File size: 1,836 Bytes
d487907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from typing import List

import pytest
import torch

import lm_eval.tasks as tasks
from lm_eval.api.instance import Instance


task_manager = tasks.TaskManager()


@pytest.mark.skip(reason="requires CUDA")
class TEST_VLLM:
    vllm = pytest.importorskip("vllm")
    try:
        from lm_eval.models.vllm_causallms import VLLM

        LM = VLLM(pretrained="EleutherAI/pythia-70m")
    except ModuleNotFoundError:
        pass
    torch.use_deterministic_algorithms(True)
    task_list = task_manager.load_task_or_group(["arc_easy", "gsm8k", "wikitext"])
    multiple_choice_task = task_list["arc_easy"]  # type: ignore
    multiple_choice_task.build_all_requests(limit=10, rank=0, world_size=1)
    MULTIPLE_CH: List[Instance] = multiple_choice_task.instances
    generate_until_task = task_list["gsm8k"]  # type: ignore
    generate_until_task._config.generation_kwargs["max_gen_toks"] = 10
    generate_until_task.build_all_requests(limit=10, rank=0, world_size=1)
    generate_until: List[Instance] = generate_until_task.instances
    rolling_task = task_list["wikitext"]  # type: ignore
    rolling_task.build_all_requests(limit=10, rank=0, world_size=1)
    ROLLING: List[Instance] = rolling_task.instances

    # TODO: make proper tests
    def test_logliklihood(self) -> None:
        res = self.LM.loglikelihood(self.MULTIPLE_CH)
        assert len(res) == len(self.MULTIPLE_CH)
        for x in res:
            assert isinstance(x[0], float)

    def test_generate_until(self) -> None:
        res = self.LM.generate_until(self.generate_until)
        assert len(res) == len(self.generate_until)
        for x in res:
            assert isinstance(x, str)

    def test_logliklihood_rolling(self) -> None:
        res = self.LM.loglikelihood_rolling(self.ROLLING)
        for x in res:
            assert isinstance(x, float)