File size: 7,973 Bytes
9ad9e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

from torch.distributed.elastic.agent.server.local_elastic_agent import LocalElasticAgent
from typing import Any, Dict, Optional, Tuple
from datetime import datetime
from torch.distributed.elastic.agent.server.api import _get_socket_with_port
from torch.distributed.elastic.metrics import put_metric
from torch.distributed.elastic.agent.server.api import (
    RunResult,
    WorkerGroup,
    WorkerSpec,
    WorkerState,
)
from torch.distributed import Store
import time
import os
from torch.distributed.elastic.multiprocessing import start_processes
from torch.distributed.elastic.utils import macros
import shutil
import copy
from contextlib import closing
import subprocess

from torch.distributed.elastic.utils.logging import get_logger

log = get_logger(__name__)


class DSElasticAgent(LocalElasticAgent):

    def __init__(
        self,
        spec: WorkerSpec,
        env: Dict,
        start_method="spawn",
        exit_barrier_timeout: float = 300,
        log_dir: Optional[str] = None,
    ):
        super().__init__(spec, start_method, exit_barrier_timeout, log_dir)
        self.ds_env = env

    @staticmethod
    def _set_master_addr_port(store: Store,
                              master_addr: Optional[str],
                              master_port: Optional[int],
                              local_addr: Optional[str] = None):
        if master_port is None:
            sock = _get_socket_with_port()
            with closing(sock):
                master_port = sock.getsockname()[1]

        if master_addr is None:
            # master_addr = _get_fq_hostname()
            result = subprocess.check_output("hostname -I", shell=True)
            master_addr = result.decode('utf-8').split()[0]

        store.set("MASTER_ADDR", master_addr.encode(encoding="UTF-8"))
        store.set("MASTER_PORT", str(master_port).encode(encoding="UTF-8"))

    def _start_workers(self, worker_group: WorkerGroup) -> Dict[int, Any]:
        spec = worker_group.spec
        store = worker_group.store
        assert store is not None
        master_addr, master_port = super()._get_master_addr_port(store)
        restart_count = spec.max_restarts - self._remaining_restarts

        use_agent_store = spec.rdzv_handler.get_backend() == "static"

        args: Dict[int, Tuple] = {}
        envs: Dict[int, Dict[str, str]] = {}
        for worker in worker_group.workers:
            local_rank = worker.local_rank

            worker_env_ds = copy.deepcopy(self.ds_env)
            worker_env_elastic = {
                "LOCAL_RANK": str(local_rank),
                "RANK": str(worker.global_rank),
                "GROUP_RANK": str(worker_group.group_rank),
                "ROLE_RANK": str(worker.role_rank),
                "ROLE_NAME": spec.role,
                "LOCAL_WORLD_SIZE": str(spec.local_world_size),
                "WORLD_SIZE": str(worker.world_size),
                "GROUP_WORLD_SIZE": str(worker_group.group_world_size),
                "ROLE_WORLD_SIZE": str(worker.role_world_size),
                "MASTER_ADDR": master_addr,
                "MASTER_PORT": str(master_port),
                "TORCHELASTIC_RESTART_COUNT": str(restart_count),
                "TORCHELASTIC_MAX_RESTARTS": str(spec.max_restarts),
                "TORCHELASTIC_RUN_ID": spec.rdzv_handler.get_run_id(),
                "TORCHELASTIC_USE_AGENT_STORE": str(use_agent_store),
                "NCCL_ASYNC_ERROR_HANDLING": os.getenv("NCCL_ASYNC_ERROR_HANDLING", str(1)),
            }
            worker_env_ds.update(worker_env_elastic)
            if "OMP_NUM_THREADS" in os.environ:
                worker_env_ds["OMP_NUM_THREADS"] = os.environ["OMP_NUM_THREADS"]

            envs[local_rank] = worker_env_ds
            worker_args = list(spec.args)
            worker_args = macros.substitute(worker_args, str(local_rank))
            args[local_rank] = tuple(worker_args)

        # scaling events do not count towards restarts (gets same attempt #)
        # remove existing log dir if this restart is due to a scaling event
        attempt_log_dir = os.path.join(self._log_dir, f"attempt_{restart_count}")
        shutil.rmtree(attempt_log_dir, ignore_errors=True)
        os.makedirs(attempt_log_dir)

        assert spec.entrypoint is not None
        self._pcontext = start_processes(
            name=spec.role,
            entrypoint=spec.entrypoint,
            args=args,
            envs=envs,
            log_dir=attempt_log_dir,
            start_method=self._start_method,
            redirects=spec.redirects,
            tee=spec.tee,
        )

        return self._pcontext.pids()

    def _invoke_run(self, role: str = "default") -> RunResult:
        # NOTE: currently only works for a single role

        spec = self._worker_group.spec
        role = spec.role

        log.info(f"[{role}] starting workers for entrypoint: {spec.get_entrypoint_name()}")

        self._initialize_workers(self._worker_group)
        monitor_interval = spec.monitor_interval
        rdzv_handler = spec.rdzv_handler

        participants = rdzv_handler._state_holder.state.participants

        while True:
            assert self._worker_group.state != WorkerState.INIT
            time.sleep(monitor_interval)
            run_result = self._monitor_workers(self._worker_group)
            state = run_result.state
            self._worker_group.state = state

            expire_time = datetime.utcnow() - (rdzv_handler._settings.keep_alive_interval *
                                               rdzv_handler._settings.keep_alive_max_attempt)
            _dead_nodes = [
                node for node, last_heartbeat in rdzv_handler._state_holder.state.last_heartbeats.items()
                if last_heartbeat < expire_time
            ]

            put_metric(f"workers.{role}.remaining_restarts", self._remaining_restarts)
            put_metric(f"workers.{role}.{state.name.lower()}", 1)

            if state == WorkerState.SUCCEEDED:
                log.info(f"[{role}] worker group successfully finished."
                         f" Waiting {self._exit_barrier_timeout} seconds for other agents to finish.")
                self._exit_barrier()
                return run_result
            elif state in {WorkerState.UNHEALTHY, WorkerState.FAILED
                           } or len(participants) > len(rdzv_handler._state_holder.state.participants):
                if self._remaining_restarts > 0:
                    log.info(f"[{role}] Worker group {state.name}. "
                             f"{self._remaining_restarts}/{spec.max_restarts} attempts left;"
                             f" will restart worker group")
                    self._remaining_restarts -= 1
                    # rdzv_handler._state_holder.state.restart = False
                    self._restart_workers(self._worker_group)
                    participants = rdzv_handler._state_holder.state.participants

                else:
                    self._stop_workers(self._worker_group)
                    self._worker_group.state = WorkerState.FAILED
                    self._exit_barrier()
                    return run_result
            elif state == WorkerState.HEALTHY:
                # membership changes do not count as retries
                num_nodes_waiting = rdzv_handler.num_nodes_waiting()
                group_rank = self._worker_group.group_rank
                if num_nodes_waiting > 0:
                    log.info(f"[{role}] Detected {num_nodes_waiting} "
                             f"new nodes from group_rank={group_rank}; "
                             f"will restart worker group")
                    self._restart_workers(self._worker_group)
                    participants = rdzv_handler._state_holder.state.participants
            else:
                raise Exception(f"[{role}] Worker group in {state.name} state")