File size: 24,624 Bytes
19a3898
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

# Automatic Tensor Parallelism
import re

from torch import nn
from .replace_policy import replace_policies
from typing import Optional
import torch
from deepspeed import comm as dist
from .layers import LinearAllreduce, LinearLayer, LmHeadLinearAllreduce
from deepspeed.accelerator import get_accelerator
from .fusedqkv_utils import require_tp_fused_qkvw, prepare_tp_fused_qkvw
from deepspeed.module_inject.tp_shard import get_shard_size, get_shard_size_list


def move(tensor, device):
    if tensor.is_meta:
        return torch.empty_like(tensor, device=device)
    else:
        # Using new tensors help in freeing memory (after split for example) was done before by calling clone().
        # Using copy=True instead of clone() will help in case of cpu --> cpu.
        # Otherwise to() will not create a new copy for the view of the full tensor, and it will not be de-referenced.
        return tensor.to(device, copy=True)


class ReplaceWithTensorSlicing:

    def __init__(self, mp_group=None, mp_size=1, out_dim=1, in_dim=0):
        if mp_group is not None:
            self.gpu_index = dist.get_rank(group=mp_group)
        else:
            self.gpu_index = 0
        self.out_dim = out_dim
        self.in_dim = in_dim
        self.mp_size = mp_size

    def merge_assert(self, dim1, dim2):
        assert dim1 > dim2, \
            'Merging tensors is not allowed here! Please use deepspeed load_checkpoint\
            for merging your checkpoints before replacing the transformer layer with\
            inference-kernels'

    def strided_copy(self,
                     dst: Optional[torch.Tensor],
                     src: Optional[torch.Tensor],
                     num_splits: int,
                     int8: bool = False,
                     allocate_tensor: bool = False):
        if src is None:
            return src
        src_shape = src.shape
        dst_shape = dst.shape

        outer_dim = 0 if int8 else -1

        if allocate_tensor:
            dst = torch.empty_like(dst)

        src_split = torch.split(src.data, src.shape[outer_dim] // num_splits, dim=outer_dim)
        if (len(src_shape) == 2 and len(dst_shape) == 2):
            if src_shape[outer_dim] == dst_shape[self.out_dim]:
                try:
                    dst = dst.reshape(-1).data.copy_(src.data.reshape(-1)).reshape(src.shape)
                except:
                    print(dst.shape, src.shape)
                    exit()
                dst = torch.nn.parameter.Parameter(dst, requires_grad=False)
                if hasattr(src, 'scale'):
                    dst.scale = src.scale
                return dst
            self.merge_assert(src_shape[outer_dim], dst_shape[self.out_dim])
            qkv_size = dst_shape[self.out_dim] // num_splits
            qkv_split = [torch.split(src_s, qkv_size, dim=outer_dim) for src_s in src_split]
            weight_split = [
                torch.cat([qkv_s[i] for qkv_s in qkv_split], axis=outer_dim) for i in range(len(qkv_split[0]))
            ]
            dst = dst.reshape(-1).data.copy_(weight_split[self.gpu_index].contiguous().reshape(-1)).reshape(
                weight_split[self.gpu_index].shape)
        else:
            if src_shape[0] == dst_shape[0]:
                return torch.nn.parameter.Parameter(src)
            qkv_size = dst_shape[0] // num_splits
            qkv_split = [torch.split(src_s, qkv_size, dim=0) for src_s in src_split]
            bias_split = [torch.cat([qkv_s[i] for qkv_s in qkv_split], axis=0) for i in range(len(qkv_split[0]))]
            dst.data.copy_(bias_split[self.gpu_index].contiguous())

        dst = torch.nn.parameter.Parameter(dst, requires_grad=False)
        if hasattr(src, 'scale'):
            dst.scale = src.scale
        return dst

    def copy(self, dst, src, int8=False, allocate_tensor=False):
        if src is None:
            return src
        assert not dst.data.is_meta  # the torch.Tensor.copy_ method used below will silently fail on meta tensors
        if allocate_tensor:
            dst = torch.empty_like(dst)
        outer_dim = 0 if int8 else 1
        inner_dim = 1 if int8 else 0
        src_shape = src.shape
        dst_shape = dst.shape
        if (len(src_shape) == 2 and len(dst_shape) == 2):

            if src_shape[inner_dim] == dst_shape[self.in_dim] and src_shape[outer_dim] == dst_shape[self.out_dim]:
                dst = dst.reshape(-1).data.copy_(src.data.reshape(-1)).reshape(src.shape)
            else:
                if src_shape[inner_dim] != dst_shape[self.in_dim]:
                    self.merge_assert(src_shape[inner_dim], dst_shape[self.in_dim])
                    dst.data.copy_(src[:, self.gpu_index * dst_shape[self.in_dim]: (self.gpu_index + 1) * dst_shape[self.in_dim]] if inner_dim == 1 else \
                                   src[self.gpu_index * dst_shape[self.in_dim]: (self.gpu_index + 1) * dst_shape[self.in_dim], :])
                else:
                    self.merge_assert(src_shape[outer_dim], dst_shape[self.out_dim])
                    dst.data.copy_(src[:, self.gpu_index * dst_shape[self.out_dim]: (self.gpu_index + 1) * dst_shape[self.out_dim]] if outer_dim == 1 else \
                                   src[self.gpu_index * dst_shape[self.out_dim]: (self.gpu_index + 1) * dst_shape[self.out_dim], :])
        else:
            if src_shape[0] == dst_shape[0]:
                dst = src if src.dtype == dst.dtype else dst.data.copy_(src)
            else:
                dst.data.copy_(src[self.gpu_index * dst_shape[-1]:(self.gpu_index + 1) * dst_shape[-1]])
        dst = torch.nn.parameter.Parameter(dst, requires_grad=False)
        if hasattr(src, 'scale'):
            dst.scale = src.scale
        return dst


class Loading():

    def is_load_module(module):
        load_layers = [nn.Linear, nn.Embedding, nn.LayerNorm]
        load_layer_names = [
            "LPLayerNorm", "SharedEmbedding", "OPTLearnedPositionalEmbedding", "LlamaRMSNorm", "FalconLinear",
            "MistralRMSNorm", "T5LayerNorm", "MixtralRMSNorm"
        ]
        return module.__class__ in load_layers or module._get_name() in load_layer_names

    def load_buffer(module, state_dict, prefix):
        for name in module._buffers.keys():
            if module._buffers[name].data.is_meta:
                module._buffers[name] = torch.nn.parameter.Parameter(
                    data=torch.empty_like(module._buffers[name].data, device="cpu"),
                    requires_grad=module._buffers[name].data.requires_grad)
            if prefix + name in state_dict.keys():
                module._buffers[name].data.copy_(state_dict[prefix + name])

    def load(module, state_dict, prefix, mp_group=None):
        mp_replace = ReplaceWithTensorSlicing(mp_group=mp_group)
        if hasattr(module, 'weight'):
            if module.weight.data.is_meta:
                # meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here
                module.weight = torch.nn.parameter.Parameter(data=torch.empty_like(module.weight.data, device="cpu"),
                                                             requires_grad=module.weight.data.requires_grad)
                if 'query_key_value' in prefix:
                    module.weight = mp_replace.strided_copy(module.weight.data,
                                                            state_dict[prefix + 'weight'],
                                                            num_splits=3)
                else:
                    module.weight = mp_replace.copy(module.weight.data, state_dict[prefix + 'weight'])
        else:
            if hasattr(module, 'norm') and hasattr(module.norm, 'weight'):
                if module.norm.weight.data.is_meta:
                    # meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here
                    module.norm.weight = torch.nn.parameter.Parameter(
                        data=torch.empty_like(module.norm.weight.data, device="cpu"),
                        requires_grad=module.norm.weight.data.requires_grad)
                module.norm.weight = mp_replace.copy(module.norm.weight.data, state_dict[prefix + 'weight'])

        if prefix + 'bias' in state_dict.keys():
            if hasattr(module, 'bias'):
                if module.bias.data.is_meta:
                    # meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here
                    module.bias = torch.nn.parameter.Parameter(data=torch.empty_like(module.bias.data, device="cpu"),
                                                               requires_grad=module.bias.data.requires_grad)
                module.bias = mp_replace.copy(module.bias, state_dict[prefix + 'bias'])
            else:
                if hasattr(module, 'norm') and hasattr(module.norm, 'bias'):
                    if module.norm.bias.data.is_meta:
                        # meta tensor cannot be casted or copied to, so we need to replace it with a normal tensor here
                        module.norm.bias = torch.nn.parameter.Parameter(
                            data=torch.empty_like(module.norm.bias.data, device="cpu"),
                            requires_grad=module.norm.bias.data.requires_grad)
                    module.norm.bias = mp_replace.copy(module.norm.bias, state_dict[prefix + 'bias'])


class AutoTP():

    def __init__(self, module, all_reduce_linears, prefix, state_dict, linear_layer_setting, orig_layer_impl):
        self.module = module
        self.all_reduce_linears = all_reduce_linears
        self.prefix = prefix
        self.state_dict = state_dict

        self.mp_size = None
        self.mp_group = None
        self.linear_layer_setting = linear_layer_setting
        self.orig_layer_impl = orig_layer_impl
        self.linear_policies = None
        self.conv_linear_layer = False

    def in_module_list(module, module_list):
        for item in module_list:
            if type(item).__name__ == type(module).__name__:
                return True
        return False

    def get_module_list(model):
        mlist = []
        for child in model.children():
            if isinstance(child, nn.ModuleList):
                for module in child.children():
                    if not mlist:
                        mlist = [module]
                    elif not AutoTP.in_module_list(module, mlist):
                        mlist = mlist + [module]
            else:
                mlist = mlist + AutoTP.get_module_list(child)
        return mlist

    def supported(model):
        unsupported = ['deberta', 'flaubert', 'fsmt', 'gpt2', 'led', 'longformer', 'xlm', 'xlnet']
        model = str(model)
        key = re.search(r": (.*?)Model", model)
        if key is None:
            key = re.search(r": (.*?)Stack", model)
        if key is None:
            key = re.match(r"(.*?)Model", model)
        assert key is not None, "Not able to determine model policy automatically. Please provide policy."
        if key.group(1).lower() in unsupported:
            return False
        return True

    def get_layers(parent, module):
        layer_list = []
        for key, submodule in module._modules.items():
            if isinstance(submodule, nn.Linear):
                layer_list = layer_list + [parent + "." + key]
            elif isinstance(submodule, nn.LayerNorm) or key == 'LayerNorm' or key == 'layer_norm':
                layer_list = layer_list + ["ln"]
            else:
                layer_list = layer_list + AutoTP.get_layers(key, submodule)
        return layer_list

    def update_policy_list(policy_list, new_module, new_gems):
        if len(policy_list):
            for i, policy in enumerate(policy_list):
                # if module already exists in policy, combine gems and remove duplicates
                if policy[0] == type(new_module):
                    new_gems = set(new_gems + policy[1])
                    policy_list[i] = tuple([type(new_module), new_gems])
                    return policy_list
        policy_list.append(tuple([type(new_module), new_gems]))
        return policy_list

    def kernel_supported(module_list):
        policy = []
        for plcy in replace_policies:
            # instantiate a throw-away policy in order to populate the _orig_layer_class
            _ = plcy(None)
            if isinstance(plcy._orig_layer_class, list):
                for orig_layer_class in plcy._orig_layer_class:
                    policy.append(orig_layer_class)
            elif plcy._orig_layer_class is not None:
                policy.append(plcy._orig_layer_class)
        for child in module_list:
            if child.__class__ in policy:
                return True
        return False

    def tp_parser(model):
        policy_list = []
        module_list = []
        layer_list = []
        gem_list = []

        module_list = AutoTP.get_module_list(model)
        assert AutoTP.supported(model), "AutoTP not supported for model. Please use kernel injection since container policy for model exists." \
        if AutoTP.kernel_supported(module_list) else "AutoTP not supported for model. Please provide policy."
        norm_layer_name_list = ['LayerNorm', 'layer_norm', 'ln_1', 'ln_2']
        #ln_1 , ln_2 for Qwen
        for module in module_list:
            for key, submodule in module._modules.items():
                if isinstance(submodule, nn.Linear):
                    layer_list = layer_list + ["." + key]
                elif isinstance(submodule, nn.LayerNorm) or key in norm_layer_name_list:
                    layer_list = layer_list + ["ln"]
                else:
                    layer_list = layer_list + AutoTP.get_layers(key, submodule)
            for i, layer in enumerate(layer_list):
                if layer == 'ln':
                    if layer_list[i - 1] != 'ln':
                        gem_list = gem_list + [layer_list[i - 1]]
                elif 'out_proj' in layer:
                    gem_list = gem_list + [layer]
                elif 'o_proj' in layer:
                    gem_list = gem_list + [layer]
                elif 'down_proj' in layer:
                    gem_list = gem_list + [layer]
                elif 'attention.dense' in layer and 'GPTNeoX' in str(model):
                    gem_list = gem_list + [layer]
                elif 'self_attention.dense' in layer and 'falcon' in str(
                        type(module)):  # this is a hack to get the right linear layer for this model!
                    gem_list = gem_list + [layer]
                # Mixtral-7x8b used w2*act(w1*w3) linear. need to replace w2 to linearallreduce.
                elif 'w2' in layer and 'Mixtral' in str(type(module)):
                    gem_list = gem_list + [layer]

            layer_list = []
            if gem_list != []:
                gem_list = list(set(gem_list))
                policy_list = AutoTP.update_policy_list(policy_list, module, gem_list)
                gem_list = []
        assert len(policy_list), "AutoTP not supported for model. Please use kernel injection since container policy for model exists." \
        if AutoTP.kernel_supported(module_list) else "Not able to determine model policy automatically. Please provide policy."
        return policy_list

    def set_tensor_parallel_config(self, mp_size, mp_group):
        self.mp_size = mp_size
        self.mp_group = mp_group

    def _replace(self, child, name, conv_linear_layer):
        if getattr(child, "replaced", False) == True:
            return
        weight_shape = child.weight.shape
        mp_replace = ReplaceWithTensorSlicing(mp_group=self.mp_group)
        # For mixtral-7x8b, need to skip MoE gate linear replace.
        if name == "block_sparse_moe.gate":
            return child
        if name in self.all_reduce_linears:
            # if conv_linear_layer [weight_shape[1], weight_shape[0] // mp_size]
            # else [weight_shape[0], weight_shape[1] // mp_size]

            if self.conv_linear_layer:
                child.weight.data = child.weight.data.transpose(-1, -2).contiguous()
            data = child.weight.data.split(get_shard_size_list(
                weight_shape[0] if self.conv_linear_layer else weight_shape[1], self.mp_size, name),
                                           dim=1)
            data_dc = move(data[mp_replace.gpu_index], get_accelerator().current_device_name()).detach()
            del data

            setattr(child, "replaced", True)
            if name == "lm_head" or name == 'embed_out':
                return LmHeadLinearAllreduce(
                    torch.nn.parameter.Parameter(data_dc, requires_grad=False), dist.get_rank(), dist.get_world_size(),
                    child.bias if child.bias is None else torch.nn.parameter.Parameter(
                        move(child.bias,
                             get_accelerator().current_device_name())), self.mp_group)
            return LinearAllreduce(torch.nn.parameter.Parameter(data_dc, requires_grad=False), child.bias if child.bias is None else \
                        torch.nn.parameter.Parameter(move(child.bias, get_accelerator().current_device_name())), self.mp_group)
        else:

            # if conv_linear_layer [weight_shape[1], weight_shape[0] // mp_size]
            # else [weight_shape[0] // mp_size, weight_shape[1]]
            if self.conv_linear_layer:
                child.weight.data = child.weight.data.transpose(-1, -2).contiguous()

            if require_tp_fused_qkvw(name, self.mp_size):
                #Check and handle fused qkv for TP
                #The copy is a regular copy, The shape of dst and src is the same
                data_dc = move(
                    prepare_tp_fused_qkvw(self.module, child.weight.data, self.mp_size, mp_replace.gpu_index),
                    get_accelerator().current_device_name())

                bias_data_dc = None if child.bias is None else move(
                    prepare_tp_fused_qkvw(self.module, child.bias.data, self.mp_size, mp_replace.gpu_index),
                    get_accelerator().current_device_name())
            else:
                data = child.weight.data.split(get_shard_size_list(weight_shape[0], self.mp_size, name),
                                               dim=1 if self.conv_linear_layer else 0)
                data_dc = move(data[mp_replace.gpu_index], get_accelerator().current_device_name()).detach()
                del data

                if child.bias is not None:
                    bias_data = child.bias.data.split(get_shard_size_list(
                        weight_shape[1] if self.conv_linear_layer else weight_shape[0], self.mp_size, name),
                                                      dim=0)
                    bias_data = move(bias_data[mp_replace.gpu_index], get_accelerator().current_device_name())
                    bias_data_dc = torch.nn.parameter.Parameter(bias_data, requires_grad=False)
                    del bias_data
                else:
                    bias_data_dc = None

            setattr(child, "replaced", True)
            return LinearLayer(weight=torch.nn.parameter.Parameter(data_dc, requires_grad=False), bias=bias_data_dc)

    def _slice_embedding(self, child, name, conv_linear_layer):
        if getattr(child, "replaced", False) == True:
            return
        mp_replace = ReplaceWithTensorSlicing(mp_group=self.mp_group)

        if hasattr(child.weight, 'ds_tensor'):
            data = child.weight.ds_tensor.data.split(get_shard_size_list(child.weight.shape[1], self.mp_size), dim=1)
        else:
            data = child.weight.data.split(get_shard_size_list(child.weight.shape[1], self.mp_size, name), dim=1)
        data = data[mp_replace.gpu_index].to(get_accelerator().current_device_name())
        data = torch.nn.parameter.Parameter(data, requires_grad=False)

        new_embedding = nn.Embedding(child.weight.shape[0], get_shard_size(child.weight.shape[1], self.mp_size, name))
        new_embedding.weight.data.copy_(data)
        setattr(child, "replaced", True)
        return new_embedding

    def update_mp_params(self, child):
        if getattr(child, "replaced", False) == True:
            return
        for param in [
                "n_heads", "inner_dim", "num_heads", "num_kv", "num_attention_heads", "num_attn_heads",
                "all_head_size", "embed_dim", "hidden_size", "num_key_value_heads", "num_kv_heads", "kv_n_heads",
                "d_model"
        ]:
            if hasattr(child, param):
                param_val = getattr(child, param)
                setattr(child, param, get_shard_size(param_val, self.mp_size))
        setattr(child, "replaced", True)

    def update_linear_policies(self):
        self.conv_linear_layer = False
        if self.linear_layer_setting is not None:
            self.linear_policies = {self.linear_layer_setting[0]: self._replace}
            if len(self.linear_layer_setting) == 2:
                self.linear_policies.update({self.linear_layer_setting[1]: self._slice_embedding})
        else:
            import transformers
            if self.orig_layer_impl is transformers.models.gpt2.modeling_gpt2.GPT2Block:
                try:
                    self.conv_linear_layer = True
                    self.linear_policies = {transformers.pytorch_utils.Conv1D: self._replace}
                except ImportError:
                    self.linear_policies = {nn.Linear: self._replace}
            else:
                self.linear_policies = {nn.Linear: self._replace, nn.Embedding: self._slice_embedding}

    def _replace_module(self, r_module, prev_name='', prev_class_name=''):
        for name, child in r_module.named_children():
            if prev_class_name == "":
                class_name = prev_name
            elif prev_name == "":
                class_name = prev_class_name
            else:
                class_name = prev_class_name + '.' + prev_name
            checking_key = self.prefix + '.' + class_name + '.' + name + '.' if class_name != "" else self.prefix + '.' + name + '.'
            if Loading.is_load_module(child) and self.state_dict is not None:
                if any(checking_key in item for item in self.state_dict):
                    Loading.load(child, self.state_dict, checking_key, self.mp_group)
                else:
                    continue
            if len(child._buffers) != 0 and self.state_dict is not None:
                Loading.load_buffer(child, self.state_dict, checking_key)
            if child.__class__ in self.linear_policies:
                setattr(r_module, name, self.linear_policies[child.__class__](child, prev_name + '.' + name,
                                                                              self.conv_linear_layer))
            elif any(isinstance(child, lp) for lp in self.linear_policies):
                # Added for falcon model support
                # Note: isinstance will account for class inheritance, child.__class__ does not
                key = None
                for lp in self.linear_policies:
                    if isinstance(child, lp):
                        key = lp
                        break
                assert key is not None
                setattr(r_module, name, self.linear_policies[key](child, prev_name + '.' + name,
                                                                  self.conv_linear_layer))
            else:
                self.update_mp_params(child)
                self._replace_module(child, name, class_name)
        return r_module

    def get_model_num_kv_heads(self, config):
        num_kv_heads = None
        kv_head_names = ['num_kv_heads', 'num_key_value_heads', 'num_attention_heads', 'n_heads']
        for name in kv_head_names:
            if hasattr(config, name):
                num_kv_heads = getattr(config, name)
                if num_kv_heads is not None:
                    break
        return num_kv_heads

    def _replace_last_linear_module(self, r_module):
        if hasattr(r_module, "lm_head"):
            name = "lm_head"
            child = r_module.lm_head
        elif hasattr(r_module, "embed_out"):
            name = "embed_out"
            child = r_module.embed_out
        else:
            return r_module
        if child.__class__ in self.linear_policies:
            setattr(r_module, name, self.linear_policies[child.__class__](child, name, self.conv_linear_layer))
        return r_module