File size: 5,897 Bytes
a5dc865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

from .base import *
from .features.meta_tensor import MetaTensorContainer
from .features.hybrid_megatron import HybridMegatronContainer
from deepspeed.model_implementations.transformers.ds_gpt import DeepSpeedGPTInference
import torch
from ..policy import TransformerPolicy
from ..policy import transformer_param_names
from ..policy import maybe_copy
from packaging import version as pkg_version

from ..policy import maybe_get_lora


class DS_GPTNEOXContainer(MetaTensorContainer, HybridMegatronContainer, BaseTransformerContainer):

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        # All model specific things should be defined here instead of the base class.

    def create_module(self, config=None):
        _config = config if config is not None else self.ds_model_config
        self.module = DeepSpeedGPTInference(_config, mp_group=self.mp_group)
        self.module.config.scale_attention = self.scale_attention

        if self.megatron_v2:
            self.module.config.rotate_half = True
            self.module.config.rotate_every_two = False

        return self.module

    def get_lora_matched_pair(self):
        """
        Necessary to implement for `HybridEngineContainer`
        """
        fc1_lora, fc2_lora, qkv_lora, out_lora = self.get_lora_params()
        ret = [(fc1_lora, self._h4h_w), (fc2_lora, self._4hh_w), (qkv_lora, self.qkvw), (out_lora, self.dense_w)]
        return ret

    def set_lora_params(self):
        """
        Necessary to implement for `HybridEngineContainer`
        """
        if GPTNEOXLayerPolicy.version == 0:
            attention = self.policy.client_module.attention
        else:
            attention = self.policy.client_module.self_attention

        self.lora_params = [
            maybe_get_lora(p) for p in [
                self.policy.client_module.mlp.dense_h_to_4h, self.policy.client_module.mlp.dense_4h_to_h,
                attention.query_key_value, attention.dense
            ]
        ]

    def load_params(self, module, sd, weight_quantizer, mp_replace, prefix):
        param_names = (
            'attention.query_key_value.weight', \
            'attention.query_key_value.bias', \
            'attention.dense.weight', \
            'attention.dense.bias', \
            'mlp.dense_h_to_4h.weight', \
            'mlp.dense_h_to_4h.bias', \
            'mlp.dense_4h_to_h.weight', \
            'mlp.dense_4h_to_h.bias', \
            'post_attention_layernorm.weight', \
            'post_attention_layernorm.bias', \
            'input_layernorm.weight', \
            'input_layernorm.bias'
        )
        for i in range(0, 2):
            maybe_copy(module.attention,
                       sd,
                       weight_quantizer,
                       mp_replace,
                       transformer_param_names[i],
                       prefix + param_names[i],
                       qkv=True,
                       megatron_v2=self.policy.is_megatron_v2,
                       split_qkv=self.policy.split_qkv,
                       heads=self.policy.client_module.attention.num_attention_heads)
        for i in range(2, 4):
            maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[i],
                       prefix + param_names[i])
        for i in range(4, 10):
            maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, transformer_param_names[i],
                       prefix + param_names[i])
        for i in range(10, 12):
            maybe_copy(module, sd, weight_quantizer, mp_replace, transformer_param_names[i], prefix + param_names[i])


class GPTNEOXLayerPolicy(TransformerPolicy):
    _orig_layer_class = None
    version = 0

    def __init__(self, client_module, inference=True, megatron_v2=True, split_qkv=False):
        super().__init__(inference, megatron_v2=megatron_v2, split_qkv=split_qkv)
        self.client_module = client_module
        if GPTNEOXLayerPolicy._orig_layer_class is None:
            if pkg_version.parse(torch.__version__) <= pkg_version.parse("1.2"):
                GPTNEOXLayerPolicy._orig_layer_class = None
            else:
                try:
                    from transformers import GPTNeoXLayer
                    GPTNEOXLayerPolicy._orig_layer_class = GPTNeoXLayer
                except ImportError:
                    GPTNEOXLayerPolicy._orig_layer_class = None

    def get_hidden_heads(self):
        if GPTNEOXLayerPolicy.version == 0:
            attention = self.client_module.attention
        else:
            attention = self.client_module.self_attention

        return self.client_module.attention.hidden_size, \
                self.client_module.attention.num_attention_heads, \
                self.client_module.input_layernorm.eps, \
                DEFAULT_INTERMEDIATE_SIZE

    def attention(self, enable_training=False):
        if GPTNEOXLayerPolicy.version == 0:
            attention = self.client_module.attention
        else:
            attention = self.client_module.self_attention

        return attention.query_key_value.weight, \
               attention.query_key_value.bias, \
               attention.dense.weight, \
               attention.dense.bias

    def mlp(self, enable_training=False):
        return self.client_module.mlp.dense_h_to_4h.weight, \
               self.client_module.mlp.dense_h_to_4h.bias, \
               self.client_module.mlp.dense_4h_to_h.weight, \
               self.client_module.mlp.dense_4h_to_h.bias

    def layernorm(self):
        return self.client_module.post_attention_layernorm.weight, \
               self.client_module.post_attention_layernorm.bias, \
               self.client_module.input_layernorm.weight, \
               self.client_module.input_layernorm.bias