File size: 6,740 Bytes
a5dc865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

from .base import *
from .features import HybridSplitQKVContainer, HybridGatedMLPContainer, MetaTensorContainer
from deepspeed.utils.types import ActivationFuncType, NormType
from deepspeed.model_implementations.transformers.ds_gpt import DeepSpeedGPTInference
import torch
from torch.nn.parameter import Parameter

from ..policy import (
    TransformerPolicy,
    transformer_param_names,
    maybe_copy,
    maybe_copy_qkv,
    maybe_copy_geglu,
    maybe_get_lora,
)


class DS_LLAMAContainer(MetaTensorContainer, HybridGatedMLPContainer, HybridSplitQKVContainer,
                        BaseTransformerContainer):

    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        # All model specific things should be defined here instead of the base class.

    def create_module(self, config=None):
        _config = config if config is not None else self.ds_model_config

        _config.rotate_half = True
        _config.rotate_every_two = False
        _config.rotary_dim = self.hidden_size // self.num_attention_heads
        _config.rope_theta = self.policy.client_module.self_attn.rope_theta
        self.module = DeepSpeedGPTInference(_config, mp_group=self.mp_group)

        return self.module

    def set_lora_params(self):
        """
        Necessary to implement for `HybridEngineContainer`
        """
        self.lora_params = [
            maybe_get_lora(p) for p in [
                self.policy.client_module.mlp.up_proj.weight, self.policy.client_module.mlp.gate_proj.weight,
                self.policy.client_module.mlp.down_proj.weight, self.policy.client_module.self_attn.q_proj.weight,
                self.policy.client_module.self_attn.k_proj.weight, self.policy.client_module.self_attn.v_proj.weight,
                self.policy.client_module.self_attn.o_proj.weight
            ]
        ]

    def get_lora_matched_pair(self):
        up_proj_lora, gate_proj_lora, down_proj_lora, q_lora, k_lora, v_lora, out_lora = self.get_lora_params()
        ret = [(up_proj_lora, self.inter_up_w), (gate_proj_lora, self.inter_gate_w), (down_proj_lora, self._4hh_w),
               (out_lora, self.dense_w), (q_lora, self.qw), (k_lora, self.kw), (v_lora, self.vw)]
        return ret

    def set_q_k_v(self):
        """
        Necessary to implement for `HybridSplitQKVContainer`
        """
        self.qw = self.policy.client_module.self_attn.q_proj.weight
        self.qb = None
        self.kw = self.policy.client_module.self_attn.k_proj.weight
        self.kb = None
        self.vw = self.policy.client_module.self_attn.v_proj.weight
        self.vb = None

    def set_mlp_gate(self):
        """
        Necessary to implement for `HybridGatedMLPContainer`
        """
        self.inter_up_w = self.policy.client_module.mlp.up_proj.weight
        self.inter_up_b = None
        self.inter_gate_w = self.policy.client_module.mlp.gate_proj.weight
        self.inter_gate_b = None

    def load_params(self, module, sd, weight_quantizer, mp_replace, prefix):
        param_names = (
            'self_attn.q_proj.weight', \
            'self_attn.k_proj.weight', \
            'self_attn.v_proj.weight', \
            'self_attn.o_proj.weight', \
            'mlp.up_proj.weight', \
            'mlp.gate_proj.weight', \
            'mlp.down_proj.weight', \
            'post_attention_layernorm.weight', \
            'input_layernorm.weight',
        )

        maybe_copy_qkv(module.attention,
                       sd,
                       weight_quantizer,
                       mp_replace,
                       'attn_qkvw', [prefix + param_names[0], prefix + param_names[1], prefix + param_names[2]],
                       split_qkv=self.policy.split_qkv)
        for i in range(3, 4):
            maybe_copy(module.attention, sd, weight_quantizer, mp_replace, transformer_param_names[i - 1],
                       prefix + param_names[i])
        maybe_copy_geglu(module.mlp, sd, weight_quantizer, mp_replace, 'inter_w',
                         [prefix + param_names[4], prefix + param_names[5]])
        maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, 'output_w', prefix + param_names[6])

        maybe_copy(module.mlp, sd, weight_quantizer, mp_replace, transformer_param_names[8], prefix + param_names[7])
        maybe_copy(module, sd, weight_quantizer, mp_replace, transformer_param_names[10], prefix + param_names[8])

        # This line is necessary for proper output when kernels + meta tensors are used in Llama models
        # TODO: Investigate root-cause and fix meta tensor loading
        module.mlp.output_b = None


class LLAMALayerPolicy(TransformerPolicy):

    def __init__(self, client_module, inference=True):
        super().__init__(
            inference,
            mlp_act_func_type=ActivationFuncType.GATED_SILU,
            norm_type=NormType.RMSNorm,
        )
        self.client_module = client_module
        try:
            import transformers
            LLAMALayerPolicy._orig_layer_class = transformers.models.llama.modeling_llama.LlamaDecoderLayer  # type: ignore
        except:
            LLAMALayerPolicy._orig_layer_class = None

    def get_hidden_heads(self):
        hidden_heads = (
            getattr(self.client_module.self_attn.q_proj.weight, "ds_shape",
                    self.client_module.self_attn.q_proj.weight.shape)[1],
            self.client_module.self_attn.num_heads,
            self.client_module.input_layernorm.variance_epsilon,
            getattr(self.client_module.mlp.gate_proj.weight, "ds_shape",
                    self.client_module.mlp.gate_proj.weight.shape)[0],
        )
        return hidden_heads

    def attention(self, enable_training=False):
        qw = self.client_module.self_attn.q_proj.weight
        kw = self.client_module.self_attn.k_proj.weight
        vw = self.client_module.self_attn.v_proj.weight

        qkvw = Parameter(torch.cat((qw, kw, vw), dim=0), requires_grad=enable_training)

        return qkvw, \
                None, \
                self.client_module.self_attn.o_proj.weight, \
                None

    def mlp(self, enable_training=False):
        mlp1_up = self.client_module.mlp.up_proj.weight
        mlp1_gate = self.client_module.mlp.gate_proj.weight
        mlp2 = self.client_module.mlp.down_proj.weight

        mlp1 = Parameter(torch.cat((mlp1_up, mlp1_gate), dim=0), requires_grad=enable_training)

        return mlp1, None, mlp2, None

    def layernorm(self):
        return self.client_module.post_attention_layernorm.weight, \
               None, \
               self.client_module.input_layernorm.weight, \
               None