File size: 17,361 Bytes
9ad9e91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import os
import json
import numpy as np
import math
from packaging import version as pkg_version
from .config import ElasticityConfig, ElasticityConfigError, ElasticityError, \
ElasticityIncompatibleWorldSize
from .constants import ELASTICITY, ENABLED, ENABLED_DEFAULT, LATEST_ELASTICITY_VERSION, \
MINIMUM_DEEPSPEED_VERSION, DEEPSPEED_ELASTICITY_CONFIG
from ..git_version_info import version as __version__
from ..utils import logger
# Thirty eight smallest highly composite numbers. The list should
# be enough to support up to 720K batch size.
HCN_LIST = [
1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160,
25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720
]
def get_candidate_batch_sizes(base_list, max_acceptable_batch_size):
candidate_batch_size = []
for base in base_list:
if base >= max_acceptable_batch_size:
candidate_batch_size.append(base)
else:
value = max_acceptable_batch_size // base
index = np.argmax(np.asarray(HCN_LIST) > value)
candidate_batch_size.append(HCN_LIST[index - 1] * base)
candidate_batch_size = list(set(candidate_batch_size))
logger.info(f"Candidate batch size: {candidate_batch_size}")
return candidate_batch_size
def get_valid_gpus(batch_size, micro_batches, min_valid_gpus, max_valid_gpus):
valid_gpus = []
for micro_batch in micro_batches:
if batch_size % micro_batch == 0:
max_gpus = batch_size // micro_batch
if min_valid_gpus <= max_gpus <= max_valid_gpus:
valid_gpus.append(max_gpus)
# find all factors less than max_gpus / 2
for i in range(1, max_gpus // 2 + 1):
if i > max_valid_gpus:
break
if i < min_valid_gpus:
continue
if max_gpus % i == 0:
valid_gpus.append(i)
valid_gpus = set(valid_gpus)
valid_gpus = sorted(list(valid_gpus))
return valid_gpus
def get_best_candidates(candidate_batch_sizes, micro_batches, min_gpus, max_gpus, prefer_larger):
max_valid_gpus = 0
valid_gpus = None
final_batch_size = int(min(micro_batches))
for batch_size in candidate_batch_sizes:
current_valid_gpus = get_valid_gpus(batch_size, micro_batches, min_gpus, max_gpus)
if (len(current_valid_gpus) > max_valid_gpus or (len(current_valid_gpus) == max_valid_gpus and
((prefer_larger and batch_size > final_batch_size) or
(not prefer_larger and batch_size < final_batch_size)))):
max_valid_gpus = len(current_valid_gpus)
valid_gpus = current_valid_gpus
final_batch_size = batch_size
return final_batch_size, valid_gpus
def _get_compatible_gpus_v01(micro_batches,
max_acceptable_batch_size,
min_gpus=None,
max_gpus=None,
prefer_larger=True):
'''We use two heuristics to compute the batch size
1. We use the Lowest Common Multiple of the micro-batches
as the base batch size and scale it by a HCN such that the result is
the largest batch size less than the max_acceptable batch size
2. We use each of the micro batches as a base and scale it
by a HCN such that the result is the largest batch size less than the
max_acceptable batch size.
We then use brute force to count the number of compatible GPU count for
each of the aforementioned cases, and return the batch size with the most number of
compatible GPU counts in the min-max GPU range if provided, other wise
we return the batch size with the most number of total compatible GPU counts.
Returns:
final_batch_size
valid_gpus
'''
min_gpus = min_gpus or 1
max_gpus = max_gpus or max_acceptable_batch_size // min(micro_batches)
if not all(mb <= max_acceptable_batch_size for mb in micro_batches):
raise ValueError(f"All micro batches must be less than \
or equal to max_acceptable_batch_size: {max_acceptable_batch_size}")
lcm = np.lcm.reduce(micro_batches)
base_list = []
base_list.extend(micro_batches)
base_list.append(lcm)
candidate_batch_sizes = get_candidate_batch_sizes(base_list, max_acceptable_batch_size)
final_batch_size, valid_gpus = get_best_candidates(candidate_batch_sizes, micro_batches, min_gpus, max_gpus,
prefer_larger)
return final_batch_size, valid_gpus
def _get_compatible_gpus_v02(micro_batches,
max_acceptable_batch_size,
current_num_gpus,
min_gpus=None,
max_gpus=None,
prefer_larger=True,
num_gpus_per_node=1,
model_parallel_size=1):
'''
Returns:
final_batch_size
valid_gpus
micro-batch size
'''
if num_gpus_per_node % model_parallel_size != 0:
raise ElasticityError(
f"In Elasticity v0.2, number of GPUs per node:" \
f"{num_gpus_per_node} should be divisible by " \
f"model parallel size {model_parallel_size}")
def get_microbatch(final_batch_size):
candidate_microbatch = None
for micro_batch in micro_batches:
if final_batch_size // current_num_gpus % micro_batch == 0:
if candidate_microbatch is None:
candidate_microbatch = micro_batch
if prefer_larger and candidate_microbatch < micro_batch:
candidate_microbatch = micro_batch
return candidate_microbatch
dp_size_per_node = num_gpus_per_node // model_parallel_size
final_batch_size, valid_world_size = _get_compatible_gpus_v01(
micro_batches,
int(max_acceptable_batch_size / dp_size_per_node),
int(min_gpus / num_gpus_per_node),
int(max_gpus / num_gpus_per_node), # Passing number of max nodes as Elasticity v2 works at node level
prefer_larger=prefer_larger)
final_batch_size = int(final_batch_size) * dp_size_per_node
valid_dp_world_size = [i * dp_size_per_node for i in valid_world_size]
if current_num_gpus // model_parallel_size in valid_dp_world_size:
candidate_microbatch = get_microbatch(final_batch_size)
return final_batch_size, valid_dp_world_size, candidate_microbatch
current_dp_size = (current_num_gpus / num_gpus_per_node) * dp_size_per_node
candidate_batch_sizes = []
for micro_batch in micro_batches:
min_batch_size = micro_batch * current_dp_size
factor = math.floor(max_acceptable_batch_size / float(min_batch_size))
candidate_batch_sizes.append(factor * min_batch_size)
used_microbatch = None
if prefer_larger:
candidate_batch_size = max(candidate_batch_sizes)
else:
candidate_batch_size = min(candidate_batch_sizes)
candidate_microbatch = get_microbatch(candidate_batch_size)
return candidate_batch_size, [int(current_dp_size)], candidate_microbatch
def _compatible_ds_version_check(target_deepspeed_version: str):
min_version = pkg_version.parse(MINIMUM_DEEPSPEED_VERSION)
target_version = pkg_version.parse(target_deepspeed_version)
err_str = f"Target deepspeed version of {target_deepspeed_version} is not compatible " \
f"with minimum version {MINIMUM_DEEPSPEED_VERSION} supporting elasticity."
if target_version < min_version:
raise ElasticityError(err_str)
return True
def elasticity_enabled(ds_config: dict):
if ELASTICITY not in ds_config:
return False
return ds_config[ELASTICITY].get(ENABLED, ENABLED_DEFAULT)
def ensure_immutable_elastic_config(runtime_elastic_config_dict: dict):
"""
Ensure the resource scheduler saw the same elastic config we are using at runtime
"""
if DEEPSPEED_ELASTICITY_CONFIG in os.environ:
scheduler_elastic_config_dict = json.loads(os.environ[DEEPSPEED_ELASTICITY_CONFIG])
scheduler_elastic_config = ElasticityConfig(scheduler_elastic_config_dict)
runtime_elastic_config = ElasticityConfig(runtime_elastic_config_dict)
err_str = "Elastic config '{}={}' seen by resource scheduler does not match config passed to runtime {}={}"
if runtime_elastic_config.max_acceptable_batch_size != scheduler_elastic_config.max_acceptable_batch_size:
raise ElasticityConfigError(
err_str.format('max_acceptable_batch_size', scheduler_elastic_config.max_acceptable_batch_size,
'max_acceptable_batch_size', runtime_elastic_config.max_acceptable_batch_size))
if runtime_elastic_config.micro_batches != scheduler_elastic_config.micro_batches:
raise ElasticityConfigError(
err_str.format('micro_batches', scheduler_elastic_config.micro_batches, 'micro_batches',
runtime_elastic_config.micro_batches))
if runtime_elastic_config.version != scheduler_elastic_config.version:
raise ElasticityConfigError(
err_str.format('version', scheduler_elastic_config.version, 'version', runtime_elastic_config.version))
else:
logger.warning("Unable to find DEEPSPEED_ELASTICITY_CONFIG environment variable, cannot " \
"guarantee resource scheduler will scale this job using compatible GPU counts.")
def compute_elastic_config(ds_config: dict, target_deepspeed_version: str, world_size=0, return_microbatch=False):
"""Core deepspeed elasticity API. Given an elastic config (similar to the example below)
DeepSpeed will compute a total train batch size corresponding valid GPU count list that
provides a high level of elasticity. Elasticity in this case means we are safe to scale
the training job up/down across the GPU count list *without* any negative impacts on
training convergence. This is achievable primarily due to DeepSpeed's gradient accumulation
feature which allows us to decompose a global training batch size into:
micro-batch-size * gradient-accumulation-steps * world-size.
"elasticity": {
"enabled": true,
"max_train_batch_size": 2000,
"micro_batch_sizes": [2,4,6],
"min_gpus": 1,
"max_gpus" : 10000
"min_time": 20
"version": 0.1
}
Intended to be called both by scheduling infrastructure and deepspeed runtime.
For the same `ds_config` we should return deterministic results.
Args:
ds_config (dict): DeepSpeed config dictionary/json
target_deepspeed_version (str): When called from scheduling
infrastructure we want to ensure that the target deepspeed version is
compatible with the elasticity version used in the backend.
world_size (int, optional): Intended/current DP world size, will do some sanity
checks to ensure world size is actually valid with the config.
return_microbatch (bool, optional): whether to return micro batch size or not.
Raises:
ElasticityConfigError: Missing required elasticity config or elasticity disabled
ElasticityError: If target deepspeed version is not compatible with current version
Returns:
final_batch_size (int): total batch size used for training
valid_gpus (list(int)): list of valid GPU counts with this config
micro_batch_size (int, optional): if world_size is provided will return
specific micro batch size
"""
if not isinstance(ds_config, dict):
raise ValueError("Expected ds_config to be a dictionary but received " \
f"a {type(ds_config)}, containing: {ds_config}")
if ELASTICITY not in ds_config:
raise ElasticityConfigError(f"'{ELASTICITY}' is missing from config json," \
" please add it if running an elastic training job.")
elastic_config_dict = ds_config[ELASTICITY]
if not elastic_config_dict.get(ENABLED, ENABLED_DEFAULT):
raise ElasticityConfigError("Elasticity is disabled, please enable it " \
"('enabled':true) if running an elastic training job.")
elastic_config = ElasticityConfig(elastic_config_dict)
model_parallel_size = elastic_config.model_parallel_size
num_gpus_per_node = elastic_config.num_gpus_per_node
if model_parallel_size > 1 and float(elastic_config.version) != 0.2:
raise ElasticityConfigError(f"Elasticity V{elastic_config.version} " \
f"does not support model-parallel training. Given model-parallel size: " \
f"{model_parallel_size}")
if float(elastic_config.version) > LATEST_ELASTICITY_VERSION:
raise ElasticityConfigError("Attempting to run elasticity version " \
f"{elastic_config.version} but runtime only supports up " \
f"to {LATEST_ELASTICITY_VERSION}")
# Ensure target deepspeed version works with intended elasticity version
if not _compatible_ds_version_check(target_deepspeed_version):
raise ElasticityError("Unable to run elasticity on target deepspeed version of" \
f" {target_deepspeed_version}, currently {__version__}")
if float(elastic_config.version) == 0.1:
final_batch_size, valid_gpus = _get_compatible_gpus_v01(
micro_batches=elastic_config.micro_batches,
max_acceptable_batch_size=elastic_config.max_acceptable_batch_size,
min_gpus=elastic_config.min_gpus,
max_gpus=elastic_config.max_gpus,
prefer_larger=elastic_config.prefer_larger_batch_size)
# ensure batch size is int dtype
final_batch_size = int(final_batch_size)
elif float(elastic_config.version) == 0.2:
if world_size != 0:
current_num_gpus = world_size
else:
if "WORLD_SIZE" in os.environ and \
os.getenv('WORLD_SIZE').isnumeric():
current_num_gpus = int(os.getenv('WORLD_SIZE'))
else:
WORLD_SIZE = os.getenv('WORLD_SIZE')
raise ElasticityConfigError(
'Elasticity V 0.2 needs WORLD_SIZE '\
'to compute valid batch size. '\
'Either give it as argument to function compute_elastic_config '\
'or set it as an environment variable. '\
f'Value of WORLD_SIZE as environment variable is {WORLD_SIZE}')
final_batch_size, valid_gpus, candidate_microbatch_size = _get_compatible_gpus_v02(
micro_batches=elastic_config.micro_batches,
max_acceptable_batch_size=elastic_config.max_acceptable_batch_size,
current_num_gpus=current_num_gpus,
min_gpus=elastic_config.min_gpus,
max_gpus=elastic_config.max_gpus,
prefer_larger=elastic_config.prefer_larger_batch_size,
num_gpus_per_node=num_gpus_per_node,
model_parallel_size=model_parallel_size)
# ensure batch size is int dtype
final_batch_size = int(final_batch_size)
else:
raise NotImplementedError(f"Unable to find elastic logic for version: {elastic_config.version}")
logger.info(f"Valid World Size (GPUs / Model Parallel Size): {valid_gpus}")
if world_size > 0:
if world_size not in valid_gpus:
raise ElasticityIncompatibleWorldSize(f"World size ({world_size}) is not valid " \
f"with the current list of valid GPU counts: {valid_gpus}")
# Pick largest valid micro batch size
micro_batch_size = None
for mbsz in sorted(list(set(elastic_config.micro_batches)), reverse=True):
if final_batch_size // world_size % mbsz == 0:
micro_batch_size = mbsz
break
assert micro_batch_size is not None, "Unable to find divisible micro batch size" \
f" world_size={world_size}, final_batch_size={final_batch_size}, and " \
f" micro_batches={elastic_config.micro_batches}."
return final_batch_size, valid_gpus, micro_batch_size
if return_microbatch:
# Pick a valid micro batch size
if float(elastic_config.version) == 0.2:
return final_batch_size, valid_gpus, candidate_microbatch_size
else:
micro_batch_size = None
for mbsz in sorted(list(set(elastic_config.micro_batches)), reverse=True):
if final_batch_size // world_size % mbsz == 0:
micro_batch_size = mbsz
break
assert micro_batch_size is not None, "Unable to find divisible micro batch size" \
f" world_size={world_size}, final_batch_size={final_batch_size}, and " \
f" micro_batches={elastic_config.micro_batches}."
return final_batch_size, valid_gpus, micro_batch_size
return final_batch_size, valid_gpus
|