com/facebookresearch/ConvNeXt"""
|
18 |
+
|
19 |
+
import argparse
|
20 |
+
import json
|
21 |
+
import os
|
22 |
+
|
23 |
+
import requests
|
24 |
+
import torch
|
25 |
+
from huggingface_hub import hf_hub_download
|
26 |
+
from PIL import Image
|
27 |
+
|
28 |
+
from transformers import ConvNextImageProcessor, ConvNextV2Config, ConvNextV2ForImageClassification
|
29 |
+
from transformers.image_utils import PILImageResampling
|
30 |
+
from transformers.utils import logging
|
31 |
+
|
32 |
+
|
33 |
+
logging.set_verbosity_info()
|
34 |
+
logger = logging.get_logger(__name__)
|
35 |
+
|
36 |
+
|
37 |
+
def get_convnextv2_config(checkpoint_url):
|
38 |
+
config = ConvNextV2Config()
|
39 |
+
|
40 |
+
if "atto" in checkpoint_url:
|
41 |
+
depths = [2, 2, 6, 2]
|
42 |
+
hidden_sizes = [40, 80, 160, 320]
|
43 |
+
if "femto" in checkpoint_url:
|
44 |
+
depths = [2, 2, 6, 2]
|
45 |
+
hidden_sizes = [48, 96, 192, 384]
|
46 |
+
if "pico" in checkpoint_url:
|
47 |
+
depths = [2, 2, 6, 2]
|
48 |
+
hidden_sizes = [64, 128, 256, 512]
|
49 |
+
if "nano" in checkpoint_url:
|
50 |
+
depths = [2, 2, 8, 2]
|
51 |
+
hidden_sizes = [80, 160, 320, 640]
|
52 |
+
if "tiny" in checkpoint_url:
|
53 |
+
depths = [3, 3, 9, 3]
|
54 |
+
hidden_sizes = [96, 192, 384, 768]
|
55 |
+
if "base" in checkpoint_url:
|
56 |
+
depths = [3, 3, 27, 3]
|
57 |
+
hidden_sizes = [128, 256, 512, 1024]
|
58 |
+
if "large" in checkpoint_url:
|
59 |
+
depths = [3, 3, 27, 3]
|
60 |
+
hidden_sizes = [192, 384, 768, 1536]
|
61 |
+
if "huge" in checkpoint_url:
|
62 |
+
depths = [3, 3, 27, 3]
|
63 |
+
hidden_sizes = [352, 704, 1408, 2816]
|
64 |
+
|
65 |
+
num_labels = 1000
|
66 |
+
filename = "imagenet-1k-id2label.json"
|
67 |
+
expected_shape = (1, 1000)
|
68 |
+
|
69 |
+
repo_id = "huggingface/label-files"
|
70 |
+
config.num_labels = num_labels
|
71 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
72 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
73 |
+
|
74 |
+
config.id2label = id2label
|
75 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
76 |
+
config.hidden_sizes = hidden_sizes
|
77 |
+
config.depths = depths
|
78 |
+
|
79 |
+
return config, expected_shape
|
80 |
+
|
81 |
+
|
82 |
+
def rename_key(name):
|
83 |
+
if "downsample_layers.0.0" in name:
|
84 |
+
name = name.replace("downsample_layers.0.0", "embeddings.patch_embeddings")
|
85 |
+
if "downsample_layers.0.1" in name:
|
86 |
+
name = name.replace("downsample_layers.0.1", "embeddings.norm") # we rename to layernorm later on
|
87 |
+
if "downsample_layers.1.0" in name:
|
88 |
+
name = name.replace("downsample_layers.1.0", "stages.1.downsampling_layer.0")
|
89 |
+
if "downsample_layers.1.1" in name:
|
90 |
+
name = name.replace("downsample_layers.1.1", "stages.1.downsampling_layer.1")
|
91 |
+
if "downsample_layers.2.0" in name:
|
92 |
+
name = name.replace("downsample_layers.2.0", "stages.2.downsampling_layer.0")
|
93 |
+
if "downsample_layers.2.1" in name:
|
94 |
+
name = name.replace("downsample_layers.2.1", "stages.2.downsampling_layer.1")
|
95 |
+
if "downsample_layers.3.0" in name:
|
96 |
+
name = name.replace("downsample_layers.3.0", "stages.3.downsampling_layer.0")
|
97 |
+
if "downsample_layers.3.1" in name:
|
98 |
+
name = name.replace("downsample_layers.3.1", "stages.3.downsampling_layer.1")
|
99 |
+
if "stages" in name and "downsampling_layer" not in name:
|
100 |
+
# stages.0.0. for instance should be renamed to stages.0.layers.0.
|
101 |
+
name = name[: len("stages.0")] + ".layers" + name[len("stages.0") :]
|
102 |
+
if "gamma" in name:
|
103 |
+
name = name.replace("gamma", "weight")
|
104 |
+
if "beta" in name:
|
105 |
+
name = name.replace("beta", "bias")
|
106 |
+
if "stages" in name:
|
107 |
+
name = name.replace("stages", "encoder.stages")
|
108 |
+
if "norm" in name:
|
109 |
+
name = name.replace("norm", "layernorm")
|
110 |
+
if "head" in name:
|
111 |
+
name = name.replace("head", "classifier")
|
112 |
+
|
113 |
+
return name
|
114 |
+
|
115 |
+
|
116 |
+
# We will verify our results on an image of cute cats
|
117 |
+
def prepare_img():
|
118 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
119 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
120 |
+
return im
|
121 |
+
|
122 |
+
|
123 |
+
def convert_preprocessor(checkpoint_url):
|
124 |
+
if "224" in checkpoint_url:
|
125 |
+
size = 224
|
126 |
+
crop_pct = 224 / 256
|
127 |
+
elif "384" in checkpoint_url:
|
128 |
+
size = 384
|
129 |
+
crop_pct = None
|
130 |
+
else:
|
131 |
+
size = 512
|
132 |
+
crop_pct = None
|
133 |
+
|
134 |
+
return ConvNextImageProcessor(
|
135 |
+
size=size,
|
136 |
+
crop_pct=crop_pct,
|
137 |
+
image_mean=[0.485, 0.456, 0.406],
|
138 |
+
image_std=[0.229, 0.224, 0.225],
|
139 |
+
resample=PILImageResampling.BICUBIC,
|
140 |
+
)
|
141 |
+
|
142 |
+
|
143 |
+
@torch.no_grad()
|
144 |
+
def convert_convnextv2_checkpoint(checkpoint_url, pytorch_dump_folder_path, save_model, push_to_hub):
|
145 |
+
"""
|
146 |
+
Copy/paste/tweak model's weights to our ConvNeXTV2 structure.
|
147 |
+
"""
|
148 |
+
print("Downloading original model from checkpoint...")
|
149 |
+
# define ConvNeXTV2 configuration based on URL
|
150 |
+
config, expected_shape = get_convnextv2_config(checkpoint_url)
|
151 |
+
# load original state_dict from URL
|
152 |
+
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url)["model"]
|
153 |
+
|
154 |
+
print("Converting model parameters...")
|
155 |
+
# rename keys
|
156 |
+
for key in state_dict.copy().keys():
|
157 |
+
val = state_dict.pop(key)
|
158 |
+
state_dict[rename_key(key)] = val
|
159 |
+
# add prefix to all keys expect classifier head
|
160 |
+
for key in state_dict.copy().keys():
|
161 |
+
val = state_dict.pop(key)
|
162 |
+
if not key.startswith("classifier"):
|
163 |
+
key = "convnextv2." + key
|
164 |
+
state_dict[key] = val
|
165 |
+
|
166 |
+
# load HuggingFace model
|
167 |
+
model = ConvNextV2ForImageClassification(config)
|
168 |
+
model.load_state_dict(state_dict)
|
169 |
+
model.eval()
|
170 |
+
|
171 |
+
# Check outputs on an image, prepared by ConvNextImageProcessor
|
172 |
+
preprocessor = convert_preprocessor(checkpoint_url)
|
173 |
+
inputs = preprocessor(images=prepare_img(), return_tensors="pt")
|
174 |
+
logits = model(**inputs).logits
|
175 |
+
|
176 |
+
# note: the logits below were obtained without center cropping
|
177 |
+
if checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_atto_1k_224_ema.pt":
|
178 |
+
expected_logits = torch.tensor([-0.3930, 0.1747, -0.5246, 0.4177, 0.4295])
|
179 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_femto_1k_224_ema.pt":
|
180 |
+
expected_logits = torch.tensor([-0.1727, -0.5341, -0.7818, -0.4745, -0.6566])
|
181 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_pico_1k_224_ema.pt":
|
182 |
+
expected_logits = torch.tensor([-0.0333, 0.1563, -0.9137, 0.1054, 0.0381])
|
183 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_nano_1k_224_ema.pt":
|
184 |
+
expected_logits = torch.tensor([-0.1744, -0.1555, -0.0713, 0.0950, -0.1431])
|
185 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_tiny_1k_224_ema.pt":
|
186 |
+
expected_logits = torch.tensor([0.9996, 0.1966, -0.4386, -0.3472, 0.6661])
|
187 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_base_1k_224_ema.pt":
|
188 |
+
expected_logits = torch.tensor([-0.2553, -0.6708, -0.1359, 0.2518, -0.2488])
|
189 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_large_1k_224_ema.pt":
|
190 |
+
expected_logits = torch.tensor([-0.0673, -0.5627, -0.3753, -0.2722, 0.0178])
|
191 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_huge_1k_224_ema.pt":
|
192 |
+
expected_logits = torch.tensor([-0.6377, -0.7458, -0.2150, 0.1184, -0.0597])
|
193 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_224_ema.pt":
|
194 |
+
expected_logits = torch.tensor([1.0799, 0.2322, -0.8860, 1.0219, 0.6231])
|
195 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_nano_22k_384_ema.pt":
|
196 |
+
expected_logits = torch.tensor([0.3766, 0.4917, -1.1426, 0.9942, 0.6024])
|
197 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_224_ema.pt":
|
198 |
+
expected_logits = torch.tensor([0.4220, -0.6919, -0.4317, -0.2881, -0.6609])
|
199 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_tiny_22k_384_ema.pt":
|
200 |
+
expected_logits = torch.tensor([0.1082, -0.8286, -0.5095, 0.4681, -0.8085])
|
201 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_224_ema.pt":
|
202 |
+
expected_logits = torch.tensor([-0.2419, -0.6221, 0.2176, -0.0980, -0.7527])
|
203 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_base_22k_384_ema.pt":
|
204 |
+
expected_logits = torch.tensor([0.0391, -0.4371, 0.3786, 0.1251, -0.2784])
|
205 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_224_ema.pt":
|
206 |
+
expected_logits = torch.tensor([-0.0504, 0.5636, -0.1729, -0.6507, -0.3949])
|
207 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_large_22k_384_ema.pt":
|
208 |
+
expected_logits = torch.tensor([0.3560, 0.9486, 0.3149, -0.2667, -0.5138])
|
209 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_384_ema.pt":
|
210 |
+
expected_logits = torch.tensor([-0.2469, -0.4550, -0.5853, -0.0810, 0.0309])
|
211 |
+
elif checkpoint_url == "https://dl.fbaipublicfiles.com/convnext/convnextv2/im22k/convnextv2_huge_22k_512_ema.pt":
|
212 |
+
expected_logits = torch.tensor([-0.3090, 0.0802, -0.0682, -0.1979, -0.2826])
|
213 |
+
else:
|
214 |
+
raise ValueError(f"Unknown URL: {checkpoint_url}")
|
215 |
+
|
216 |
+
assert torch.allclose(logits[0, :5], expected_logits, atol=1e-3)
|
217 |
+
assert logits.shape == expected_shape
|
218 |
+
print("Model outputs match the original results!")
|
219 |
+
|
220 |
+
if save_model:
|
221 |
+
print("Saving model to local...")
|
222 |
+
# Create folder to save model
|
223 |
+
if not os.path.isdir(pytorch_dump_folder_path):
|
224 |
+
os.mkdir(pytorch_dump_folder_path)
|
225 |
+
|
226 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
227 |
+
preprocessor.save_pretrained(pytorch_dump_folder_path)
|
228 |
+
|
229 |
+
model_name = "convnextv2"
|
230 |
+
if "atto" in checkpoint_url:
|
231 |
+
model_name += "-atto"
|
232 |
+
if "femto" in checkpoint_url:
|
233 |
+
model_name += "-femto"
|
234 |
+
if "pico" in checkpoint_url:
|
235 |
+
model_name += "-pico"
|
236 |
+
if "nano" in checkpoint_url:
|
237 |
+
model_name += "-nano"
|
238 |
+
elif "tiny" in checkpoint_url:
|
239 |
+
model_name += "-tiny"
|
240 |
+
elif "base" in checkpoint_url:
|
241 |
+
model_name += "-base"
|
242 |
+
elif "large" in checkpoint_url:
|
243 |
+
model_name += "-large"
|
244 |
+
elif "huge" in checkpoint_url:
|
245 |
+
model_name += "-huge"
|
246 |
+
if "22k" in checkpoint_url and "1k" not in checkpoint_url:
|
247 |
+
model_name += "-22k"
|
248 |
+
elif "22k" in checkpoint_url and "1k" in checkpoint_url:
|
249 |
+
model_name += "-22k-1k"
|
250 |
+
elif "1k" in checkpoint_url:
|
251 |
+
model_name += "-1k"
|
252 |
+
if "224" in checkpoint_url:
|
253 |
+
model_name += "-224"
|
254 |
+
elif "384" in checkpoint_url:
|
255 |
+
model_name += "-384"
|
256 |
+
elif "512" in checkpoint_url:
|
257 |
+
model_name += "-512"
|
258 |
+
|
259 |
+
if push_to_hub:
|
260 |
+
print(f"Pushing {model_name} to the hub...")
|
261 |
+
model.push_to_hub(model_name)
|
262 |
+
preprocessor.push_to_hub(model_name)
|
263 |
+
|
264 |
+
|
265 |
+
if __name__ == "__main__":
|
266 |
+
parser = argparse.ArgumentParser()
|
267 |
+
# Required parameters
|
268 |
+
parser.add_argument(
|
269 |
+
"--checkpoint_url",
|
270 |
+
default="https://dl.fbaipublicfiles.com/convnext/convnextv2/im1k/convnextv2_atto_1k_224_ema.pt",
|
271 |
+
type=str,
|
272 |
+
help="URL of the original ConvNeXTV2 checkpoint you'd like to convert.",
|
273 |
+
)
|
274 |
+
parser.add_argument(
|
275 |
+
"--pytorch_dump_folder_path",
|
276 |
+
default="model",
|
277 |
+
type=str,
|
278 |
+
help="Path to the output PyTorch model directory.",
|
279 |
+
)
|
280 |
+
parser.add_argument("--save_model", action="store_true", help="Save model to local")
|
281 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Push model and image preprocessor to the hub")
|
282 |
+
|
283 |
+
args = parser.parse_args()
|
284 |
+
convert_convnextv2_checkpoint(
|
285 |
+
args.checkpoint_url, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub
|
286 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_convnextv2.py
ADDED
@@ -0,0 +1,574 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Meta Platforms, Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch ConvNextV2 model."""
|
16 |
+
|
17 |
+
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
24 |
+
|
25 |
+
from ...activations import ACT2FN
|
26 |
+
from ...modeling_outputs import (
|
27 |
+
BackboneOutput,
|
28 |
+
BaseModelOutputWithNoAttention,
|
29 |
+
BaseModelOutputWithPoolingAndNoAttention,
|
30 |
+
ImageClassifierOutputWithNoAttention,
|
31 |
+
)
|
32 |
+
from ...modeling_utils import PreTrainedModel
|
33 |
+
from ...utils import (
|
34 |
+
add_code_sample_docstrings,
|
35 |
+
add_start_docstrings,
|
36 |
+
add_start_docstrings_to_model_forward,
|
37 |
+
logging,
|
38 |
+
replace_return_docstrings,
|
39 |
+
)
|
40 |
+
from ...utils.backbone_utils import BackboneMixin
|
41 |
+
from .configuration_convnextv2 import ConvNextV2Config
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
# General docstring
|
47 |
+
_CONFIG_FOR_DOC = "ConvNextV2Config"
|
48 |
+
|
49 |
+
# Base docstring
|
50 |
+
_CHECKPOINT_FOR_DOC = "facebook/convnextv2-tiny-1k-224"
|
51 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
|
52 |
+
|
53 |
+
# Image classification docstring
|
54 |
+
_IMAGE_CLASS_CHECKPOINT = "facebook/convnextv2-tiny-1k-224"
|
55 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
56 |
+
|
57 |
+
|
58 |
+
from ..deprecated._archive_maps import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
59 |
+
|
60 |
+
|
61 |
+
# Copied from transformers.models.beit.modeling_beit.drop_path
|
62 |
+
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
63 |
+
"""
|
64 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
65 |
+
|
66 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
67 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
68 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
69 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
70 |
+
argument.
|
71 |
+
"""
|
72 |
+
if drop_prob == 0.0 or not training:
|
73 |
+
return input
|
74 |
+
keep_prob = 1 - drop_prob
|
75 |
+
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
76 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
77 |
+
random_tensor.floor_() # binarize
|
78 |
+
output = input.div(keep_prob) * random_tensor
|
79 |
+
return output
|
80 |
+
|
81 |
+
|
82 |
+
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->ConvNextV2
|
83 |
+
class ConvNextV2DropPath(nn.Module):
|
84 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
85 |
+
|
86 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
87 |
+
super().__init__()
|
88 |
+
self.drop_prob = drop_prob
|
89 |
+
|
90 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
91 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
92 |
+
|
93 |
+
def extra_repr(self) -> str:
|
94 |
+
return "p={}".format(self.drop_prob)
|
95 |
+
|
96 |
+
|
97 |
+
class ConvNextV2GRN(nn.Module):
|
98 |
+
"""GRN (Global Response Normalization) layer"""
|
99 |
+
|
100 |
+
def __init__(self, dim: int):
|
101 |
+
super().__init__()
|
102 |
+
self.weight = nn.Parameter(torch.zeros(1, 1, 1, dim))
|
103 |
+
self.bias = nn.Parameter(torch.zeros(1, 1, 1, dim))
|
104 |
+
|
105 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
106 |
+
# Compute and normalize global spatial feature maps
|
107 |
+
global_features = torch.norm(hidden_states, p=2, dim=(1, 2), keepdim=True)
|
108 |
+
norm_features = global_features / (global_features.mean(dim=-1, keepdim=True) + 1e-6)
|
109 |
+
hidden_states = self.weight * (hidden_states * norm_features) + self.bias + hidden_states
|
110 |
+
|
111 |
+
return hidden_states
|
112 |
+
|
113 |
+
|
114 |
+
# Copied from transformers.models.convnext.modeling_convnext.ConvNextLayerNorm with ConvNext->ConvNextV2
|
115 |
+
class ConvNextV2LayerNorm(nn.Module):
|
116 |
+
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
117 |
+
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height,
|
118 |
+
width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width).
|
119 |
+
"""
|
120 |
+
|
121 |
+
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
|
122 |
+
super().__init__()
|
123 |
+
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
124 |
+
self.bias = nn.Parameter(torch.zeros(normalized_shape))
|
125 |
+
self.eps = eps
|
126 |
+
self.data_format = data_format
|
127 |
+
if self.data_format not in ["channels_last", "channels_first"]:
|
128 |
+
raise NotImplementedError(f"Unsupported data format: {self.data_format}")
|
129 |
+
self.normalized_shape = (normalized_shape,)
|
130 |
+
|
131 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
132 |
+
if self.data_format == "channels_last":
|
133 |
+
x = torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
134 |
+
elif self.data_format == "channels_first":
|
135 |
+
input_dtype = x.dtype
|
136 |
+
x = x.float()
|
137 |
+
u = x.mean(1, keepdim=True)
|
138 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
139 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
140 |
+
x = x.to(dtype=input_dtype)
|
141 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
142 |
+
return x
|
143 |
+
|
144 |
+
|
145 |
+
# Copied from transformers.models.convnext.modeling_convnext.ConvNextEmbeddings with ConvNext->ConvNextV2
|
146 |
+
class ConvNextV2Embeddings(nn.Module):
|
147 |
+
"""This class is comparable to (and inspired by) the SwinEmbeddings class
|
148 |
+
found in src/transformers/models/swin/modeling_swin.py.
|
149 |
+
"""
|
150 |
+
|
151 |
+
def __init__(self, config):
|
152 |
+
super().__init__()
|
153 |
+
self.patch_embeddings = nn.Conv2d(
|
154 |
+
config.num_channels, config.hidden_sizes[0], kernel_size=config.patch_size, stride=config.patch_size
|
155 |
+
)
|
156 |
+
self.layernorm = ConvNextV2LayerNorm(config.hidden_sizes[0], eps=1e-6, data_format="channels_first")
|
157 |
+
self.num_channels = config.num_channels
|
158 |
+
|
159 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
160 |
+
num_channels = pixel_values.shape[1]
|
161 |
+
if num_channels != self.num_channels:
|
162 |
+
raise ValueError(
|
163 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
164 |
+
)
|
165 |
+
embeddings = self.patch_embeddings(pixel_values)
|
166 |
+
embeddings = self.layernorm(embeddings)
|
167 |
+
return embeddings
|
168 |
+
|
169 |
+
|
170 |
+
class ConvNextV2Layer(nn.Module):
|
171 |
+
"""This corresponds to the `Block` class in the original implementation.
|
172 |
+
|
173 |
+
There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C,
|
174 |
+
H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back
|
175 |
+
|
176 |
+
The authors used (2) as they find it slightly faster in PyTorch.
|
177 |
+
|
178 |
+
Args:
|
179 |
+
config ([`ConvNextV2Config`]): Model configuration class.
|
180 |
+
dim (`int`): Number of input channels.
|
181 |
+
drop_path (`float`): Stochastic depth rate. Default: 0.0.
|
182 |
+
"""
|
183 |
+
|
184 |
+
def __init__(self, config, dim, drop_path=0):
|
185 |
+
super().__init__()
|
186 |
+
# depthwise conv
|
187 |
+
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)
|
188 |
+
self.layernorm = ConvNextV2LayerNorm(dim, eps=1e-6)
|
189 |
+
# pointwise/1x1 convs, implemented with linear layers
|
190 |
+
self.pwconv1 = nn.Linear(dim, 4 * dim)
|
191 |
+
self.act = ACT2FN[config.hidden_act]
|
192 |
+
self.grn = ConvNextV2GRN(4 * dim)
|
193 |
+
self.pwconv2 = nn.Linear(4 * dim, dim)
|
194 |
+
self.drop_path = ConvNextV2DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
195 |
+
|
196 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
197 |
+
input = hidden_states
|
198 |
+
x = self.dwconv(hidden_states)
|
199 |
+
# (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels)
|
200 |
+
x = x.permute(0, 2, 3, 1)
|
201 |
+
x = self.layernorm(x)
|
202 |
+
x = self.pwconv1(x)
|
203 |
+
x = self.act(x)
|
204 |
+
x = self.grn(x)
|
205 |
+
x = self.pwconv2(x)
|
206 |
+
# (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width)
|
207 |
+
x = x.permute(0, 3, 1, 2)
|
208 |
+
|
209 |
+
x = input + self.drop_path(x)
|
210 |
+
return x
|
211 |
+
|
212 |
+
|
213 |
+
# Copied from transformers.models.convnext.modeling_convnext.ConvNextStage with ConvNeXT->ConvNeXTV2, ConvNext->ConvNextV2
|
214 |
+
class ConvNextV2Stage(nn.Module):
|
215 |
+
"""ConvNeXTV2 stage, consisting of an optional downsampling layer + multiple residual blocks.
|
216 |
+
|
217 |
+
Args:
|
218 |
+
config ([`ConvNextV2Config`]): Model configuration class.
|
219 |
+
in_channels (`int`): Number of input channels.
|
220 |
+
out_channels (`int`): Number of output channels.
|
221 |
+
depth (`int`): Number of residual blocks.
|
222 |
+
drop_path_rates(`List[float]`): Stochastic depth rates for each layer.
|
223 |
+
"""
|
224 |
+
|
225 |
+
def __init__(self, config, in_channels, out_channels, kernel_size=2, stride=2, depth=2, drop_path_rates=None):
|
226 |
+
super().__init__()
|
227 |
+
|
228 |
+
if in_channels != out_channels or stride > 1:
|
229 |
+
self.downsampling_layer = nn.Sequential(
|
230 |
+
ConvNextV2LayerNorm(in_channels, eps=1e-6, data_format="channels_first"),
|
231 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride),
|
232 |
+
)
|
233 |
+
else:
|
234 |
+
self.downsampling_layer = nn.Identity()
|
235 |
+
drop_path_rates = drop_path_rates or [0.0] * depth
|
236 |
+
self.layers = nn.Sequential(
|
237 |
+
*[ConvNextV2Layer(config, dim=out_channels, drop_path=drop_path_rates[j]) for j in range(depth)]
|
238 |
+
)
|
239 |
+
|
240 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
241 |
+
hidden_states = self.downsampling_layer(hidden_states)
|
242 |
+
hidden_states = self.layers(hidden_states)
|
243 |
+
return hidden_states
|
244 |
+
|
245 |
+
|
246 |
+
# Copied from transformers.models.convnext.modeling_convnext.ConvNextEncoder with ConvNext->ConvNextV2
|
247 |
+
class ConvNextV2Encoder(nn.Module):
|
248 |
+
def __init__(self, config):
|
249 |
+
super().__init__()
|
250 |
+
self.stages = nn.ModuleList()
|
251 |
+
drop_path_rates = [
|
252 |
+
x.tolist() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths)).split(config.depths)
|
253 |
+
]
|
254 |
+
prev_chs = config.hidden_sizes[0]
|
255 |
+
for i in range(config.num_stages):
|
256 |
+
out_chs = config.hidden_sizes[i]
|
257 |
+
stage = ConvNextV2Stage(
|
258 |
+
config,
|
259 |
+
in_channels=prev_chs,
|
260 |
+
out_channels=out_chs,
|
261 |
+
stride=2 if i > 0 else 1,
|
262 |
+
depth=config.depths[i],
|
263 |
+
drop_path_rates=drop_path_rates[i],
|
264 |
+
)
|
265 |
+
self.stages.append(stage)
|
266 |
+
prev_chs = out_chs
|
267 |
+
|
268 |
+
def forward(
|
269 |
+
self,
|
270 |
+
hidden_states: torch.FloatTensor,
|
271 |
+
output_hidden_states: Optional[bool] = False,
|
272 |
+
return_dict: Optional[bool] = True,
|
273 |
+
) -> Union[Tuple, BaseModelOutputWithNoAttention]:
|
274 |
+
all_hidden_states = () if output_hidden_states else None
|
275 |
+
|
276 |
+
for i, layer_module in enumerate(self.stages):
|
277 |
+
if output_hidden_states:
|
278 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
279 |
+
|
280 |
+
hidden_states = layer_module(hidden_states)
|
281 |
+
|
282 |
+
if output_hidden_states:
|
283 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
284 |
+
|
285 |
+
if not return_dict:
|
286 |
+
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
|
287 |
+
|
288 |
+
return BaseModelOutputWithNoAttention(
|
289 |
+
last_hidden_state=hidden_states,
|
290 |
+
hidden_states=all_hidden_states,
|
291 |
+
)
|
292 |
+
|
293 |
+
|
294 |
+
# Copied from transformers.models.convnext.modeling_convnext.ConvNextPreTrainedModel with ConvNext->ConvNextV2, convnext->convnextv2
|
295 |
+
class ConvNextV2PreTrainedModel(PreTrainedModel):
|
296 |
+
"""
|
297 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
298 |
+
models.
|
299 |
+
"""
|
300 |
+
|
301 |
+
config_class = ConvNextV2Config
|
302 |
+
base_model_prefix = "convnextv2"
|
303 |
+
main_input_name = "pixel_values"
|
304 |
+
|
305 |
+
def _init_weights(self, module):
|
306 |
+
"""Initialize the weights"""
|
307 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
308 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
309 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
310 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
311 |
+
if module.bias is not None:
|
312 |
+
module.bias.data.zero_()
|
313 |
+
elif isinstance(module, nn.LayerNorm):
|
314 |
+
module.bias.data.zero_()
|
315 |
+
module.weight.data.fill_(1.0)
|
316 |
+
|
317 |
+
|
318 |
+
CONVNEXTV2_START_DOCSTRING = r"""
|
319 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
320 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
321 |
+
behavior.
|
322 |
+
|
323 |
+
Parameters:
|
324 |
+
config ([`ConvNextV2Config`]): Model configuration class with all the parameters of the model.
|
325 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
326 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
327 |
+
"""
|
328 |
+
|
329 |
+
CONVNEXTV2_INPUTS_DOCSTRING = r"""
|
330 |
+
Args:
|
331 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
332 |
+
Pixel values. Pixel values can be obtained using [`ConvNextImageProcessor`]. See
|
333 |
+
[`ConvNextImageProcessor.__call__`] for details.
|
334 |
+
output_hidden_states (`bool`, *optional*):
|
335 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
336 |
+
more detail.
|
337 |
+
return_dict (`bool`, *optional*):
|
338 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
339 |
+
"""
|
340 |
+
|
341 |
+
|
342 |
+
@add_start_docstrings(
|
343 |
+
"The bare ConvNextV2 model outputting raw features without any specific head on top.",
|
344 |
+
CONVNEXTV2_START_DOCSTRING,
|
345 |
+
)
|
346 |
+
# Copied from transformers.models.convnext.modeling_convnext.ConvNextModel with CONVNEXT->CONVNEXTV2, ConvNext->ConvNextV2
|
347 |
+
class ConvNextV2Model(ConvNextV2PreTrainedModel):
|
348 |
+
def __init__(self, config):
|
349 |
+
super().__init__(config)
|
350 |
+
self.config = config
|
351 |
+
|
352 |
+
self.embeddings = ConvNextV2Embeddings(config)
|
353 |
+
self.encoder = ConvNextV2Encoder(config)
|
354 |
+
|
355 |
+
# final layernorm layer
|
356 |
+
self.layernorm = nn.LayerNorm(config.hidden_sizes[-1], eps=config.layer_norm_eps)
|
357 |
+
|
358 |
+
# Initialize weights and apply final processing
|
359 |
+
self.post_init()
|
360 |
+
|
361 |
+
@add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
|
362 |
+
@add_code_sample_docstrings(
|
363 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
364 |
+
output_type=BaseModelOutputWithPoolingAndNoAttention,
|
365 |
+
config_class=_CONFIG_FOR_DOC,
|
366 |
+
modality="vision",
|
367 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
368 |
+
)
|
369 |
+
def forward(
|
370 |
+
self,
|
371 |
+
pixel_values: torch.FloatTensor = None,
|
372 |
+
output_hidden_states: Optional[bool] = None,
|
373 |
+
return_dict: Optional[bool] = None,
|
374 |
+
) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
|
375 |
+
output_hidden_states = (
|
376 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
377 |
+
)
|
378 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
379 |
+
|
380 |
+
if pixel_values is None:
|
381 |
+
raise ValueError("You have to specify pixel_values")
|
382 |
+
|
383 |
+
embedding_output = self.embeddings(pixel_values)
|
384 |
+
|
385 |
+
encoder_outputs = self.encoder(
|
386 |
+
embedding_output,
|
387 |
+
output_hidden_states=output_hidden_states,
|
388 |
+
return_dict=return_dict,
|
389 |
+
)
|
390 |
+
|
391 |
+
last_hidden_state = encoder_outputs[0]
|
392 |
+
|
393 |
+
# global average pooling, (N, C, H, W) -> (N, C)
|
394 |
+
pooled_output = self.layernorm(last_hidden_state.mean([-2, -1]))
|
395 |
+
|
396 |
+
if not return_dict:
|
397 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
398 |
+
|
399 |
+
return BaseModelOutputWithPoolingAndNoAttention(
|
400 |
+
last_hidden_state=last_hidden_state,
|
401 |
+
pooler_output=pooled_output,
|
402 |
+
hidden_states=encoder_outputs.hidden_states,
|
403 |
+
)
|
404 |
+
|
405 |
+
|
406 |
+
@add_start_docstrings(
|
407 |
+
"""
|
408 |
+
ConvNextV2 Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
|
409 |
+
ImageNet.
|
410 |
+
""",
|
411 |
+
CONVNEXTV2_START_DOCSTRING,
|
412 |
+
)
|
413 |
+
# Copied from transformers.models.convnext.modeling_convnext.ConvNextForImageClassification with CONVNEXT->CONVNEXTV2,ConvNext->ConvNextV2,convnext->convnextv2
|
414 |
+
class ConvNextV2ForImageClassification(ConvNextV2PreTrainedModel):
|
415 |
+
def __init__(self, config):
|
416 |
+
super().__init__(config)
|
417 |
+
|
418 |
+
self.num_labels = config.num_labels
|
419 |
+
self.convnextv2 = ConvNextV2Model(config)
|
420 |
+
|
421 |
+
# Classifier head
|
422 |
+
self.classifier = (
|
423 |
+
nn.Linear(config.hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
|
424 |
+
)
|
425 |
+
|
426 |
+
# Initialize weights and apply final processing
|
427 |
+
self.post_init()
|
428 |
+
|
429 |
+
@add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
|
430 |
+
@add_code_sample_docstrings(
|
431 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
432 |
+
output_type=ImageClassifierOutputWithNoAttention,
|
433 |
+
config_class=_CONFIG_FOR_DOC,
|
434 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
435 |
+
)
|
436 |
+
def forward(
|
437 |
+
self,
|
438 |
+
pixel_values: torch.FloatTensor = None,
|
439 |
+
labels: Optional[torch.LongTensor] = None,
|
440 |
+
output_hidden_states: Optional[bool] = None,
|
441 |
+
return_dict: Optional[bool] = None,
|
442 |
+
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
|
443 |
+
r"""
|
444 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
445 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
446 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
447 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
448 |
+
"""
|
449 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
450 |
+
|
451 |
+
outputs = self.convnextv2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
452 |
+
|
453 |
+
pooled_output = outputs.pooler_output if return_dict else outputs[1]
|
454 |
+
|
455 |
+
logits = self.classifier(pooled_output)
|
456 |
+
|
457 |
+
loss = None
|
458 |
+
if labels is not None:
|
459 |
+
if self.config.problem_type is None:
|
460 |
+
if self.num_labels == 1:
|
461 |
+
self.config.problem_type = "regression"
|
462 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
463 |
+
self.config.problem_type = "single_label_classification"
|
464 |
+
else:
|
465 |
+
self.config.problem_type = "multi_label_classification"
|
466 |
+
|
467 |
+
if self.config.problem_type == "regression":
|
468 |
+
loss_fct = MSELoss()
|
469 |
+
if self.num_labels == 1:
|
470 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
471 |
+
else:
|
472 |
+
loss = loss_fct(logits, labels)
|
473 |
+
elif self.config.problem_type == "single_label_classification":
|
474 |
+
loss_fct = CrossEntropyLoss()
|
475 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
476 |
+
elif self.config.problem_type == "multi_label_classification":
|
477 |
+
loss_fct = BCEWithLogitsLoss()
|
478 |
+
loss = loss_fct(logits, labels)
|
479 |
+
if not return_dict:
|
480 |
+
output = (logits,) + outputs[2:]
|
481 |
+
return ((loss,) + output) if loss is not None else output
|
482 |
+
|
483 |
+
return ImageClassifierOutputWithNoAttention(
|
484 |
+
loss=loss,
|
485 |
+
logits=logits,
|
486 |
+
hidden_states=outputs.hidden_states,
|
487 |
+
)
|
488 |
+
|
489 |
+
|
490 |
+
@add_start_docstrings(
|
491 |
+
"""
|
492 |
+
ConvNeXT V2 backbone, to be used with frameworks like DETR and MaskFormer.
|
493 |
+
""",
|
494 |
+
CONVNEXTV2_START_DOCSTRING,
|
495 |
+
)
|
496 |
+
# Copied from transformers.models.convnext.modeling_convnext.ConvNextBackbone with CONVNEXT->CONVNEXTV2,ConvNext->ConvNextV2,facebook/convnext-tiny-224->facebook/convnextv2-tiny-1k-224
|
497 |
+
class ConvNextV2Backbone(ConvNextV2PreTrainedModel, BackboneMixin):
|
498 |
+
def __init__(self, config):
|
499 |
+
super().__init__(config)
|
500 |
+
super()._init_backbone(config)
|
501 |
+
|
502 |
+
self.embeddings = ConvNextV2Embeddings(config)
|
503 |
+
self.encoder = ConvNextV2Encoder(config)
|
504 |
+
self.num_features = [config.hidden_sizes[0]] + config.hidden_sizes
|
505 |
+
|
506 |
+
# Add layer norms to hidden states of out_features
|
507 |
+
hidden_states_norms = {}
|
508 |
+
for stage, num_channels in zip(self._out_features, self.channels):
|
509 |
+
hidden_states_norms[stage] = ConvNextV2LayerNorm(num_channels, data_format="channels_first")
|
510 |
+
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)
|
511 |
+
|
512 |
+
# initialize weights and apply final processing
|
513 |
+
self.post_init()
|
514 |
+
|
515 |
+
@add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
|
516 |
+
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
|
517 |
+
def forward(
|
518 |
+
self,
|
519 |
+
pixel_values: torch.Tensor,
|
520 |
+
output_hidden_states: Optional[bool] = None,
|
521 |
+
return_dict: Optional[bool] = None,
|
522 |
+
) -> BackboneOutput:
|
523 |
+
"""
|
524 |
+
Returns:
|
525 |
+
|
526 |
+
Examples:
|
527 |
+
|
528 |
+
```python
|
529 |
+
>>> from transformers import AutoImageProcessor, AutoBackbone
|
530 |
+
>>> import torch
|
531 |
+
>>> from PIL import Image
|
532 |
+
>>> import requests
|
533 |
+
|
534 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
535 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
536 |
+
|
537 |
+
>>> processor = AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224")
|
538 |
+
>>> model = AutoBackbone.from_pretrained("facebook/convnextv2-tiny-1k-224")
|
539 |
+
|
540 |
+
>>> inputs = processor(image, return_tensors="pt")
|
541 |
+
>>> outputs = model(**inputs)
|
542 |
+
```"""
|
543 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
544 |
+
output_hidden_states = (
|
545 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
546 |
+
)
|
547 |
+
|
548 |
+
embedding_output = self.embeddings(pixel_values)
|
549 |
+
|
550 |
+
outputs = self.encoder(
|
551 |
+
embedding_output,
|
552 |
+
output_hidden_states=True,
|
553 |
+
return_dict=return_dict,
|
554 |
+
)
|
555 |
+
|
556 |
+
hidden_states = outputs.hidden_states if return_dict else outputs[1]
|
557 |
+
|
558 |
+
feature_maps = ()
|
559 |
+
for stage, hidden_state in zip(self.stage_names, hidden_states):
|
560 |
+
if stage in self.out_features:
|
561 |
+
hidden_state = self.hidden_states_norms[stage](hidden_state)
|
562 |
+
feature_maps += (hidden_state,)
|
563 |
+
|
564 |
+
if not return_dict:
|
565 |
+
output = (feature_maps,)
|
566 |
+
if output_hidden_states:
|
567 |
+
output += (hidden_states,)
|
568 |
+
return output
|
569 |
+
|
570 |
+
return BackboneOutput(
|
571 |
+
feature_maps=feature_maps,
|
572 |
+
hidden_states=hidden_states if output_hidden_states else None,
|
573 |
+
attentions=None,
|
574 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/convnextv2/modeling_tf_convnextv2.py
ADDED
@@ -0,0 +1,681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Meta Platforms Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF 2.0 ConvNextV2 model."""
|
16 |
+
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import tensorflow as tf
|
24 |
+
|
25 |
+
from ...activations_tf import get_tf_activation
|
26 |
+
from ...modeling_tf_outputs import (
|
27 |
+
TFBaseModelOutputWithNoAttention,
|
28 |
+
TFBaseModelOutputWithPooling,
|
29 |
+
TFBaseModelOutputWithPoolingAndNoAttention,
|
30 |
+
TFImageClassifierOutputWithNoAttention,
|
31 |
+
)
|
32 |
+
from ...modeling_tf_utils import (
|
33 |
+
TFModelInputType,
|
34 |
+
TFPreTrainedModel,
|
35 |
+
TFSequenceClassificationLoss,
|
36 |
+
get_initializer,
|
37 |
+
keras,
|
38 |
+
keras_serializable,
|
39 |
+
unpack_inputs,
|
40 |
+
)
|
41 |
+
from ...tf_utils import shape_list
|
42 |
+
from ...utils import (
|
43 |
+
add_code_sample_docstrings,
|
44 |
+
add_start_docstrings,
|
45 |
+
add_start_docstrings_to_model_forward,
|
46 |
+
logging,
|
47 |
+
)
|
48 |
+
from .configuration_convnextv2 import ConvNextV2Config
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
# General docstring
|
54 |
+
_CONFIG_FOR_DOC = "ConvNextV2Config"
|
55 |
+
|
56 |
+
# Base docstring
|
57 |
+
_CHECKPOINT_FOR_DOC = "facebook/convnextv2-tiny-1k-224"
|
58 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
|
59 |
+
|
60 |
+
# Image classification docstring
|
61 |
+
_IMAGE_CLASS_CHECKPOINT = "facebook/convnextv2-tiny-1k-224"
|
62 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
63 |
+
|
64 |
+
|
65 |
+
# Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextDropPath with ConvNext->ConvNextV2
|
66 |
+
class TFConvNextV2DropPath(keras.layers.Layer):
|
67 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
68 |
+
References:
|
69 |
+
(1) github.com:rwightman/pytorch-image-models
|
70 |
+
"""
|
71 |
+
|
72 |
+
def __init__(self, drop_path: float, **kwargs):
|
73 |
+
super().__init__(**kwargs)
|
74 |
+
self.drop_path = drop_path
|
75 |
+
|
76 |
+
def call(self, x: tf.Tensor, training=None):
|
77 |
+
if training:
|
78 |
+
keep_prob = 1 - self.drop_path
|
79 |
+
shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
|
80 |
+
random_tensor = keep_prob + tf.random.uniform(shape, 0, 1)
|
81 |
+
random_tensor = tf.floor(random_tensor)
|
82 |
+
return (x / keep_prob) * random_tensor
|
83 |
+
return x
|
84 |
+
|
85 |
+
|
86 |
+
class TFConvNextV2GRN(keras.layers.Layer):
|
87 |
+
"""GRN (Global Response Normalization) layer"""
|
88 |
+
|
89 |
+
def __init__(self, config: ConvNextV2Config, dim: int, **kwargs):
|
90 |
+
super().__init__(**kwargs)
|
91 |
+
self.dim = dim
|
92 |
+
|
93 |
+
def build(self, input_shape: tf.TensorShape = None):
|
94 |
+
# PT's `nn.Parameters` must be mapped to a TF layer weight to inherit the same name hierarchy (and vice-versa)
|
95 |
+
self.weight = self.add_weight(
|
96 |
+
name="weight",
|
97 |
+
shape=(1, 1, 1, self.dim),
|
98 |
+
initializer=keras.initializers.Zeros(),
|
99 |
+
)
|
100 |
+
self.bias = self.add_weight(
|
101 |
+
name="bias",
|
102 |
+
shape=(1, 1, 1, self.dim),
|
103 |
+
initializer=keras.initializers.Zeros(),
|
104 |
+
)
|
105 |
+
return super().build(input_shape)
|
106 |
+
|
107 |
+
def call(self, hidden_states: tf.Tensor):
|
108 |
+
global_features = tf.norm(hidden_states, ord="euclidean", axis=(1, 2), keepdims=True)
|
109 |
+
norm_features = global_features / (tf.reduce_mean(global_features, axis=-1, keepdims=True) + 1e-6)
|
110 |
+
hidden_states = self.weight * (hidden_states * norm_features) + self.bias + hidden_states
|
111 |
+
return hidden_states
|
112 |
+
|
113 |
+
|
114 |
+
# Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextEmbeddings with ConvNext->ConvNextV2
|
115 |
+
class TFConvNextV2Embeddings(keras.layers.Layer):
|
116 |
+
"""This class is comparable to (and inspired by) the SwinEmbeddings class
|
117 |
+
found in src/transformers/models/swin/modeling_swin.py.
|
118 |
+
"""
|
119 |
+
|
120 |
+
def __init__(self, config: ConvNextV2Config, **kwargs):
|
121 |
+
super().__init__(**kwargs)
|
122 |
+
self.patch_embeddings = keras.layers.Conv2D(
|
123 |
+
filters=config.hidden_sizes[0],
|
124 |
+
kernel_size=config.patch_size,
|
125 |
+
strides=config.patch_size,
|
126 |
+
name="patch_embeddings",
|
127 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
128 |
+
bias_initializer=keras.initializers.Zeros(),
|
129 |
+
)
|
130 |
+
self.layernorm = keras.layers.LayerNormalization(epsilon=1e-6, name="layernorm")
|
131 |
+
self.num_channels = config.num_channels
|
132 |
+
self.config = config
|
133 |
+
|
134 |
+
def call(self, pixel_values):
|
135 |
+
if isinstance(pixel_values, dict):
|
136 |
+
pixel_values = pixel_values["pixel_values"]
|
137 |
+
|
138 |
+
tf.debugging.assert_equal(
|
139 |
+
shape_list(pixel_values)[1],
|
140 |
+
self.num_channels,
|
141 |
+
message="Make sure that the channel dimension of the pixel values match with the one set in the configuration.",
|
142 |
+
)
|
143 |
+
|
144 |
+
# When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format.
|
145 |
+
# So change the input format from `NCHW` to `NHWC`.
|
146 |
+
# shape = (batch_size, in_height, in_width, in_channels)
|
147 |
+
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
|
148 |
+
|
149 |
+
embeddings = self.patch_embeddings(pixel_values)
|
150 |
+
embeddings = self.layernorm(embeddings)
|
151 |
+
return embeddings
|
152 |
+
|
153 |
+
def build(self, input_shape=None):
|
154 |
+
if self.built:
|
155 |
+
return
|
156 |
+
self.built = True
|
157 |
+
if getattr(self, "patch_embeddings", None) is not None:
|
158 |
+
with tf.name_scope(self.patch_embeddings.name):
|
159 |
+
self.patch_embeddings.build([None, None, None, self.config.num_channels])
|
160 |
+
if getattr(self, "layernorm", None) is not None:
|
161 |
+
with tf.name_scope(self.layernorm.name):
|
162 |
+
self.layernorm.build([None, None, None, self.config.hidden_sizes[0]])
|
163 |
+
|
164 |
+
|
165 |
+
class TFConvNextV2Layer(keras.layers.Layer):
|
166 |
+
"""This corresponds to the `Block` class in the original implementation.
|
167 |
+
|
168 |
+
There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C,
|
169 |
+
H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back
|
170 |
+
|
171 |
+
The authors used (2) as they find it slightly faster in PyTorch. Since we already permuted the inputs to follow
|
172 |
+
NHWC ordering, we can just apply the operations straight-away without the permutation.
|
173 |
+
|
174 |
+
Args:
|
175 |
+
config (`ConvNextV2Config`):
|
176 |
+
Model configuration class.
|
177 |
+
dim (`int`):
|
178 |
+
Number of input channels.
|
179 |
+
drop_path (`float`, defaults to 0.0):
|
180 |
+
Stochastic depth rate.
|
181 |
+
"""
|
182 |
+
|
183 |
+
def __init__(self, config: ConvNextV2Config, dim: int, drop_path: float = 0.0, **kwargs):
|
184 |
+
super().__init__(**kwargs)
|
185 |
+
self.dim = dim
|
186 |
+
self.config = config
|
187 |
+
self.dwconv = keras.layers.Conv2D(
|
188 |
+
filters=dim,
|
189 |
+
kernel_size=7,
|
190 |
+
padding="same",
|
191 |
+
groups=dim,
|
192 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
193 |
+
bias_initializer=keras.initializers.Zeros(),
|
194 |
+
name="dwconv",
|
195 |
+
) # depthwise conv
|
196 |
+
self.layernorm = keras.layers.LayerNormalization(
|
197 |
+
epsilon=1e-6,
|
198 |
+
name="layernorm",
|
199 |
+
)
|
200 |
+
self.pwconv1 = keras.layers.Dense(
|
201 |
+
units=4 * dim,
|
202 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
203 |
+
bias_initializer=keras.initializers.Zeros(),
|
204 |
+
name="pwconv1",
|
205 |
+
) # pointwise/1x1 convs, implemented with linear layers
|
206 |
+
self.act = get_tf_activation(config.hidden_act)
|
207 |
+
self.grn = TFConvNextV2GRN(config, 4 * dim, dtype=tf.float32, name="grn")
|
208 |
+
self.pwconv2 = keras.layers.Dense(
|
209 |
+
units=dim,
|
210 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
211 |
+
bias_initializer=keras.initializers.Zeros(),
|
212 |
+
name="pwconv2",
|
213 |
+
)
|
214 |
+
# Using `layers.Activation` instead of `tf.identity` to better control `training`
|
215 |
+
# behaviour.
|
216 |
+
self.drop_path = (
|
217 |
+
TFConvNextV2DropPath(drop_path, name="drop_path")
|
218 |
+
if drop_path > 0.0
|
219 |
+
else keras.layers.Activation("linear", name="drop_path")
|
220 |
+
)
|
221 |
+
|
222 |
+
def call(self, hidden_states, training=False):
|
223 |
+
input = hidden_states
|
224 |
+
x = self.dwconv(hidden_states)
|
225 |
+
x = self.layernorm(x)
|
226 |
+
x = self.pwconv1(x)
|
227 |
+
x = self.act(x)
|
228 |
+
x = self.grn(x)
|
229 |
+
x = self.pwconv2(x)
|
230 |
+
x = self.drop_path(x, training=training)
|
231 |
+
x = input + x
|
232 |
+
return x
|
233 |
+
|
234 |
+
def build(self, input_shape=None):
|
235 |
+
if self.built:
|
236 |
+
return
|
237 |
+
self.built = True
|
238 |
+
if getattr(self, "dwconv", None) is not None:
|
239 |
+
with tf.name_scope(self.dwconv.name):
|
240 |
+
self.dwconv.build([None, None, None, self.dim])
|
241 |
+
if getattr(self, "layernorm", None) is not None:
|
242 |
+
with tf.name_scope(self.layernorm.name):
|
243 |
+
self.layernorm.build([None, None, None, self.dim])
|
244 |
+
if getattr(self, "pwconv1", None) is not None:
|
245 |
+
with tf.name_scope(self.pwconv1.name):
|
246 |
+
self.pwconv1.build([None, None, self.dim])
|
247 |
+
if getattr(self, "grn", None) is not None:
|
248 |
+
with tf.name_scope(self.grn.name):
|
249 |
+
self.grn.build(None)
|
250 |
+
if getattr(self, "pwconv2", None) is not None:
|
251 |
+
with tf.name_scope(self.pwconv2.name):
|
252 |
+
self.pwconv2.build([None, None, 4 * self.dim])
|
253 |
+
if getattr(self, "drop_path", None) is not None:
|
254 |
+
with tf.name_scope(self.drop_path.name):
|
255 |
+
self.drop_path.build(None)
|
256 |
+
|
257 |
+
|
258 |
+
# Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextStage with ConvNext->ConvNextV2
|
259 |
+
class TFConvNextV2Stage(keras.layers.Layer):
|
260 |
+
"""ConvNextV2 stage, consisting of an optional downsampling layer + multiple residual blocks.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
config (`ConvNextV2V2Config`):
|
264 |
+
Model configuration class.
|
265 |
+
in_channels (`int`):
|
266 |
+
Number of input channels.
|
267 |
+
out_channels (`int`):
|
268 |
+
Number of output channels.
|
269 |
+
depth (`int`):
|
270 |
+
Number of residual blocks.
|
271 |
+
drop_path_rates(`List[float]`):
|
272 |
+
Stochastic depth rates for each layer.
|
273 |
+
"""
|
274 |
+
|
275 |
+
def __init__(
|
276 |
+
self,
|
277 |
+
config: ConvNextV2Config,
|
278 |
+
in_channels: int,
|
279 |
+
out_channels: int,
|
280 |
+
kernel_size: int = 2,
|
281 |
+
stride: int = 2,
|
282 |
+
depth: int = 2,
|
283 |
+
drop_path_rates: Optional[List[float]] = None,
|
284 |
+
**kwargs,
|
285 |
+
):
|
286 |
+
super().__init__(**kwargs)
|
287 |
+
if in_channels != out_channels or stride > 1:
|
288 |
+
self.downsampling_layer = [
|
289 |
+
keras.layers.LayerNormalization(
|
290 |
+
epsilon=1e-6,
|
291 |
+
name="downsampling_layer.0",
|
292 |
+
),
|
293 |
+
# Inputs to this layer will follow NHWC format since we
|
294 |
+
# transposed the inputs from NCHW to NHWC in the `TFConvNextV2Embeddings`
|
295 |
+
# layer. All the outputs throughout the model will be in NHWC
|
296 |
+
# from this point on until the output where we again change to
|
297 |
+
# NCHW.
|
298 |
+
keras.layers.Conv2D(
|
299 |
+
filters=out_channels,
|
300 |
+
kernel_size=kernel_size,
|
301 |
+
strides=stride,
|
302 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
303 |
+
bias_initializer=keras.initializers.Zeros(),
|
304 |
+
name="downsampling_layer.1",
|
305 |
+
),
|
306 |
+
]
|
307 |
+
else:
|
308 |
+
self.downsampling_layer = [tf.identity]
|
309 |
+
|
310 |
+
drop_path_rates = drop_path_rates or [0.0] * depth
|
311 |
+
self.layers = [
|
312 |
+
TFConvNextV2Layer(
|
313 |
+
config,
|
314 |
+
dim=out_channels,
|
315 |
+
drop_path=drop_path_rates[j],
|
316 |
+
name=f"layers.{j}",
|
317 |
+
)
|
318 |
+
for j in range(depth)
|
319 |
+
]
|
320 |
+
self.in_channels = in_channels
|
321 |
+
self.out_channels = out_channels
|
322 |
+
self.stride = stride
|
323 |
+
|
324 |
+
def call(self, hidden_states):
|
325 |
+
for layer in self.downsampling_layer:
|
326 |
+
hidden_states = layer(hidden_states)
|
327 |
+
for layer in self.layers:
|
328 |
+
hidden_states = layer(hidden_states)
|
329 |
+
return hidden_states
|
330 |
+
|
331 |
+
def build(self, input_shape=None):
|
332 |
+
if self.built:
|
333 |
+
return
|
334 |
+
self.built = True
|
335 |
+
if getattr(self, "layers", None) is not None:
|
336 |
+
for layer in self.layers:
|
337 |
+
with tf.name_scope(layer.name):
|
338 |
+
layer.build(None)
|
339 |
+
if self.in_channels != self.out_channels or self.stride > 1:
|
340 |
+
with tf.name_scope(self.downsampling_layer[0].name):
|
341 |
+
self.downsampling_layer[0].build([None, None, None, self.in_channels])
|
342 |
+
with tf.name_scope(self.downsampling_layer[1].name):
|
343 |
+
self.downsampling_layer[1].build([None, None, None, self.in_channels])
|
344 |
+
|
345 |
+
|
346 |
+
class TFConvNextV2Encoder(keras.layers.Layer):
|
347 |
+
def __init__(self, config: ConvNextV2Config, **kwargs):
|
348 |
+
super().__init__(**kwargs)
|
349 |
+
self.stages = []
|
350 |
+
drop_path_rates = tf.linspace(0.0, config.drop_path_rate, sum(config.depths))
|
351 |
+
drop_path_rates = tf.split(drop_path_rates, config.depths)
|
352 |
+
drop_path_rates = [x.numpy().tolist() for x in drop_path_rates]
|
353 |
+
prev_chs = config.hidden_sizes[0]
|
354 |
+
for i in range(config.num_stages):
|
355 |
+
out_chs = config.hidden_sizes[i]
|
356 |
+
stage = TFConvNextV2Stage(
|
357 |
+
config,
|
358 |
+
in_channels=prev_chs,
|
359 |
+
out_channels=out_chs,
|
360 |
+
stride=2 if i > 0 else 1,
|
361 |
+
depth=config.depths[i],
|
362 |
+
drop_path_rates=drop_path_rates[i],
|
363 |
+
name=f"stages.{i}",
|
364 |
+
)
|
365 |
+
self.stages.append(stage)
|
366 |
+
prev_chs = out_chs
|
367 |
+
|
368 |
+
def call(
|
369 |
+
self,
|
370 |
+
hidden_states: tf.Tensor,
|
371 |
+
output_hidden_states: Optional[bool] = False,
|
372 |
+
return_dict: Optional[bool] = True,
|
373 |
+
) -> Union[Tuple, TFBaseModelOutputWithNoAttention]:
|
374 |
+
all_hidden_states = () if output_hidden_states else None
|
375 |
+
|
376 |
+
for i, layer_module in enumerate(self.stages):
|
377 |
+
if output_hidden_states:
|
378 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
379 |
+
|
380 |
+
hidden_states = layer_module(hidden_states)
|
381 |
+
|
382 |
+
if output_hidden_states:
|
383 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
384 |
+
|
385 |
+
if not return_dict:
|
386 |
+
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
|
387 |
+
|
388 |
+
return TFBaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
|
389 |
+
|
390 |
+
def build(self, input_shape=None):
|
391 |
+
for stage in self.stages:
|
392 |
+
with tf.name_scope(stage.name):
|
393 |
+
stage.build(None)
|
394 |
+
|
395 |
+
|
396 |
+
@keras_serializable
|
397 |
+
class TFConvNextV2MainLayer(keras.layers.Layer):
|
398 |
+
config_class = ConvNextV2Config
|
399 |
+
|
400 |
+
def __init__(self, config: ConvNextV2Config, **kwargs):
|
401 |
+
super().__init__(**kwargs)
|
402 |
+
|
403 |
+
self.config = config
|
404 |
+
self.embeddings = TFConvNextV2Embeddings(config, name="embeddings")
|
405 |
+
self.encoder = TFConvNextV2Encoder(config, name="encoder")
|
406 |
+
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
|
407 |
+
# We are setting the `data_format` like so because from here on we will revert to the
|
408 |
+
# NCHW output format
|
409 |
+
self.pooler = keras.layers.GlobalAvgPool2D(data_format="channels_last")
|
410 |
+
|
411 |
+
@unpack_inputs
|
412 |
+
def call(
|
413 |
+
self,
|
414 |
+
pixel_values: TFModelInputType | None = None,
|
415 |
+
output_hidden_states: Optional[bool] = None,
|
416 |
+
return_dict: Optional[bool] = None,
|
417 |
+
training: bool = False,
|
418 |
+
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
|
419 |
+
output_hidden_states = (
|
420 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
421 |
+
)
|
422 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
423 |
+
|
424 |
+
if pixel_values is None:
|
425 |
+
raise ValueError("You have to specify pixel_values")
|
426 |
+
|
427 |
+
embedding_output = self.embeddings(pixel_values, training=training)
|
428 |
+
|
429 |
+
encoder_outputs = self.encoder(
|
430 |
+
embedding_output,
|
431 |
+
output_hidden_states=output_hidden_states,
|
432 |
+
return_dict=return_dict,
|
433 |
+
training=training,
|
434 |
+
)
|
435 |
+
|
436 |
+
last_hidden_state = encoder_outputs[0]
|
437 |
+
|
438 |
+
# Change to NCHW output format have uniformity in the modules
|
439 |
+
pooled_output = self.pooler(last_hidden_state)
|
440 |
+
last_hidden_state = tf.transpose(last_hidden_state, perm=(0, 3, 1, 2))
|
441 |
+
pooled_output = self.layernorm(pooled_output)
|
442 |
+
|
443 |
+
# Change the other hidden state outputs to NCHW as well
|
444 |
+
if output_hidden_states:
|
445 |
+
hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]])
|
446 |
+
|
447 |
+
if not return_dict:
|
448 |
+
hidden_states = hidden_states if output_hidden_states else ()
|
449 |
+
return (last_hidden_state, pooled_output) + hidden_states
|
450 |
+
|
451 |
+
return TFBaseModelOutputWithPoolingAndNoAttention(
|
452 |
+
last_hidden_state=last_hidden_state,
|
453 |
+
pooler_output=pooled_output,
|
454 |
+
hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,
|
455 |
+
)
|
456 |
+
|
457 |
+
def build(self, input_shape=None):
|
458 |
+
if self.built:
|
459 |
+
return
|
460 |
+
self.built = True
|
461 |
+
if getattr(self, "embeddings", None) is not None:
|
462 |
+
with tf.name_scope(self.embeddings.name):
|
463 |
+
self.embeddings.build(None)
|
464 |
+
if getattr(self, "encoder", None) is not None:
|
465 |
+
with tf.name_scope(self.encoder.name):
|
466 |
+
self.encoder.build(None)
|
467 |
+
if getattr(self, "layernorm", None) is not None:
|
468 |
+
with tf.name_scope(self.layernorm.name):
|
469 |
+
self.layernorm.build([None, self.config.hidden_sizes[-1]])
|
470 |
+
|
471 |
+
|
472 |
+
class TFConvNextV2PreTrainedModel(TFPreTrainedModel):
|
473 |
+
"""
|
474 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
475 |
+
models.
|
476 |
+
"""
|
477 |
+
|
478 |
+
config_class = ConvNextV2Config
|
479 |
+
base_model_prefix = "convnextv2"
|
480 |
+
main_input_name = "pixel_values"
|
481 |
+
|
482 |
+
|
483 |
+
CONVNEXTV2_START_DOCSTRING = r"""
|
484 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
485 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
486 |
+
etc.)
|
487 |
+
|
488 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
489 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
490 |
+
behavior.
|
491 |
+
|
492 |
+
<Tip>
|
493 |
+
|
494 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
495 |
+
|
496 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
497 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
498 |
+
|
499 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
500 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
501 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
502 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
503 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
504 |
+
positional argument:
|
505 |
+
|
506 |
+
- a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)`
|
507 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
508 |
+
`model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])`
|
509 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
510 |
+
`model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})`
|
511 |
+
|
512 |
+
Note that when creating models and layers with
|
513 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
514 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
515 |
+
|
516 |
+
</Tip>
|
517 |
+
|
518 |
+
Parameters:
|
519 |
+
config ([`ConvNextV2Config`]): Model configuration class with all the parameters of the model.
|
520 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
521 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
522 |
+
"""
|
523 |
+
|
524 |
+
CONVNEXTV2_INPUTS_DOCSTRING = r"""
|
525 |
+
Args:
|
526 |
+
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]`, `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
|
527 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
528 |
+
[`ConvNextImageProcessor.__call__`] for details.
|
529 |
+
|
530 |
+
output_hidden_states (`bool`, *optional*):
|
531 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
532 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
533 |
+
used instead.
|
534 |
+
return_dict (`bool`, *optional*):
|
535 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
536 |
+
eager mode, in graph mode the value will always be set to `True`.
|
537 |
+
"""
|
538 |
+
|
539 |
+
|
540 |
+
@add_start_docstrings(
|
541 |
+
"The bare ConvNextV2 model outputting raw features without any specific head on top.",
|
542 |
+
CONVNEXTV2_START_DOCSTRING,
|
543 |
+
)
|
544 |
+
class TFConvNextV2Model(TFConvNextV2PreTrainedModel):
|
545 |
+
def __init__(self, config: ConvNextV2Config, *inputs, **kwargs):
|
546 |
+
super().__init__(config, *inputs, **kwargs)
|
547 |
+
self.convnextv2 = TFConvNextV2MainLayer(config, name="convnextv2")
|
548 |
+
|
549 |
+
@unpack_inputs
|
550 |
+
@add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
|
551 |
+
@add_code_sample_docstrings(
|
552 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
553 |
+
output_type=TFBaseModelOutputWithPoolingAndNoAttention,
|
554 |
+
config_class=_CONFIG_FOR_DOC,
|
555 |
+
modality="vision",
|
556 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
557 |
+
)
|
558 |
+
def call(
|
559 |
+
self,
|
560 |
+
pixel_values: TFModelInputType | None = None,
|
561 |
+
output_hidden_states: Optional[bool] = None,
|
562 |
+
return_dict: Optional[bool] = None,
|
563 |
+
training: bool = False,
|
564 |
+
) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]:
|
565 |
+
output_hidden_states = (
|
566 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
567 |
+
)
|
568 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
569 |
+
|
570 |
+
if pixel_values is None:
|
571 |
+
raise ValueError("You have to specify pixel_values")
|
572 |
+
|
573 |
+
outputs = self.convnextv2(
|
574 |
+
pixel_values=pixel_values,
|
575 |
+
output_hidden_states=output_hidden_states,
|
576 |
+
return_dict=return_dict,
|
577 |
+
training=training,
|
578 |
+
)
|
579 |
+
|
580 |
+
if not return_dict:
|
581 |
+
return outputs[:]
|
582 |
+
|
583 |
+
return TFBaseModelOutputWithPoolingAndNoAttention(
|
584 |
+
last_hidden_state=outputs.last_hidden_state,
|
585 |
+
pooler_output=outputs.pooler_output,
|
586 |
+
hidden_states=outputs.hidden_states,
|
587 |
+
)
|
588 |
+
|
589 |
+
def build(self, input_shape=None):
|
590 |
+
if self.built:
|
591 |
+
return
|
592 |
+
self.built = True
|
593 |
+
if getattr(self, "convnextv2", None) is not None:
|
594 |
+
with tf.name_scope(self.convnextv2.name):
|
595 |
+
self.convnextv2.build(None)
|
596 |
+
|
597 |
+
|
598 |
+
@add_start_docstrings(
|
599 |
+
"""
|
600 |
+
ConvNextV2 Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
|
601 |
+
ImageNet.
|
602 |
+
""",
|
603 |
+
CONVNEXTV2_START_DOCSTRING,
|
604 |
+
)
|
605 |
+
class TFConvNextV2ForImageClassification(TFConvNextV2PreTrainedModel, TFSequenceClassificationLoss):
|
606 |
+
def __init__(self, config: ConvNextV2Config, *inputs, **kwargs):
|
607 |
+
super().__init__(config, *inputs, **kwargs)
|
608 |
+
|
609 |
+
self.num_labels = config.num_labels
|
610 |
+
self.convnextv2 = TFConvNextV2MainLayer(config, name="convnextv2")
|
611 |
+
|
612 |
+
# Classifier head
|
613 |
+
self.classifier = keras.layers.Dense(
|
614 |
+
units=config.num_labels,
|
615 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
616 |
+
bias_initializer=keras.initializers.Zeros(),
|
617 |
+
name="classifier",
|
618 |
+
)
|
619 |
+
|
620 |
+
@unpack_inputs
|
621 |
+
@add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
|
622 |
+
@add_code_sample_docstrings(
|
623 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
624 |
+
output_type=TFImageClassifierOutputWithNoAttention,
|
625 |
+
config_class=_CONFIG_FOR_DOC,
|
626 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
627 |
+
)
|
628 |
+
def call(
|
629 |
+
self,
|
630 |
+
pixel_values: TFModelInputType | None = None,
|
631 |
+
output_hidden_states: Optional[bool] = None,
|
632 |
+
return_dict: Optional[bool] = None,
|
633 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
634 |
+
training: Optional[bool] = False,
|
635 |
+
) -> Union[TFImageClassifierOutputWithNoAttention, Tuple[tf.Tensor]]:
|
636 |
+
r"""
|
637 |
+
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
|
638 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
639 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
640 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
641 |
+
"""
|
642 |
+
output_hidden_states = (
|
643 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
644 |
+
)
|
645 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
646 |
+
|
647 |
+
if pixel_values is None:
|
648 |
+
raise ValueError("You have to specify pixel_values")
|
649 |
+
|
650 |
+
outputs = self.convnextv2(
|
651 |
+
pixel_values,
|
652 |
+
output_hidden_states=output_hidden_states,
|
653 |
+
return_dict=return_dict,
|
654 |
+
training=training,
|
655 |
+
)
|
656 |
+
|
657 |
+
pooled_output = outputs.pooler_output if return_dict else outputs[1]
|
658 |
+
|
659 |
+
logits = self.classifier(pooled_output)
|
660 |
+
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
|
661 |
+
|
662 |
+
if not return_dict:
|
663 |
+
output = (logits,) + outputs[2:]
|
664 |
+
return ((loss,) + output) if loss is not None else output
|
665 |
+
|
666 |
+
return TFImageClassifierOutputWithNoAttention(
|
667 |
+
loss=loss,
|
668 |
+
logits=logits,
|
669 |
+
hidden_states=outputs.hidden_states,
|
670 |
+
)
|
671 |
+
|
672 |
+
def build(self, input_shape=None):
|
673 |
+
if self.built:
|
674 |
+
return
|
675 |
+
self.built = True
|
676 |
+
if getattr(self, "convnextv2", None) is not None:
|
677 |
+
with tf.name_scope(self.convnextv2.name):
|
678 |
+
self.convnextv2.build(None)
|
679 |
+
if getattr(self, "classifier", None) is not None:
|
680 |
+
with tf.name_scope(self.classifier.name):
|
681 |
+
self.classifier.build([None, None, self.config.hidden_sizes[-1]])
|
venv/lib/python3.10/site-packages/transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for FastSpeech2Conformer."""
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
from typing import Optional, Tuple
|
19 |
+
|
20 |
+
import regex
|
21 |
+
|
22 |
+
from ...tokenization_utils import PreTrainedTokenizer
|
23 |
+
from ...utils import logging, requires_backends
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"}
|
29 |
+
|
30 |
+
|
31 |
+
class FastSpeech2ConformerTokenizer(PreTrainedTokenizer):
|
32 |
+
"""
|
33 |
+
Construct a FastSpeech2Conformer tokenizer.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
vocab_file (`str`):
|
37 |
+
Path to the vocabulary file.
|
38 |
+
bos_token (`str`, *optional*, defaults to `"<sos/eos>"`):
|
39 |
+
The begin of sequence token. Note that for FastSpeech2, it is the same as the `eos_token`.
|
40 |
+
eos_token (`str`, *optional*, defaults to `"<sos/eos>"`):
|
41 |
+
The end of sequence token. Note that for FastSpeech2, it is the same as the `bos_token`.
|
42 |
+
pad_token (`str`, *optional*, defaults to `"<blank>"`):
|
43 |
+
The token used for padding, for example when batching sequences of different lengths.
|
44 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
45 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
46 |
+
token instead.
|
47 |
+
should_strip_spaces (`bool`, *optional*, defaults to `False`):
|
48 |
+
Whether or not to strip the spaces from the list of tokens.
|
49 |
+
"""
|
50 |
+
|
51 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
52 |
+
model_input_names = ["input_ids", "attention_mask"]
|
53 |
+
|
54 |
+
def __init__(
|
55 |
+
self,
|
56 |
+
vocab_file,
|
57 |
+
bos_token="<sos/eos>",
|
58 |
+
eos_token="<sos/eos>",
|
59 |
+
pad_token="<blank>",
|
60 |
+
unk_token="<unk>",
|
61 |
+
should_strip_spaces=False,
|
62 |
+
**kwargs,
|
63 |
+
):
|
64 |
+
requires_backends(self, "g2p_en")
|
65 |
+
|
66 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
67 |
+
self.encoder = json.load(vocab_handle)
|
68 |
+
|
69 |
+
import g2p_en
|
70 |
+
|
71 |
+
self.g2p = g2p_en.G2p()
|
72 |
+
|
73 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
74 |
+
|
75 |
+
super().__init__(
|
76 |
+
bos_token=bos_token,
|
77 |
+
eos_token=eos_token,
|
78 |
+
unk_token=unk_token,
|
79 |
+
pad_token=pad_token,
|
80 |
+
should_strip_spaces=should_strip_spaces,
|
81 |
+
**kwargs,
|
82 |
+
)
|
83 |
+
|
84 |
+
self.should_strip_spaces = should_strip_spaces
|
85 |
+
|
86 |
+
@property
|
87 |
+
def vocab_size(self):
|
88 |
+
return len(self.decoder)
|
89 |
+
|
90 |
+
def get_vocab(self):
|
91 |
+
"Returns vocab as a dict"
|
92 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
93 |
+
|
94 |
+
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
|
95 |
+
# expand symbols
|
96 |
+
text = regex.sub(";", ",", text)
|
97 |
+
text = regex.sub(":", ",", text)
|
98 |
+
text = regex.sub("-", " ", text)
|
99 |
+
text = regex.sub("&", "and", text)
|
100 |
+
|
101 |
+
# strip unnecessary symbols
|
102 |
+
text = regex.sub(r"[\(\)\[\]\<\>\"]+", "", text)
|
103 |
+
|
104 |
+
# strip whitespaces
|
105 |
+
text = regex.sub(r"\s+", " ", text)
|
106 |
+
|
107 |
+
text = text.upper()
|
108 |
+
|
109 |
+
return text, kwargs
|
110 |
+
|
111 |
+
def _tokenize(self, text):
|
112 |
+
"""Returns a tokenized string."""
|
113 |
+
# phonemize
|
114 |
+
tokens = self.g2p(text)
|
115 |
+
|
116 |
+
if self.should_strip_spaces:
|
117 |
+
tokens = list(filter(lambda s: s != " ", tokens))
|
118 |
+
|
119 |
+
tokens.append(self.eos_token)
|
120 |
+
|
121 |
+
return tokens
|
122 |
+
|
123 |
+
def _convert_token_to_id(self, token):
|
124 |
+
"""Converts a token (str) in an id using the vocab."""
|
125 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
126 |
+
|
127 |
+
def _convert_id_to_token(self, index):
|
128 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
129 |
+
return self.decoder.get(index, self.unk_token)
|
130 |
+
|
131 |
+
# Override since phonemes cannot be converted back to strings
|
132 |
+
def decode(self, token_ids, **kwargs):
|
133 |
+
logger.warning(
|
134 |
+
"Phonemes cannot be reliably converted to a string due to the one-many mapping, converting to tokens instead."
|
135 |
+
)
|
136 |
+
return self.convert_ids_to_tokens(token_ids)
|
137 |
+
|
138 |
+
# Override since phonemes cannot be converted back to strings
|
139 |
+
def convert_tokens_to_string(self, tokens, **kwargs):
|
140 |
+
logger.warning(
|
141 |
+
"Phonemes cannot be reliably converted to a string due to the one-many mapping, returning the tokens."
|
142 |
+
)
|
143 |
+
return tokens
|
144 |
+
|
145 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
146 |
+
"""
|
147 |
+
Save the vocabulary and special tokens file to a directory.
|
148 |
+
|
149 |
+
Args:
|
150 |
+
save_directory (`str`):
|
151 |
+
The directory in which to save the vocabulary.
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
`Tuple(str)`: Paths to the files saved.
|
155 |
+
"""
|
156 |
+
if not os.path.isdir(save_directory):
|
157 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
158 |
+
return
|
159 |
+
vocab_file = os.path.join(
|
160 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
161 |
+
)
|
162 |
+
|
163 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
164 |
+
f.write(json.dumps(self.get_vocab(), ensure_ascii=False))
|
165 |
+
|
166 |
+
return (vocab_file,)
|
167 |
+
|
168 |
+
def __getstate__(self):
|
169 |
+
state = self.__dict__.copy()
|
170 |
+
state["g2p"] = None
|
171 |
+
return state
|
172 |
+
|
173 |
+
def __setstate__(self, d):
|
174 |
+
self.__dict__ = d
|
175 |
+
|
176 |
+
try:
|
177 |
+
import g2p_en
|
178 |
+
|
179 |
+
self.g2p = g2p_en.G2p()
|
180 |
+
except ImportError:
|
181 |
+
raise ImportError(
|
182 |
+
"You need to install g2p-en to use FastSpeech2ConformerTokenizer. "
|
183 |
+
"See https://pypi.org/project/g2p-en/ for installation."
|
184 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/convert_original_tf_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (3.87 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/modeling_mobilenet_v1.cpython-310.pyc
ADDED
Binary file (13 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/prophetnet/__init__.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_prophetnet": ["PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ProphetNetConfig"],
|
22 |
+
"tokenization_prophetnet": ["ProphetNetTokenizer"],
|
23 |
+
}
|
24 |
+
|
25 |
+
try:
|
26 |
+
if not is_torch_available():
|
27 |
+
raise OptionalDependencyNotAvailable()
|
28 |
+
except OptionalDependencyNotAvailable:
|
29 |
+
pass
|
30 |
+
else:
|
31 |
+
_import_structure["modeling_prophetnet"] = [
|
32 |
+
"PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST",
|
33 |
+
"ProphetNetDecoder",
|
34 |
+
"ProphetNetEncoder",
|
35 |
+
"ProphetNetForCausalLM",
|
36 |
+
"ProphetNetForConditionalGeneration",
|
37 |
+
"ProphetNetModel",
|
38 |
+
"ProphetNetPreTrainedModel",
|
39 |
+
]
|
40 |
+
|
41 |
+
|
42 |
+
if TYPE_CHECKING:
|
43 |
+
from .configuration_prophetnet import PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ProphetNetConfig
|
44 |
+
from .tokenization_prophetnet import ProphetNetTokenizer
|
45 |
+
|
46 |
+
try:
|
47 |
+
if not is_torch_available():
|
48 |
+
raise OptionalDependencyNotAvailable()
|
49 |
+
except OptionalDependencyNotAvailable:
|
50 |
+
pass
|
51 |
+
else:
|
52 |
+
from .modeling_prophetnet import (
|
53 |
+
PROPHETNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
54 |
+
ProphetNetDecoder,
|
55 |
+
ProphetNetEncoder,
|
56 |
+
ProphetNetForCausalLM,
|
57 |
+
ProphetNetForConditionalGeneration,
|
58 |
+
ProphetNetModel,
|
59 |
+
ProphetNetPreTrainedModel,
|
60 |
+
)
|
61 |
+
|
62 |
+
else:
|
63 |
+
import sys
|
64 |
+
|
65 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.13 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/configuration_prophetnet.cpython-310.pyc
ADDED
Binary file (7.86 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/prophetnet/__pycache__/convert_prophetnet_original_pytorch_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (3.72 kB). View file
|
|