File size: 10,491 Bytes
2334d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import os
import json
import pickle
from typing import Iterable, Tuple

import torch

import deepspeed.comm as dist

from deepspeed.accelerator import get_accelerator
from deepspeed.comm.comm import init_distributed

from .model_implementations import InferenceV2Policy
from .logging import inference_logger
from .ragged import DSStateManager, RaggedBatchWrapper, PlaceholderSequenceDescriptor
from .scheduling_utils import SchedulingError, SchedulingResult
from .model_implementations.flat_model_helpers import make_param_filename, make_metadata_filename
from .model_implementations.inference_model_base import DSInferenceModelBase

from .config_v2 import RaggedInferenceEngineConfig

INFERENCE_MODEL_TIMER = "model-forward-inference"


class InferenceEngineV2:

    _config: RaggedInferenceEngineConfig
    """
    Configuration of the inference engine.
    """

    _model: DSInferenceModelBase
    """
    Inference model supporting ragged inference.
    """

    _state_manager: DSStateManager
    """
    Persistent state manager for sequences and KV-cache.
    """

    @property
    def free_blocks(self) -> torch.Tensor:
        """
        Number of free KV blocks. This is a tensor of shape [n_kv_cache_groups] where each
        element is the number of free blocks in the corresponding KV cache group.
        """
        return self._state_manager.free_blocks

    @property
    def n_kv_cache_groups(self) -> int:
        """
        Number of KV cache groups.
        """
        return self._state_manager.n_kv_cache_groups

    def model(self) -> DSInferenceModelBase:
        """
        The model implementation.
        """
        return self._model

    def __init__(self, policy: InferenceV2Policy, engine_config: RaggedInferenceEngineConfig) -> None:
        """
        Create the Inference V2 engine.

        Arguments:
            policy (InferenceV2Policy): Policy for the model implementation. This policy object
                will be used to build the model and load the checkpoint associated with it.
            engine_config (RaggedInferenceEngineConfig): Configuration for the inference engine.
        """
        self._config = engine_config
        self._policy = policy
        self._base_mp_group = self._initialize_tp_group()

        # Build model from policy
        inference_logger().info("Building model...")
        self._model = self._policy.build_model(self._config, self._base_mp_group)
        inference_logger().info("Model built.")

        # Create state manager
        self._batch = RaggedBatchWrapper(self._config.state_manager)
        self._state_manager = DSStateManager(self._config.state_manager,
                                             self._model.kv_cache_config(),
                                             base_mp_group=self._base_mp_group)
        self._model.set_state_manager(self._state_manager)

    def _initialize_tp_group(self):
        """
        Implementation of our TP group initialization.
        """
        init_distributed()
        local_rank = int(os.getenv("LOCAL_RANK", 0))
        get_accelerator().set_device(local_rank)

        if local_rank >= self._config.tensor_parallel.tp_size:
            raise RuntimeError("Local rank is greater than TP size, ensure that the TP config is correct.")

        ranks = list(range(self._config.tensor_parallel.tp_size))
        return dist.new_group(ranks=ranks)

    def put(self,
            batch_uids: Iterable[int],
            batch_tokens: Iterable[torch.Tensor],
            do_checks: bool = True) -> torch.Tensor:
        """
        Put a ragged batch onto the inference engine. This will perform one forward and return
        a Tensor of the shape [len(batch_uids), *output_shape]. Logits for the non-final tokens
        are not calculated.

        Arguments:
            batch_uids: Iterable of uids for the batch on the host
            batch_tokens: Iterable of token tensors for the batch on the host
            do_checks: Check schedulability when it is set to True. You can skip this check for better performance when it has already been completed.
        """

        if do_checks:
            token_lens = [len(tokens) for tokens in batch_tokens]
            schedule_check = self.can_schedule(batch_uids, token_lens)
            if schedule_check != SchedulingResult.Success:
                raise SchedulingError(schedule_check)

        self._batch.clear()
        for uid, tokens in zip(batch_uids, batch_tokens):

            host_seq_desc = self._state_manager.get_or_create_sequence(uid)
            self._model.maybe_allocate_kv(host_seq_desc, tokens.numel())
            host_seq_desc.pre_forward(tokens.numel())

            # We can disable checks since we already validated schedulability.
            self._batch.insert_sequence(host_seq_desc, tokens, do_checks=do_checks)

        # Send all metadata to the device
        self._batch.finalize()

        # Prep all data structures for the actual forward (in anticipation of CG in the future)
        # and also to amortize some of the costs in a more straightforward way.
        self._model.prepare_batch(self._batch)

        # Model implementation will pick up in the forward.
        logits = self._model.forward(self._batch)

        # We return one set of logits per sequence in the batch (saves cost on unembedding)
        assert logits.shape[0] == self._batch.current_sequences

        for uid in batch_uids:
            host_seq_desc = self._state_manager.get_sequence(uid)
            host_seq_desc.post_forward()  # Updates sequence metadata.
            self._model.maybe_free_kv(host_seq_desc)

        return logits

    def query(self, uid: int, max_request_tokens: int, max_request_blocks) -> Tuple[int, torch.Tensor]:
        """
        Determine the number of tokens and KV blocks to reserve for a given request. Given a UID
        (this UID may not be recognized by the model yet), this will return the number of tokens
        and blocks to reserve for the request.

        Arguments:
            uid (int): The UID of the sequence (as tracked by the scheduling entity). If
                this is a new sequence (with a UID unknown to the inference engine), then
                an empty placeholder is created to pass to the occupancy logic.
            n_tokens (int): The number of tokens to hypothetically send.

        Returns:
            Tuple[int, Optional[int]]: Tuple of free kv blocks and the number of blocks
                required to schedule the sequence.
        """
        seq_desc = self._state_manager.get_sequence(uid)
        if seq_desc is None:
            if (self._state_manager.n_tracked_sequences == self._config.state_manager.max_tracked_sequences):
                return (0, 0)
            seq_desc = PlaceholderSequenceDescriptor()

        req_tokens, req_blocks = self._model.get_kv_requirements(seq_desc, max_request_tokens, max_request_blocks)

        return (req_tokens, req_blocks)

    def can_schedule(self, uids: Iterable[int], lengths: Iterable[int]) -> SchedulingResult:
        """
        Dry run a batch to determine if it can be scheduled. Placeholder sequences will be
        created for any UIDs that are unknown to the inference engine.

        Arguments:
            uids (Iterable[int]): Iterable of UIDs for the batch
            lengths (Iterable[int]): Iterable of lengths for each sequence of the batch. This lengths
                corresponds to the number of tokens to send in the hypothetical forward; history
                tokens will be determined via UID lookup and future tokens are disregarded.

        Returns:
            bool: True if the batch can be scheduled, False otherwise.
        """

        cur_seqs = self._state_manager.n_tracked_sequences
        free_blocks = self._state_manager.free_blocks
        req_blocks = 0
        batch_len = 0

        if len(uids) > self._config.state_manager.max_ragged_sequence_count:
            # Can only compose a batch from a limited number of sequences
            return SchedulingResult.BatchSequenceLimitExceeded

        for uid, length in zip(uids, lengths):
            seq_desc = self._state_manager.get_sequence(uid)
            if seq_desc is None:
                cur_seqs += 1
                seq_desc = PlaceholderSequenceDescriptor()

            sched_len, sched_blocks = self._model.get_kv_requirements(seq_desc, length, free_blocks)

            if sched_len != length:
                # We ran out of KV cache
                return SchedulingResult.KVCacheLimitExceeded

            batch_len += length
            free_blocks -= sched_blocks

        if cur_seqs > self._config.state_manager.max_tracked_sequences:
            # Would run out of tracking metadata
            return SchedulingResult.EngineSequenceLimitExceeded

        if batch_len > self._config.state_manager.max_ragged_batch_size:
            # Would exceed the maximum batch size
            return SchedulingResult.BatchTokenLimitExceeded

        return SchedulingResult.Success

    def get_remaining_block_capacity(self, uid: int) -> int:
        """
        Get the remaining capacity of the last block already allocated.
        """
        seq_desc = self._state_manager.get_sequence(uid)
        if seq_desc is None:
            return 0
        return self._model.get_remaining_block_capacity(seq_desc)

    def flush(self, uid: int) -> None:
        """
        Remove all state associated with a sequence from the inference engine.

        Arguments:
            uid (int): The UID of the sequence to flush.
        """
        self._state_manager.flush_sequence(uid)

    def serialize(self, save_path: str) -> None:
        """
        Serialize the model to a file.

        Arguments:
            path (str): Path to the file to serialize to.
        """
        param_file_name = make_param_filename(save_path, self._model.tp_rank, self._model.tp_size)
        metadata_file_name = make_metadata_filename(save_path, self._model.tp_rank, self._model.tp_size)

        # Save the flattened parameters

        torch.save(self._model.flattened_params, param_file_name)

        json.dump(self._model.flattened_param_metadata.json(), open(metadata_file_name, "w"))

        if self._model.tp_rank == 0:
            pickle.dump(self._model._config, open(os.path.join(save_path, "ds_model_config.pkl"), "wb"))