applied-ai-018 commited on
Commit
a5dc865
·
verified ·
1 Parent(s): 4627caa

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +3 -0
  2. venv/lib/python3.10/site-packages/deepspeed/comm/__init__.py +7 -0
  3. venv/lib/python3.10/site-packages/deepspeed/comm/__pycache__/__init__.cpython-310.pyc +0 -0
  4. venv/lib/python3.10/site-packages/deepspeed/comm/__pycache__/constants.cpython-310.pyc +0 -0
  5. venv/lib/python3.10/site-packages/deepspeed/comm/__pycache__/reduce_op.cpython-310.pyc +0 -0
  6. venv/lib/python3.10/site-packages/deepspeed/comm/__pycache__/utils.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/deepspeed/comm/backend.py +47 -0
  8. venv/lib/python3.10/site-packages/deepspeed/comm/reduce_op.py +18 -0
  9. venv/lib/python3.10/site-packages/deepspeed/comm/torch.py +392 -0
  10. venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/__init__.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/auto_tp.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/inject.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/layers.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/load_checkpoint.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/policy.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/replace_module.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/replace_policy.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/tp_shard.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/utils.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__init__.py +21 -0
  21. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/__init__.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/base.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/bert.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/bloom.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/clip.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/distil_bert.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/gpt2.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/gptj.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/gptneo.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/gptneox.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/internlm.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/llama.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/llama2.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/megatron_gpt.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/megatron_gpt_moe.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/unet.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/vae.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/base.py +322 -0
  39. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/base_moe.py +130 -0
  40. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/bert.py +93 -0
  41. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/bloom.py +131 -0
  42. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/clip.py +73 -0
  43. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/distil_bert.py +82 -0
  44. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/features/__init__.py +9 -0
  45. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/features/__pycache__/__init__.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/features/__pycache__/gated_mlp.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/features/__pycache__/hybrid_engine.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/features/__pycache__/hybrid_megatron.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/features/__pycache__/megatron.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/features/__pycache__/meta_tensor.cpython-310.pyc +0 -0
.gitattributes CHANGED
@@ -130,3 +130,6 @@ lm-evaluation-harness/wandb/run-20240606_045127-vb760voe/run-vb760voe.wandb filt
130
  venv/lib/python3.10/site-packages/nvidia/cublas/lib/libcublasLt.so.12 filter=lfs diff=lfs merge=lfs -text
131
  venv/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so filter=lfs diff=lfs merge=lfs -text
132
  venv/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_cnn_infer.so.8 filter=lfs diff=lfs merge=lfs -text
 
 
 
 
130
  venv/lib/python3.10/site-packages/nvidia/cublas/lib/libcublasLt.so.12 filter=lfs diff=lfs merge=lfs -text
131
  venv/lib/python3.10/site-packages/torch/lib/libtorch_cuda.so filter=lfs diff=lfs merge=lfs -text
132
  venv/lib/python3.10/site-packages/nvidia/cudnn/lib/libcudnn_cnn_infer.so.8 filter=lfs diff=lfs merge=lfs -text
133
+ venv/lib/python3.10/site-packages/scipy/special/_ufuncs.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
134
+ venv/lib/python3.10/site-packages/scipy/stats/_unuran/unuran_wrapper.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
135
+ venv/lib/python3.10/site-packages/scipy/sparse/_sparsetools.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
venv/lib/python3.10/site-packages/deepspeed/comm/__init__.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from .utils import *
7
+ from .comm import *
venv/lib/python3.10/site-packages/deepspeed/comm/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (220 Bytes). View file
 
venv/lib/python3.10/site-packages/deepspeed/comm/__pycache__/constants.cpython-310.pyc ADDED
Binary file (1.04 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/comm/__pycache__/reduce_op.cpython-310.pyc ADDED
Binary file (526 Bytes). View file
 
venv/lib/python3.10/site-packages/deepspeed/comm/__pycache__/utils.cpython-310.pyc ADDED
Binary file (2.72 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/comm/backend.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+ """
6
+ DeepSpeed Communication Backend.
7
+
8
+ In the future, directly use NCCL/MPI/Gloo/etc without requiring torch.distributed. Simply wrap torch.distributed for now.
9
+
10
+ # Custom DS Backends -- Direct C/Ops
11
+ - NCCL -- [EXPERIMENTAL]
12
+ - MPI -- [EXPERIMENTAL]
13
+ - RCCL -- [EXPERIMENTAL]
14
+ - GLOO -- [EXPERIMENTAL]
15
+ # DS backend wrapper for torch.distributed [DEFAULT]
16
+ - T-NCCL -- [DEFAULT]
17
+ - T-GLOO
18
+ - T-MPI
19
+
20
+ # Backend is the base class
21
+ -- NcclBackend, MpiBackend, and TorchBackend are the main subclasses. TorchBackend is the only officially supported backend for now.
22
+ """
23
+
24
+
25
+ class Backend(object):
26
+
27
+ def __init__(self, name='backend', rank=0, size=1):
28
+ self.name = name
29
+ # The world size and rank of the world process group
30
+ self.world_group = None
31
+ self.world_size = size
32
+ self.world_rank = rank
33
+ # Single process group (pg) implementation for now but keep a list for future
34
+ self.process_groups = []
35
+ self.initialized = False
36
+
37
+ def is_initialized(self):
38
+ return self.initialized
39
+
40
+ def new_group(self):
41
+ # create a new pg and add it to pg list
42
+ pass
43
+
44
+ def init_process_group(self):
45
+ # subclasses will initialize them fully
46
+ # - initialize a default world process group and add it to pg list
47
+ self.initialized = True
venv/lib/python3.10/site-packages/deepspeed/comm/reduce_op.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from enum import Enum
7
+
8
+
9
+ class ReduceOp(Enum):
10
+ SUM = 0
11
+ PRODUCT = 1
12
+ MIN = 2
13
+ MAX = 3
14
+ BAND = 4
15
+ BOR = 5
16
+ BXOR = 6
17
+ AVG = 7
18
+ UNUSED = 8
venv/lib/python3.10/site-packages/deepspeed/comm/torch.py ADDED
@@ -0,0 +1,392 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ import deepspeed
7
+ from deepspeed import utils
8
+
9
+ from .utils import *
10
+ from .backend import *
11
+ from .comm import *
12
+ from ..runtime import compiler
13
+ from deepspeed.utils.torch import required_torch_version
14
+ import os
15
+
16
+ DS_COMM_ALL_GATHER_OFF = False
17
+ DS_COMM_REDUCE_SCATTER_OFF = False
18
+ DS_COMM_BROADCAST_OFF = False
19
+ DS_COMM_ALL_REDUCE_OFF = False
20
+ DS_COMM_REDUCE_OFF = False
21
+
22
+
23
+ def build_shm_op():
24
+ builder = get_accelerator().create_op_builder("ShareMemCommBuilder")
25
+ if builder is None or not deepspeed.ops.__compatible_ops__[builder.NAME]:
26
+ return None
27
+ shm_cpp_module = builder.load()
28
+ print(f'DeepSpeed {builder.absolute_name()} built successfully')
29
+ return shm_cpp_module
30
+
31
+
32
+ def has_coalescing_manager():
33
+ has_c10d = hasattr(torch.distributed, 'distributed_c10d')
34
+ return has_c10d and hasattr(torch.distributed.distributed_c10d, '_coalescing_manager')
35
+
36
+
37
+ def has_all_reduce_coalesced():
38
+ return hasattr(torch.distributed, "all_reduce_coalesced") and required_torch_version(min_version=1.13)
39
+
40
+
41
+ def get_coalescing_manager(group, device, reqs, async_op):
42
+ if required_torch_version(min_version=2.0, max_version=2.0):
43
+ return torch.distributed.distributed_c10d._coalescing_manager(group, device=device, reqs=reqs)
44
+ elif required_torch_version(min_version=2.1):
45
+ return torch.distributed.distributed_c10d._coalescing_manager(group, device=device, async_ops=async_op)
46
+ else:
47
+ return torch.distributed.distributed_c10d._coalescing_manager(group, reqs)
48
+
49
+
50
+ ##Utilities to turn comm off
51
+ ##TODO: move to base comm (wrapper)
52
+ def all_gather_comm_off(flag=False):
53
+ global DS_COMM_ALL_GATHER_OFF
54
+ DS_COMM_ALL_GATHER_OFF = flag
55
+
56
+
57
+ def reduce_scatter_comm_off(flag=False):
58
+ global DS_COMM_REDUCE_SCATTER_OFF
59
+ DS_COMM_REDUCE_SCATTER_OFF = flag
60
+
61
+
62
+ def broadcast_comm_off(flag=False):
63
+ global DS_COMM_BROADCAST_OFF
64
+ DS_COMM_BROADCAST_OFF = flag
65
+
66
+
67
+ def all_reduce_comm_off(flag=False):
68
+ global DS_COMM_ALL_REDUCE_OFF
69
+ DS_COMM_ALL_REDUCE_OFF = flag
70
+
71
+
72
+ def reduce_comm_off(flag=False):
73
+ global DS_COMM_REDUCE_OFF
74
+ DS_COMM_REDUCE_OFF = flag
75
+
76
+
77
+ #assumption: all_gather and reduce scatter
78
+ ## are what we care about
79
+ def backward_comm_off(flag=False):
80
+ all_gather_comm_off(flag)
81
+ reduce_scatter_comm_off(flag)
82
+
83
+
84
+ class Noop:
85
+
86
+ def wait(self):
87
+ return None
88
+
89
+
90
+ class TorchBackend(Backend):
91
+ """
92
+ A light-weight wrapper class for torch.distributed API.
93
+ Only a subset of functions are wrapped. Once the init_process_group
94
+ is initialized, standard torch.distributed.* can be used directly
95
+ so no need to wrap all the functions. We can keep adding wrappers as
96
+ needed.
97
+ """
98
+
99
+ def __init__(self, backend, timeout, init_method, rank=-1, world_size=-1, name='torch'):
100
+ super(TorchBackend, self).__init__()
101
+ self.shm_comm_op = build_shm_op()
102
+ self.has_all_reduce_coalesced = has_all_reduce_coalesced()
103
+ self.has_coalescing_manager = has_coalescing_manager()
104
+ self.all_gather_function = self.get_all_gather_function()
105
+ self.reduce_scatter_function = self.get_reduce_scatter_function()
106
+ self.initialized = True
107
+ self.name = name
108
+ # Future functionality to support ds.initialize() on a single GPU
109
+ # The idea is to fake that dist backend is initialized even when
110
+ # it is not so we can run on a single GPU without doing any init_process_group
111
+ self.single_gpu_mode = True
112
+ self.init_process_group(backend, timeout, init_method, rank, world_size)
113
+ if self.shm_comm_op != None:
114
+ self.shm_comm_op.initialize(self.get_world_size(), self.get_rank())
115
+
116
+ @classmethod
117
+ @compiler.disable
118
+ def get_all_gather_function(self):
119
+ if hasattr(torch.distributed, "all_gather_into_tensor"):
120
+ return torch.distributed.all_gather_into_tensor
121
+ elif hasattr(torch.distributed, "_all_gather_base"):
122
+ return torch.distributed._all_gather_base
123
+ return None
124
+
125
+ @classmethod
126
+ @compiler.disable
127
+ def get_reduce_scatter_function(self):
128
+ if hasattr(torch.distributed, "reduce_scatter_tensor"):
129
+ return torch.distributed.reduce_scatter_tensor
130
+ elif hasattr(torch.distributed, "_reduce_scatter_base"):
131
+ return torch.distributed._reduce_scatter_base
132
+ return None
133
+
134
+ def has_all_gather_into_tensor(self):
135
+ return self.all_gather_function is not None
136
+
137
+ def has_reduce_scatter_tensor(self):
138
+ return self.reduce_scatter_function is not None
139
+
140
+ def init_process_group(self, backend, timeout, init_method, rank, world_size):
141
+ if not torch.distributed.is_initialized():
142
+ torch.distributed.init_process_group(backend,
143
+ timeout=timeout,
144
+ init_method=init_method,
145
+ rank=rank,
146
+ world_size=world_size)
147
+ self.using_mpi = torch.distributed.get_backend() == 'mpi'
148
+
149
+ @compiler.disable
150
+ def all_reduce(self, tensor, op=torch.distributed.ReduceOp.SUM, group=None, async_op=False):
151
+ op = self._reduce_op(op)
152
+ return torch.distributed.all_reduce(tensor=tensor, op=op, group=group, async_op=async_op)
153
+
154
+ @compiler.disable
155
+ def inference_all_reduce(self, tensor, op, group=None):
156
+ if self.shm_comm_op == None or self.shm_comm_op.inference_all_reduce(tensor, op) == -1:
157
+ op = self._reduce_op(op)
158
+ return torch.distributed.all_reduce(tensor=tensor, op=op, group=group, async_op=False)
159
+
160
+ @compiler.disable
161
+ def all_reduce_coalesced(self, tensors, op=torch.distributed.ReduceOp.SUM, group=None, async_op=False):
162
+ """ proxy func to torch.distributed.all_reduce_coalesced,
163
+ which is included in PyTorch 1.13 and above
164
+ """
165
+ if not self.has_all_reduce_coalesced:
166
+ raise RuntimeError(f"Current torch version does not have all_reduce_coalesced "
167
+ f"api (torch.__version__: {torch.__version__})")
168
+ op = self._reduce_op(op)
169
+ return torch.distributed.all_reduce_coalesced(tensors=tensors, op=op, group=group, async_op=async_op)
170
+
171
+ @compiler.disable
172
+ def reduce(self, tensor, dst, op=ReduceOp.SUM, group=None, async_op=False):
173
+ if DS_COMM_REDUCE_OFF:
174
+ if int(os.getenv('RANK', '0')) == 0:
175
+ utils.logger.warning("REDUCE is OFF")
176
+ return Noop()
177
+ return torch.distributed.reduce(tensor=tensor, dst=dst, op=self._reduce_op(op), group=group, async_op=async_op)
178
+
179
+ @compiler.disable
180
+ def reduce_scatter(self, output, input_list, op=ReduceOp.SUM, group=None, async_op=False):
181
+ if DS_COMM_REDUCE_SCATTER_OFF:
182
+ if int(os.getenv('RANK', '0')) == 0:
183
+ utils.logger.warning("REDUCE SCATTER is OFF")
184
+ return Noop()
185
+ else:
186
+ return torch.distributed.reduce_scatter(output=output,
187
+ input_list=input_list,
188
+ op=self._reduce_op(op),
189
+ group=group,
190
+ async_op=async_op)
191
+
192
+ @compiler.disable
193
+ def broadcast(self, tensor, src, group=None, async_op=False):
194
+ if DS_COMM_BROADCAST_OFF:
195
+ if int(os.getenv('RANK', '0')) == 0:
196
+ utils.logger.warning("BROADCAST is OFF")
197
+ return Noop()
198
+ else:
199
+ return torch.distributed.broadcast(tensor=tensor, src=src, group=group, async_op=async_op)
200
+
201
+ @compiler.disable
202
+ def all_gather(self, tensor_list, tensor, group=None, async_op=False):
203
+ if DS_COMM_ALL_GATHER_OFF:
204
+ if int(os.getenv('RANK', '0')) == 0:
205
+ utils.logger.warning("All Gather is OFF")
206
+ return Noop()
207
+ else:
208
+ return torch.distributed.all_gather(tensor_list=tensor_list, tensor=tensor, group=group, async_op=async_op)
209
+
210
+ @compiler.disable
211
+ def all_gather_into_tensor(self, output_tensor, input_tensor, group=None, async_op=False):
212
+ if self.has_all_gather_into_tensor():
213
+ return self.all_gather_function(output_tensor=output_tensor,
214
+ input_tensor=input_tensor,
215
+ group=group,
216
+ async_op=async_op)
217
+
218
+ @compiler.disable
219
+ def all_gather_base(self, output_tensor, input_tensor, group=None, async_op=False):
220
+ if DS_COMM_ALL_GATHER_OFF:
221
+ if int(os.getenv('RANK', '0')) == 0:
222
+ utils.logger.warning("All Gather is OFF")
223
+ return Noop()
224
+ else:
225
+ if self.has_allgather_base:
226
+ return torch.distributed.distributed_c10d._all_gather_base(output_tensor=output_tensor,
227
+ input_tensor=input_tensor,
228
+ group=group,
229
+ async_op=async_op)
230
+ else:
231
+ utils.logger.warning("unable to find torch.distributed._all_gather_base. will fall back to "
232
+ "torch.distributed.reduce_scatter which will result in suboptimal performance. "
233
+ "please consider upgrading your pytorch installation.")
234
+ pass
235
+
236
+ @compiler.disable
237
+ def all_gather_coalesced(self, output_tensors, input_tensors, group=None, async_op=False):
238
+ """"""
239
+ assert len(output_tensors) == len(input_tensors), ""
240
+ if hasattr(torch.distributed.distributed_c10d, '_all_gather_base_coalesced'):
241
+ # customized PyTorch
242
+ return torch.distributed.distributed_c10d._all_gather_base_coalesced(output_tensors,
243
+ input_tensors,
244
+ group=group,
245
+ async_op=async_op)
246
+ elif has_coalescing_manager():
247
+ reqs = []
248
+ with get_coalescing_manager(group, input_tensors[0].device, reqs, async_op):
249
+ for output, input in zip(output_tensors, input_tensors):
250
+ handle = torch.distributed.distributed_c10d.all_gather_into_tensor(output,
251
+ input,
252
+ group=group,
253
+ async_op=True)
254
+ reqs.append(handle)
255
+ if async_op:
256
+ return reqs[-1]
257
+ else:
258
+ reqs[-1].wait()
259
+
260
+ @compiler.disable
261
+ def reduce_scatter_tensor(self, output_tensor, input_tensor, op=ReduceOp.SUM, group=None, async_op=False):
262
+ if self.has_reduce_scatter_tensor():
263
+ return self.reduce_scatter_function(output_tensor,
264
+ input_tensor,
265
+ op=self._reduce_op(op),
266
+ group=group,
267
+ async_op=async_op)
268
+ else:
269
+ utils.logger.warning("unable to find torch.distributed.reduce_scatter_tensor. will fall back to "
270
+ "torch.distributed.reduce_scatter which will result in suboptimal performance. "
271
+ "please consider upgrading your pytorch installation.")
272
+ pass
273
+
274
+ @compiler.disable
275
+ def all_to_all_single(self,
276
+ output,
277
+ input,
278
+ output_split_sizes=None,
279
+ input_split_sizes=None,
280
+ group=None,
281
+ async_op=False):
282
+ return torch.distributed.all_to_all_single(output=output,
283
+ input=input,
284
+ output_split_sizes=output_split_sizes,
285
+ input_split_sizes=input_split_sizes,
286
+ group=group,
287
+ async_op=async_op)
288
+
289
+ @compiler.disable
290
+ def all_to_all(self, output_tensor_list, input_tensor_list, group=None, async_op=False):
291
+ return torch.distributed.all_to_all(output_tensor_list, input_tensor_list, group=group, async_op=async_op)
292
+
293
+ @compiler.disable
294
+ def send(self, tensor, dst, group=None, tag=0):
295
+ return torch.distributed.send(tensor=tensor, dst=dst, group=group, tag=tag)
296
+
297
+ @compiler.disable
298
+ def recv(self, tensor, src=None, group=None, tag=0):
299
+ return torch.distributed.recv(tensor=tensor, src=src, group=group, tag=tag)
300
+
301
+ @compiler.disable
302
+ def isend(self, tensor, dst, group=None, tag=0):
303
+ return torch.distributed.isend(tensor=tensor, dst=dst, group=group, tag=tag)
304
+
305
+ @compiler.disable
306
+ def irecv(self, tensor, src=None, group=None, tag=0):
307
+ return torch.distributed.irecv(tensor=tensor, src=src, group=group, tag=tag)
308
+
309
+ @compiler.disable
310
+ def gather(self, tensor, gather_list=None, dst=0, group=None, async_op=False):
311
+ return torch.distributed.gather(tensor=tensor,
312
+ gather_list=gather_list,
313
+ dst=dst,
314
+ group=group,
315
+ async_op=async_op)
316
+
317
+ @compiler.disable
318
+ def scatter(self, tensor, scatter_list=None, src=0, group=None, async_op=False):
319
+ return torch.distributed.scatter(tensor=tensor,
320
+ scatter_list=scatter_list,
321
+ src=src,
322
+ group=group,
323
+ async_op=async_op)
324
+
325
+ @compiler.disable
326
+ def barrier(self, group=torch.distributed.GroupMember.WORLD, async_op=False, device_ids=None):
327
+ if group is None:
328
+ group = torch.distributed.GroupMember.WORLD
329
+ return torch.distributed.barrier(group=group, async_op=async_op, device_ids=device_ids)
330
+
331
+ @compiler.disable
332
+ def monitored_barrier(self, group=torch.distributed.GroupMember.WORLD, timeout=None, wait_all_ranks=False):
333
+ if group is None:
334
+ group = torch.distributed.GroupMember.WORLD
335
+ return torch.distributed.monitored_barrier(group=group, timeout=timeout, wait_all_ranks=wait_all_ranks)
336
+
337
+ def get_rank(self, group=None):
338
+ return torch.distributed.get_rank(group=group)
339
+
340
+ def get_world_size(self, group=None):
341
+ return torch.distributed.get_world_size(group=group)
342
+
343
+ def is_initialized(self):
344
+ return torch.distributed.is_initialized()
345
+
346
+ def get_backend(self, group=None):
347
+ return torch.distributed.get_backend(group=group)
348
+
349
+ def new_group(self, ranks):
350
+ return torch.distributed.new_group(ranks)
351
+
352
+ def get_global_rank(self, group, group_rank):
353
+ if hasattr(torch.distributed.distributed_c10d, "get_global_rank"):
354
+ from torch.distributed.distributed_c10d import get_global_rank as _get_global_rank
355
+ else:
356
+ from torch.distributed.distributed_c10d import _get_global_rank
357
+ return _get_global_rank(group, group_rank)
358
+
359
+ def get_world_group(self):
360
+ return torch.distributed.group.WORLD
361
+
362
+ def destroy_process_group(self, group=None):
363
+ return torch.distributed.destroy_process_group(group=group)
364
+
365
+ def _reduce_op(self, op):
366
+ '''
367
+ Helper function. If the op provided is not a torch.dist.ReduceOp, convert it and return
368
+ '''
369
+ if not isinstance(op, torch.distributed.ReduceOp):
370
+ if op == ReduceOp.SUM:
371
+ op = torch.distributed.ReduceOp.SUM
372
+ elif op == ReduceOp.PRODUCT:
373
+ op = torch.distributed.ReduceOp.PRODUCT
374
+ elif op == ReduceOp.AVG:
375
+ op = torch.distributed.ReduceOp.AVG
376
+ elif op == ReduceOp.MIN:
377
+ op = torch.distributed.ReduceOp.MIN
378
+ elif op == ReduceOp.MAX:
379
+ op = torch.distributed.ReduceOp.MAX
380
+ elif op == ReduceOp.BAND:
381
+ op = torch.distributed.ReduceOp.BAND
382
+ elif op == ReduceOp.BOR:
383
+ op = torch.distributed.ReduceOp.BOR
384
+ elif op == ReduceOp.BXOR:
385
+ op = torch.distributed.ReduceOp.BXOR
386
+ return op
387
+
388
+
389
+ # This will become a light-weight wrapper around torch.distributed functions
390
+ # TODO: create some example to show how this wrapper can help profile communication
391
+ # TODO: make sure there is no performance regression with this approach
392
+ # TODO: explore monkey-patching if this does not work
venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (652 Bytes). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/auto_tp.cpython-310.pyc ADDED
Binary file (14.9 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/inject.cpython-310.pyc ADDED
Binary file (2.56 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/layers.cpython-310.pyc ADDED
Binary file (5.66 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/load_checkpoint.cpython-310.pyc ADDED
Binary file (9.4 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/policy.cpython-310.pyc ADDED
Binary file (5.66 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/replace_module.cpython-310.pyc ADDED
Binary file (19.1 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/replace_policy.cpython-310.pyc ADDED
Binary file (888 Bytes). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/tp_shard.cpython-310.pyc ADDED
Binary file (1.35 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/__pycache__/utils.cpython-310.pyc ADDED
Binary file (1.64 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__init__.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from .bert import DS_BERTContainer, HFBertLayerPolicy
7
+ from .bloom import DS_BloomContainer, BLOOMLayerPolicy, supported_models
8
+ from .distil_bert import DS_DistilBERTContainer, HFDistilBertLayerPolicy
9
+ from .gpt2 import DS_GPT2Container, HFGPT2LayerPolicy
10
+ from .gptj import DS_GPTJContainer, HFGPTJLayerPolicy
11
+ from .gptneo import DS_GPTNEOContainer, HFGPTNEOLayerPolicy
12
+ from .gptneox import DS_GPTNEOXContainer, GPTNEOXLayerPolicy
13
+ from .llama import DS_LLAMAContainer, LLAMALayerPolicy
14
+ from .llama2 import LLAMA2LayerPolicy, DS_LLAMA2Container
15
+ from .internlm import DS_InternLMContainer, InternLMLayerPolicy
16
+ from .megatron_gpt import DS_MegatronGPTContainer, MegatronLayerPolicy
17
+ from .megatron_gpt_moe import DS_MegatronGPTMoEContainer, MegatronMoELayerPolicy
18
+ from .opt import DS_OPTContainer, HFOPTLayerPolicy
19
+ from .clip import DS_CLIPContainer, HFCLIPLayerPolicy
20
+ from .unet import UNetPolicy
21
+ from .vae import VAEPolicy
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.42 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/base.cpython-310.pyc ADDED
Binary file (11.2 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/bert.cpython-310.pyc ADDED
Binary file (3.26 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/bloom.cpython-310.pyc ADDED
Binary file (5.02 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/clip.cpython-310.pyc ADDED
Binary file (2.82 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/distil_bert.cpython-310.pyc ADDED
Binary file (3.09 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/gpt2.cpython-310.pyc ADDED
Binary file (2.39 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/gptj.cpython-310.pyc ADDED
Binary file (4.84 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/gptneo.cpython-310.pyc ADDED
Binary file (5.25 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/gptneox.cpython-310.pyc ADDED
Binary file (4.91 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/internlm.cpython-310.pyc ADDED
Binary file (6.51 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/llama.cpython-310.pyc ADDED
Binary file (5.86 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/llama2.cpython-310.pyc ADDED
Binary file (5.74 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/megatron_gpt.cpython-310.pyc ADDED
Binary file (4.39 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/megatron_gpt_moe.cpython-310.pyc ADDED
Binary file (3.54 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/unet.cpython-310.pyc ADDED
Binary file (1.83 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/__pycache__/vae.cpython-310.pyc ADDED
Binary file (1.49 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/base.py ADDED
@@ -0,0 +1,322 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ # Create a container object to save model-specific tensors using the policy file above.
7
+ from abc import ABC
8
+
9
+ import torch
10
+
11
+ import deepspeed
12
+ from deepspeed.ops.transformer.inference.config import DeepSpeedInferenceConfig
13
+ from deepspeed.accelerator import get_accelerator
14
+
15
+ # If the intermediate size attribute is set DEFAULT_INTERMEDIATE_SIZE
16
+ # it is assumed the intermediate size is 4x the embedding dimension
17
+ DEFAULT_INTERMEDIATE_SIZE = -1
18
+
19
+
20
+ class BaseConvolutionContainer(ABC):
21
+ # not implemented
22
+ def __init__(self):
23
+ pass
24
+
25
+
26
+ class BaseTransformerContainer(ABC):
27
+
28
+ def __init__(self, policy, config, model_config, layer_id, child):
29
+ self.policy = policy
30
+ self.config = config
31
+ self.model_config = model_config
32
+ self.layer_id = layer_id
33
+ self.child = child
34
+
35
+ self.megatron_v2 = self.policy.is_megatron_v2
36
+ self.scale_attention = self.policy.scale_attention
37
+ self.ckpt_load_enabled = False
38
+
39
+ # configuration for models. todo: can this be moved to a pydantic model config?
40
+ self.hidden_size = None
41
+ self.intermediate_size = None
42
+ self.num_attention_heads = None
43
+ self.mp_size = self.config.tensor_parallel.tp_size
44
+ self.pre_layer_norm = self.model_config.do_layer_norm_before if \
45
+ hasattr(self.model_config, 'do_layer_norm_before') else self.policy.pre_attn_norm
46
+ self.dtype = self.config.dtype
47
+ self.attn_linear_layer = self.policy.linear_layer
48
+ self.mlp_linear_layer = self.policy.linear_layer
49
+ self.return_tuple = self.config.return_tuple
50
+ self.triangular_masking = True
51
+ self.local_attention = ((self.model_config.attention_layers[self.layer_id] == "local") if hasattr(
52
+ self.model_config, 'attention_layers') else False)
53
+ self.window_size = getattr(self.model_config, "window_size", 1)
54
+ self.mlp_act_func_type = self.policy.mlp_act_func_type
55
+ self.norm_type = self.policy.norm_type
56
+ self.training_mp_size = self.config.training_mp_size
57
+ self.bigscience_bloom = False
58
+ self.max_out_tokens = self.config.max_out_tokens
59
+ self.min_out_tokens = self.config.min_out_tokens
60
+ self.scale_attn_by_inverse_layer_idx = getattr(self.config, "scale_attn_by_inverse_layer_idx", False)
61
+ self.use_mup = self.policy.use_mup
62
+ self.return_single_tuple = False
63
+ self.rotary_dim = self.get_rotary_dim()
64
+ self.mlp_after_attn = (self.rotary_dim is None or self.rotary_dim < 0)
65
+
66
+ # Attention tensors
67
+ self.qkvw = None
68
+ self.qkvb = None
69
+ self.dense_w = None
70
+ self.dense_b = None
71
+ # MLP tensors
72
+ self._h4h_w = None
73
+ self._h4h_b = None
74
+ self._4hh_w = None
75
+ self._4hh_b = None
76
+ # LayerNorm tensors
77
+ self.attn_nw = None
78
+ self.attn_nb = None
79
+ self.input_nw = None
80
+ self.input_nb = None
81
+
82
+ self.mp_group = None
83
+ self.use_triton = False
84
+
85
+ # Triton
86
+ self.use_triton = config.use_triton and deepspeed.HAS_TRITON
87
+
88
+ def create_ds_model_config(self):
89
+ self.set_hidden_heads(*self.policy.get_hidden_heads())
90
+ assert self.num_attention_heads % self.mp_size == 0,\
91
+ "To run the model parallel across the GPUs, the attention_heads require to be divisible by the world_size!" +\
92
+ "This is because the attention computation is partitioned evenly among the parallel GPUs."
93
+
94
+ self.ds_model_config = DeepSpeedInferenceConfig(
95
+ hidden_size=self.hidden_size,
96
+ intermediate_size=self.intermediate_size,
97
+ heads=self.num_attention_heads,
98
+ layer_norm_eps=self.layernorm_epsilon,
99
+ dtype=self.dtype,
100
+ pre_layer_norm=self.pre_layer_norm,
101
+ norm_type=self.norm_type,
102
+ mp_size=self.mp_size,
103
+ return_tuple=self.return_tuple,
104
+ triangular_masking=self.triangular_masking,
105
+ local_attention=self.local_attention,
106
+ window_size=self.window_size,
107
+ rotary_dim=self.rotary_dim,
108
+ mlp_after_attn=self.mlp_after_attn,
109
+ mlp_act_func_type=self.mlp_act_func_type,
110
+ training_mp_size=self.training_mp_size,
111
+ bigscience_bloom=self.bigscience_bloom,
112
+ max_out_tokens=self.max_out_tokens,
113
+ min_out_tokens=self.min_out_tokens,
114
+ scale_attn_by_inverse_layer_idx=self.scale_attn_by_inverse_layer_idx,
115
+ use_mup=self.use_mup,
116
+ return_single_tuple=self.return_single_tuple,
117
+ set_empty_params=self.config.set_empty_params,
118
+ transposed_mode=self.config.transposed_mode,
119
+ use_triton=self.use_triton,
120
+ triton_autotune=self.config.triton_autotune)
121
+
122
+ if self.use_triton and deepspeed.HAS_TRITON:
123
+ from .bert import DS_BERTContainer
124
+ if not isinstance(self, DS_BERTContainer):
125
+ raise NotImplementedError("Triton kernels are only for BERT-like models yet")
126
+
127
+ if not self.config.triton_autotune:
128
+ from deepspeed.ops.transformer.inference.triton.matmul_ext import fp16_matmul
129
+ fp16_matmul.skip_autotune()
130
+
131
+ return self.ds_model_config
132
+
133
+ def check_meta_tensor_support(self):
134
+ if hasattr(self.qkvw, 'is_meta'):
135
+ if self.qkvw.is_meta:
136
+ assert self.ckpt_load_enabled, "Meta tensors are not supported for this model currently."
137
+ else:
138
+ raise NotImplementedError("Meta tensor support is not available, please upgrade to torch 1.10+")
139
+
140
+ def initialize_tensors(self, enable_training=False):
141
+ # Set the tensors from policy (user module) to container (DS module)
142
+ self.set_attention(*self.policy.attention(enable_training=enable_training))
143
+ self.set_mlp(*self.policy.mlp(enable_training=enable_training))
144
+ self.set_layernorm(*self.policy.layernorm())
145
+ #self.check_meta_tensor_support()
146
+
147
+ def convert_to_required_dtype(self):
148
+ # Note: converting tensors to fp16 requires that we do it in-place using self.__dict__ and not make a list/dict copy
149
+ if self.dtype in [torch.half, torch.bfloat16]:
150
+ for k, v in self.__dict__.items():
151
+ # The list comprehension is used for MoE tensor lists
152
+ if isinstance(v, list) and all((isinstance(tensor, torch.Tensor) \
153
+ or isinstance(tensor, torch.nn.Parameter)) for tensor in v):
154
+ self.__dict__[k] = [moe_tensor.to(self.dtype) for moe_tensor in v]
155
+
156
+ if isinstance(v, torch.Tensor) or isinstance(v, torch.nn.Parameter):
157
+ self.__dict__[k] = v.to(self.dtype)
158
+
159
+ def get_rotary_dim(self):
160
+ if hasattr(self.model_config, 'rotary_dim'):
161
+ return self.model_config.rotary_dim
162
+ if hasattr(self.child, 'attention') and hasattr(self.child.attention, 'rotary_ndims'):
163
+ return self.child.attention.rotary_ndims
164
+ return -1
165
+
166
+ def set_moe(self, moe=False):
167
+ self.moe = moe
168
+
169
+ def set_tensor_parallel_config(self, mp_size, mp_group):
170
+ self.mp_size = mp_size
171
+ self.mp_group = mp_group
172
+
173
+ def set_quantization_config(self, quantizer):
174
+ self.quantizer = quantizer
175
+
176
+ def set_hidden_heads(self, hidden_size, num_attention_heads, epsilon, intermediate_size):
177
+ """
178
+ Args:
179
+ hidden_size: embedding dimension of the model
180
+ num_attention_heads: number of attention heads in the model
181
+ epsilon: epsilon value for layer norm (same value used for all norms)
182
+ intermediate_size: Size of MLP projection. If `DEFAULT_INTERMEDIATE_SIZE` is passed
183
+ it is assumed to be `4 * hidden_size`
184
+ """
185
+ self.hidden_size = hidden_size
186
+ if intermediate_size == DEFAULT_INTERMEDIATE_SIZE:
187
+ self.intermediate_size = 4 * hidden_size
188
+ else:
189
+ self.intermediate_size = intermediate_size
190
+ self.num_attention_heads = num_attention_heads
191
+ self.layernorm_epsilon = epsilon
192
+
193
+ def set_attention(self, qkvw, qkvb, dense_w, dense_b):
194
+ self.qkvw = qkvw
195
+ self.qkvb = qkvb
196
+ self.dense_w = dense_w
197
+ self.dense_b = dense_b
198
+
199
+ def set_mlp(self, _h4h_w, _h4h_b, _4hh_w, _4hh_b):
200
+ self._h4h_w = _h4h_w
201
+ self._h4h_b = _h4h_b
202
+ self._4hh_w = _4hh_w
203
+ self._4hh_b = _4hh_b
204
+
205
+ def set_layernorm(self, attn_nw, attn_nb, input_nw, input_nb):
206
+ self.attn_nw = attn_nw
207
+ self.attn_nb = attn_nb
208
+ self.input_nw = input_nw
209
+ self.input_nb = input_nb
210
+
211
+ def apply_weight_quantization(self):
212
+ # quantize attention weights
213
+ self.attention_quantization()
214
+
215
+ # quantize mlp weights
216
+ self.mlp_quantization()
217
+
218
+ def attention_quantization(self):
219
+ self.module.attention.attn_qkvw = self.quantizer.quantize(self.module.attention.attn_qkvw)
220
+ self.module.attention.attn_ow = self.quantizer.quantize(self.module.attention.attn_ow)
221
+
222
+ def mlp_quantization(self):
223
+ self.module.mlp.inter_w = self.quantizer.quantize(self.module.mlp.inter_w)
224
+ self.module.mlp.output_w = self.quantizer.quantize(self.module.mlp.output_w)
225
+
226
+ def apply_tensor_parallelism(self, mp_replace):
227
+ # setup the new Attention module
228
+ self.attention_qkv_mp(mp_replace)
229
+ self.attention_o_mp(mp_replace)
230
+
231
+ # setup the new MLP module
232
+ self.mlp_inter_mp(mp_replace)
233
+ self.mlp_output_mp(mp_replace)
234
+
235
+ # Apply weight quantization
236
+ # TODO(cmikeh2): Re-enable this once verified
237
+ #self.apply_weight_quantization()
238
+
239
+ def attention_qkv_mp(self, mp_replace, reversed_dim=False):
240
+ self.module.attention.attn_qkvw = mp_replace.strided_copy(self.module.attention.attn_qkvw,
241
+ self.qkvw,
242
+ num_splits=3,
243
+ int8=reversed_dim)
244
+ self.module.attention.attn_qkvb = mp_replace.strided_copy(self.module.attention.attn_qkvb,
245
+ self.qkvb,
246
+ num_splits=3,
247
+ int8=reversed_dim)
248
+
249
+ def attention_o_mp(self, mp_replace, reversed_dim=False):
250
+ self.module.attention.attn_ow = mp_replace.copy(self.module.attention.attn_ow, self.dense_w, int8=reversed_dim)
251
+ self.module.attention.attn_ob = mp_replace.copy(self.module.attention.attn_ob,
252
+ self.dense_b,
253
+ int8=reversed_dim,
254
+ allocate_tensor=reversed_dim)
255
+
256
+ def mlp_inter_mp(self, mp_replace, reversed_dim=False):
257
+ self.module.mlp.inter_w = mp_replace.copy(self.module.mlp.inter_w, self._h4h_w, int8=reversed_dim)
258
+ self.module.mlp.inter_b = mp_replace.copy(self.module.mlp.inter_b, self._h4h_b, int8=reversed_dim)
259
+
260
+ def mlp_output_mp(self, mp_replace, reversed_dim=False):
261
+ self.module.mlp.output_w = mp_replace.copy(self.module.mlp.output_w, self._4hh_w, int8=reversed_dim)
262
+ self.module.mlp.output_b = mp_replace.copy(self.module.mlp.output_b,
263
+ self._4hh_b,
264
+ int8=reversed_dim,
265
+ allocate_tensor=reversed_dim)
266
+
267
+ def copy_data_to_new_module(self):
268
+ params = {'attn_nw': self.attn_nw, 'attn_nb': self.attn_nb}
269
+ for key in params:
270
+ if params[key] is None:
271
+ setattr(self.module.mlp, key, None)
272
+ else:
273
+ setattr(self.module.mlp, key,
274
+ torch.nn.parameter.Parameter(params[key].to(get_accelerator().current_device_name())))
275
+
276
+ params = {'norm_w': self.input_nw, 'norm_b': self.input_nb}
277
+ for key in params:
278
+ if params[key] is None:
279
+ setattr(self.module, key, None)
280
+ else:
281
+ setattr(self.module, key,
282
+ torch.nn.parameter.Parameter(params[key].to(get_accelerator().current_device_name())))
283
+
284
+ def transpose(self):
285
+ self.transpose_attention()
286
+ self.transpose_mlp()
287
+
288
+ def transpose_attention(self):
289
+ if self.attn_linear_layer:
290
+ self.qkvw = self.transpose_impl(self.qkvw.data)
291
+ self.dense_w = self.transpose_impl(self.dense_w.data)
292
+
293
+ def transpose_mlp(self):
294
+ if self.mlp_linear_layer:
295
+ self._h4h_w = self.transpose_impl(self._h4h_w.data)
296
+ self._4hh_w = self.transpose_impl(self._4hh_w.data)
297
+
298
+ def transpose_impl(self, data):
299
+ data = data.contiguous()
300
+ data.reshape(-1).copy_(data.transpose(-1, -2).contiguous().reshape(-1))
301
+ data = data.reshape(data.shape[-1], data.shape[-2])
302
+ data.to(get_accelerator().current_device_name())
303
+ return data
304
+
305
+ def get_all_params(self):
306
+ params = [
307
+ self.attn_nw,
308
+ self.attn_nb,
309
+ self.input_nw,
310
+ self.input_nb,
311
+ ]
312
+
313
+ params.extend(self.get_attn_params())
314
+ params.extend(self.get_mlp_params())
315
+
316
+ return params
317
+
318
+ def get_attn_params(self):
319
+ return [self.qkvw, self.qkvb, self.dense_w, self.dense_b]
320
+
321
+ def get_mlp_params(self):
322
+ return [self._h4h_w, self._h4h_b, self._4hh_w, self._4hh_b]
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/base_moe.py ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ # Create a container object to save model-specific tensors using the policy file above.
7
+ from .base import *
8
+ from deepspeed import comm as dist
9
+ import deepspeed.ops.transformer as transformer_inference
10
+ from deepspeed.accelerator import get_accelerator
11
+
12
+
13
+ class BaseTransformerMoEContainer(BaseTransformerContainer):
14
+
15
+ def __init__(self, **kwargs):
16
+ # Call the init function of the parent class to initialize the tensors and configs from parent class
17
+ super().__init__(**kwargs)
18
+
19
+ self.num_experts = self.policy.get_num_experts()
20
+ self.ep_world_size = dist.get_world_size()
21
+ self.local_ep_size = 1 if self.num_experts < self.ep_world_size else self.num_experts // self.ep_world_size
22
+
23
+ self.layer_norm_eps = self.config.layer_norm_eps if hasattr(self.config, 'layer_norm_eps') else 1e-12,
24
+
25
+ # MoE models will have a list of mlp related tensors
26
+ self._h4h_w = []
27
+ self._h4h_b = []
28
+ self._4hh_w = []
29
+ self._4hh_b = []
30
+
31
+ # Residual MoE needs extra parameters
32
+ self._res_h4h_w = None
33
+ self._res_h4h_b = None
34
+ self._res_4hh_w = None
35
+ self._res_4hh_b = None
36
+ self._res_coef = None
37
+
38
+ def create_ds_model_config(self):
39
+ self.set_hidden_heads(*self.policy.get_hidden_heads())
40
+ assert self.num_attention_heads % self.mp_size == 0,\
41
+ "To run the model parallel across the GPUs, the attention_heads require to be divisible by the world_size!" +\
42
+ "This is because the attention computation is partitioned evenly among the parallel GPUs."
43
+
44
+ self.ds_model_config = transformer_inference.DeepSpeedMoEInferenceConfig(
45
+ hidden_size=self.hidden_size,
46
+ heads=self.num_attention_heads,
47
+ layer_norm_eps=self.layer_norm_eps,
48
+ fp16=self.fp16,
49
+ pre_layer_norm=self.pre_layer_norm,
50
+ mp_size=self.mp_size,
51
+ q_int8=self.quantize,
52
+ moe_experts=self.local_ep_size,
53
+ global_experts=self.num_experts,
54
+ mlp_type=self.config.moe.type,
55
+ scale_attn_by_inverse_layer_idx=self.scale_attn_by_inverse_layer_idx,
56
+ )
57
+
58
+ return self.ds_model_config
59
+
60
+ def initialize_tensors(self):
61
+ # Set the tensors from policy (user module) to container (DS module)
62
+ self.set_attention(*self.policy.attention())
63
+ self.set_mlp(self.config.moe.type)
64
+ self.set_layernorm(*self.policy.layernorm())
65
+
66
+ def set_mlp(self, config_moe_type):
67
+ if config_moe_type == 'standard':
68
+ self._h4h_w, self._h4h_b, \
69
+ self._4hh_w, self._4hh_b = self.policy.mlp()
70
+ else:
71
+ self._h4h_w, self._h4h_b, self._4hh_w, \
72
+ self._4hh_b, self._res_h4h_w, self._res_h4h_b, \
73
+ self._res_4hh_w, self._res_4hh_b, \
74
+ self._res_coef = self.policy.mlp(config_moe_type)
75
+
76
+ def transpose(self):
77
+ self.transpose_attention()
78
+ self.transpose_mlp()
79
+
80
+ if self.config.moe.type == 'residual':
81
+ self.transpose_residual()
82
+
83
+ def transpose_mlp(self):
84
+ self._h4h_w = [self.transpose_impl(moe_w1.data) for moe_w1 in self._h4h_w]
85
+ self._4hh_w = [self.transpose_impl(moe_w1.data) for moe_w1 in self._4hh_w]
86
+
87
+ def transpose_residual(self):
88
+ self._res_h4h_w.data = self.transpose_impl(self._res_h4h_w.data)
89
+ self._res_4hh_w.data = self.transpose_impl(self._res_4hh_w.data)
90
+ self._res_coef.data = self.transpose_impl(self._res_coef.data)
91
+
92
+ def apply_tensor_parallelism(self, mp_replace):
93
+ # setup the new Attention module
94
+ self.attention_qkv_mp(mp_replace)
95
+ self.attention_o_mp(mp_replace)
96
+
97
+ # quantize attention weights
98
+ self.attention_quantization()
99
+
100
+ # setup the new MLP module
101
+ self.mlp_mp()
102
+
103
+ def mlp_mp(self):
104
+ gpu_index = dist.get_rank()
105
+ for ep_index in range(self.local_ep_size):
106
+ # mlp inter
107
+ self.module.mlp[ep_index].inter_w.data = self._h4h_w[gpu_index * self.local_ep_size + ep_index].to(
108
+ get_accelerator().current_device_name())
109
+ self.module.mlp[ep_index].inter_b.data = self._h4h_b[gpu_index * self.local_ep_size + ep_index].to(
110
+ get_accelerator().current_device_name())
111
+
112
+ # mlp output
113
+ self.module.mlp[ep_index].output_w.data = self._4hh_w[gpu_index * self.local_ep_size + ep_index].to(
114
+ get_accelerator().current_device_name())
115
+ self.module.mlp[ep_index].output_b.data = self._4hh_b[gpu_index * self.local_ep_size + ep_index].to(
116
+ get_accelerator().current_device_name())
117
+
118
+ def copy_data_to_new_module(self):
119
+ self.module.attn_nw.data = self.attn_nw.to(get_accelerator().current_device_name())
120
+ self.module.attn_nb.data = self.attn_nb.to(get_accelerator().current_device_name())
121
+
122
+ self.module.norm_w.data.copy_(self.input_nw.to(get_accelerator().current_device_name()))
123
+ self.module.norm_b.data.copy_(self.input_nb.to(get_accelerator().current_device_name()))
124
+
125
+ if self.config.moe.type == 'residual':
126
+ self.module.res_mlp.inter_w.data = self._res_h4h_w.to(get_accelerator().current_device_name())
127
+ self.module.res_mlp.inter_b.data = self._res_h4h_b.to(get_accelerator().current_device_name())
128
+ self.module.res_mlp.output_w.data = self._res_4hh_w.to(get_accelerator().current_device_name())
129
+ self.module.res_mlp.output_b.data = self._res_4hh_b.to(get_accelerator().current_device_name())
130
+ self.module.res_coef.data = self._res_coef.to(get_accelerator().current_device_name())
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/bert.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from .base import *
7
+ from deepspeed.model_implementations.transformers.ds_bert import DeepSpeedBERTInference
8
+ import torch
9
+ from torch.nn.parameter import Parameter
10
+ from ..policy import TransformerPolicy
11
+
12
+
13
+ class DS_BERTContainer(BaseTransformerContainer):
14
+
15
+ def __init__(self, **kwargs):
16
+ super().__init__(**kwargs)
17
+
18
+ # All model specific things should be defined here instead of the base class.
19
+ self.return_tuple = True
20
+ self.triangular_masking = False
21
+ self.use_triton = kwargs['config'].use_triton and deepspeed.HAS_TRITON
22
+
23
+ def create_module(self, config=None):
24
+ _config = config if config is not None else self.ds_model_config
25
+ self.module = DeepSpeedBERTInference(_config, mp_group=self.mp_group)
26
+ self.module.config.scale_attention = self.scale_attention
27
+ return self.module
28
+
29
+
30
+ class HFBertLayerPolicy(TransformerPolicy):
31
+
32
+ def __init__(self, client_module, inference=False):
33
+ super().__init__(inference, pre_attn_norm=False)
34
+ self.client_module = client_module
35
+ self.cuda_graph_supported = True
36
+
37
+ if HFBertLayerPolicy._orig_layer_class is None:
38
+ try:
39
+ import transformers
40
+ HFBertLayerPolicy._orig_layer_class = [
41
+ transformers.models.bert.modeling_bert.BertLayer,
42
+ transformers.models.roberta.modeling_roberta.RobertaLayer
43
+ ]
44
+ except:
45
+ HFBertLayerPolicy._orig_layer_class = None
46
+
47
+ def get_hidden_heads(self):
48
+ if self.pre_attn_norm:
49
+ attention_layernorm = self.client_module.PostAttentionLayerNorm
50
+ else:
51
+ attention_layernorm = self.client_module.attention.output.LayerNorm
52
+ return self.client_module.attention.self.query.weight.shape[1], \
53
+ self.client_module.attention.self.num_attention_heads, \
54
+ attention_layernorm.eps, \
55
+ DEFAULT_INTERMEDIATE_SIZE
56
+
57
+ def attention(self, enable_training=False):
58
+ qw = self.client_module.attention.self.query.weight
59
+ qb = self.client_module.attention.self.query.bias
60
+ kw = self.client_module.attention.self.key.weight
61
+ kb = self.client_module.attention.self.key.bias
62
+ vw = self.client_module.attention.self.value.weight
63
+ vb = self.client_module.attention.self.value.bias
64
+
65
+ qkvw = Parameter(torch.cat((qw, kw, vw), dim=0), requires_grad=enable_training)
66
+ qkvb = Parameter(torch.cat((qb, kb, vb), dim=0), requires_grad=enable_training)
67
+
68
+ return qkvw, \
69
+ qkvb, \
70
+ self.client_module.attention.output.dense.weight, \
71
+ self.client_module.attention.output.dense.bias, \
72
+
73
+ def mlp(self, enable_training=False):
74
+ if self.pre_attn_norm:
75
+ intermediate_ff = self.client_module.intermediate.dense_act
76
+ else:
77
+ intermediate_ff = self.client_module.intermediate.dense
78
+
79
+ return intermediate_ff.weight, intermediate_ff.bias, \
80
+ self.client_module.output.dense.weight, \
81
+ self.client_module.output.dense.bias
82
+
83
+ def layernorm(self):
84
+ if self.pre_attn_norm:
85
+ attention_layernorm = self.client_module.PostAttentionLayerNorm
86
+ transformer_layernorm = self.client_module.PreAttentionLayerNorm
87
+ else:
88
+ attention_layernorm = self.client_module.attention.output.LayerNorm
89
+ transformer_layernorm = self.client_module.output.LayerNorm
90
+ return attention_layernorm.weight, \
91
+ attention_layernorm.bias, \
92
+ transformer_layernorm.weight, \
93
+ transformer_layernorm.bias
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/bloom.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from .base import *
7
+ from .features.meta_tensor import MetaTensorContainer
8
+ from .features.hybrid_engine import HybridEngineContainer
9
+ from deepspeed.model_implementations.transformers.ds_bloom import DeepSpeedBloomInference
10
+ from ..policy import TransformerPolicy
11
+ from ..policy import transformer_param_names
12
+ from ..policy import maybe_copy
13
+
14
+ from ..policy import maybe_get_lora
15
+
16
+ supported_models = {None}
17
+
18
+
19
+ class DS_BloomContainer(MetaTensorContainer, HybridEngineContainer, BaseTransformerContainer):
20
+
21
+ def __init__(self, **kwargs):
22
+ super().__init__(**kwargs)
23
+
24
+ # All model specific things should be defined here instead of the base class.
25
+ self.bigscience_bloom = True
26
+ self.triangular_masking = False
27
+
28
+ def create_module(self, config=None):
29
+ _config = config if config is not None else self.ds_model_config
30
+
31
+ self.module = DeepSpeedBloomInference(_config, mp_group=self.mp_group)
32
+ self.module.config.scale_attention = self.scale_attention
33
+ self.module.config.invert_mask = False
34
+ return self.module
35
+
36
+ def attention_qkv_mp(self, mp_replace, reversed_dim=False):
37
+ self.module.attention.attn_qkvw = mp_replace.copy(self.module.attention.attn_qkvw, self.qkvw)
38
+ self.module.attention.attn_qkvb = mp_replace.copy(self.module.attention.attn_qkvb, self.qkvb)
39
+
40
+ def get_lora_matched_pair(self):
41
+ """
42
+ Necessary to implement for `HybridEngineContainer`
43
+ """
44
+ fc1_lora, fc2_lora, qkv_lora, out_lora = self.get_lora_params()
45
+ ret = [(fc1_lora, self._h4h_w), (fc2_lora, self._4hh_w), (qkv_lora, self.qkvw), (out_lora, self.dense_w)]
46
+ return ret
47
+
48
+ def set_lora_params(self):
49
+ """
50
+ Necessary to implement for `HybridEngineContainer`
51
+ """
52
+ self.lora_params = [
53
+ maybe_get_lora(p) for p in [
54
+ self.policy.client_module.mlp.dense_h_to_4h, self.policy.client_module.mlp.dense_4h_to_h, self.policy.
55
+ client_module.self_attention.query_key_value, self.policy.client_module.self_attention.dense
56
+ ]
57
+ ]
58
+
59
+ def load_params(self, module, sd, weight_quantizer, mp_replace, prefix):
60
+ param_names = (
61
+ 'self_attention.query_key_value.weight', \
62
+ 'self_attention.query_key_value.bias', \
63
+ 'self_attention.dense.weight', \
64
+ 'self_attention.dense.bias', \
65
+ 'mlp.dense_h_to_4h.weight', \
66
+ 'mlp.dense_h_to_4h.bias', \
67
+ 'mlp.dense_4h_to_h.weight', \
68
+ 'mlp.dense_4h_to_h.bias', \
69
+ 'post_attention_layernorm.weight', \
70
+ 'post_attention_layernorm.bias', \
71
+ 'input_layernorm.weight', \
72
+ 'input_layernorm.bias'
73
+ )
74
+ for i in range(0, 2):
75
+ maybe_copy(module.attention,
76
+ sd,
77
+ weight_quantizer,
78
+ mp_replace,
79
+ transformer_param_names[i],
80
+ prefix + param_names[i],
81
+ qkv=True,
82
+ megatron_v2=self.policy.is_megatron_v2,
83
+ split_qkv=self.policy.split_qkv)
84
+ for i in range(2, 4):
85
+ maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[i],
86
+ prefix + param_names[i])
87
+ for i in range(4, 10):
88
+ maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, transformer_param_names[i],
89
+ prefix + param_names[i])
90
+ for i in range(10, 12):
91
+ maybe_copy(module, sd, weight_quantizer, mp_replace, transformer_param_names[i], prefix + param_names[i])
92
+
93
+
94
+ class BLOOMLayerPolicy(TransformerPolicy):
95
+ _orig_layer_class = None
96
+
97
+ def __init__(self, client_module, inference=True, use_load_prefix=True, split_qkv=False):
98
+ super().__init__(inference, linear_layer=True, use_load_prefix=use_load_prefix, split_qkv=split_qkv)
99
+ self.client_module = client_module
100
+ try:
101
+ import transformers
102
+ BLOOMLayerPolicy._orig_layer_class = transformers.models.bloom.modeling_bloom.BloomBlock
103
+ global supported_models
104
+ supported_models.update({transformers.models.bloom.modeling_bloom.BloomModel})
105
+ except Exception as e:
106
+ print(f"WARNING! Setting BLOOMLayerPolicy._orig_layer_class to None due to Exception: {e}")
107
+ BLOOMLayerPolicy._orig_layer_class = None
108
+
109
+ def get_hidden_heads(self):
110
+ return self.client_module.self_attention.hidden_size, \
111
+ self.client_module.self_attention.num_heads, \
112
+ self.client_module.input_layernorm.eps, \
113
+ DEFAULT_INTERMEDIATE_SIZE
114
+
115
+ def attention(self, enable_training=False):
116
+ return self.client_module.self_attention.query_key_value.weight, \
117
+ self.client_module.self_attention.query_key_value.bias, \
118
+ self.client_module.self_attention.dense.weight, \
119
+ self.client_module.self_attention.dense.bias,
120
+
121
+ def mlp(self, enable_training=False):
122
+ return self.client_module.mlp.dense_h_to_4h.weight, \
123
+ self.client_module.mlp.dense_h_to_4h.bias, \
124
+ self.client_module.mlp.dense_4h_to_h.weight, \
125
+ self.client_module.mlp.dense_4h_to_h.bias
126
+
127
+ def layernorm(self):
128
+ return self.client_module.post_attention_layernorm.weight, \
129
+ self.client_module.post_attention_layernorm.bias, \
130
+ self.client_module.input_layernorm.weight, \
131
+ self.client_module.input_layernorm.bias
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/clip.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from .base import *
7
+ from deepspeed.model_implementations.transformers.ds_gpt import DeepSpeedGPTInference
8
+ import torch
9
+ from torch.nn.parameter import Parameter
10
+ from ..policy import TransformerPolicy
11
+
12
+
13
+ class DS_CLIPContainer(BaseTransformerContainer):
14
+
15
+ def __init__(self, **kwargs):
16
+ super().__init__(**kwargs)
17
+
18
+ # All model specific things should be defined here instead of the base class.
19
+
20
+ def create_module(self, config=None):
21
+ _config = config if config is not None else self.ds_model_config
22
+ self.module = DeepSpeedGPTInference(_config, mp_group=self.mp_group)
23
+ self.module.config.scale_attention = self.scale_attention
24
+ return self.module
25
+
26
+
27
+ class HFCLIPLayerPolicy(TransformerPolicy):
28
+
29
+ def __init__(self, client_module, inference=False):
30
+ super().__init__(inference, pre_attn_norm=True, scale_attention=True)
31
+ self.client_module = client_module
32
+ self.cuda_graph_supported = True
33
+
34
+ if HFCLIPLayerPolicy._orig_layer_class is None:
35
+ try:
36
+ import transformers
37
+ HFCLIPLayerPolicy._orig_layer_class = transformers.models.clip.modeling_clip.CLIPEncoderLayer
38
+ except:
39
+ HFCLIPLayerPolicy._orig_layer_class = None
40
+
41
+ def get_hidden_heads(self):
42
+ return self.client_module.self_attn.q_proj.weight.shape[1], \
43
+ self.client_module.self_attn.num_heads, \
44
+ self.client_module.layer_norm1.eps, \
45
+ DEFAULT_INTERMEDIATE_SIZE
46
+
47
+ def attention(self, enable_training=False):
48
+ qw = self.client_module.self_attn.q_proj.weight
49
+ qb = self.client_module.self_attn.q_proj.bias
50
+ kw = self.client_module.self_attn.k_proj.weight
51
+ kb = self.client_module.self_attn.k_proj.bias
52
+ vw = self.client_module.self_attn.v_proj.weight
53
+ vb = self.client_module.self_attn.v_proj.bias
54
+
55
+ qkvw = Parameter(torch.cat((qw, kw, vw), dim=0), requires_grad=enable_training)
56
+ qkvb = Parameter(torch.cat((qb, kb, vb), dim=0), requires_grad=enable_training)
57
+
58
+ return qkvw, \
59
+ qkvb, \
60
+ self.client_module.self_attn.out_proj.weight, \
61
+ self.client_module.self_attn.out_proj.bias
62
+
63
+ def mlp(self, enable_training=False):
64
+ return self.client_module.mlp.fc1.weight, \
65
+ self.client_module.mlp.fc1.bias, \
66
+ self.client_module.mlp.fc2.weight, \
67
+ self.client_module.mlp.fc2.bias
68
+
69
+ def layernorm(self):
70
+ return self.client_module.layer_norm2.weight, \
71
+ self.client_module.layer_norm2.bias, \
72
+ self.client_module.layer_norm1.weight, \
73
+ self.client_module.layer_norm1.bias
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/distil_bert.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from .base import *
7
+ from deepspeed.model_implementations.transformers.ds_bert import DeepSpeedBERTInference
8
+ import torch
9
+ from torch.nn.parameter import Parameter
10
+ from ..policy import TransformerPolicy
11
+
12
+
13
+ class DS_DistilBERTContainer(BaseTransformerContainer):
14
+
15
+ def __init__(self, **kwargs):
16
+ super().__init__(**kwargs)
17
+
18
+ # All model specific things should be defined here instead of the base class.
19
+ self.triangular_masking = False
20
+ self.return_single_tuple = True
21
+ self.use_triton = kwargs['config'].use_triton and deepspeed.HAS_TRITON
22
+
23
+ def create_module(self, config=None):
24
+ _config = config if config is not None else self.ds_model_config
25
+ self.module = DeepSpeedBERTInference(_config, mp_group=self.mp_group)
26
+ self.module.config.scale_attention = self.scale_attention
27
+ return self.module
28
+
29
+
30
+ class HFDistilBertLayerPolicy(TransformerPolicy):
31
+ _orig_layer_class = None
32
+
33
+ def __init__(self, client_module, inference=False, preln=False):
34
+ super().__init__(inference)
35
+ self.client_module = client_module
36
+ self.preln = preln
37
+ self.cuda_graph_supported = True
38
+ if HFDistilBertLayerPolicy._orig_layer_class is None:
39
+ try:
40
+ import transformers
41
+ HFDistilBertLayerPolicy._orig_layer_class = [
42
+ transformers.models.distilbert.modeling_distilbert.TransformerBlock,
43
+ ]
44
+ except:
45
+ HFDistilBertLayerPolicy._orig_layer_class = None
46
+
47
+ def get_hidden_heads(self):
48
+ return self.client_module.attention.q_lin.weight.shape[1], \
49
+ self.client_module.attention.n_heads, \
50
+ self.client_module.sa_layer_norm.eps, \
51
+ DEFAULT_INTERMEDIATE_SIZE
52
+
53
+ def attention(self, enable_training=False):
54
+ qw = self.client_module.attention.q_lin.weight
55
+ qb = self.client_module.attention.q_lin.bias
56
+ kw = self.client_module.attention.k_lin.weight
57
+ kb = self.client_module.attention.k_lin.bias
58
+ vw = self.client_module.attention.v_lin.weight
59
+ vb = self.client_module.attention.v_lin.bias
60
+
61
+ qkvw = Parameter(torch.cat((qw, kw, vw), dim=0), requires_grad=enable_training)
62
+ qkvb = Parameter(torch.cat((qb, kb, vb), dim=0), requires_grad=enable_training)
63
+
64
+ return qkvw, \
65
+ qkvb, \
66
+ self.client_module.attention.out_lin.weight, \
67
+ self.client_module.attention.out_lin.bias
68
+
69
+ def mlp(self, enable_training=False):
70
+ intermediate_ff = self.client_module.ffn.lin1
71
+
72
+ return intermediate_ff.weight, intermediate_ff.bias, \
73
+ self.client_module.ffn.lin2.weight, \
74
+ self.client_module.ffn.lin2.bias
75
+
76
+ def layernorm(self):
77
+ attention_layernorm = self.client_module.sa_layer_norm
78
+ transformer_layernorm = self.client_module.output_layer_norm
79
+ return attention_layernorm.weight, \
80
+ attention_layernorm.bias, \
81
+ transformer_layernorm.weight, \
82
+ transformer_layernorm.bias
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/features/__init__.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # SPDX-License-Identifier: Apache-2.0
3
+
4
+ # DeepSpeed Team
5
+
6
+ from .gated_mlp import HybridGatedMLPContainer
7
+ from .megatron import MegatronContainer
8
+ from .meta_tensor import MetaTensorContainer
9
+ from .split_qkv import HybridSplitQKVContainer
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/features/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (430 Bytes). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/features/__pycache__/gated_mlp.cpython-310.pyc ADDED
Binary file (3.96 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/features/__pycache__/hybrid_engine.cpython-310.pyc ADDED
Binary file (8.63 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/features/__pycache__/hybrid_megatron.cpython-310.pyc ADDED
Binary file (4.05 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/features/__pycache__/megatron.cpython-310.pyc ADDED
Binary file (1.51 kB). View file
 
venv/lib/python3.10/site-packages/deepspeed/module_inject/containers/features/__pycache__/meta_tensor.cpython-310.pyc ADDED
Binary file (3.48 kB). View file