File size: 2,195 Bytes
359a939
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
// Copyright (c) Microsoft Corporation.
// SPDX-License-Identifier: Apache-2.0

// DeepSpeed Team

#pragma once

#include <cuda.h>
#include <cuda_fp16.h>
#include <stdio.h>

template <typename T>
class Dropout {
public:
    struct Config {
        float ratio;
        uint32_t dim;
        bool training;

        Config(float r, uint32_t d) : ratio(r), dim(d), training(true) {}

        float RATIO() const { return training ? ratio : 0.0; }
        inline void SetDim(uint32_t d) { dim = d; }
    };

    Dropout(const Config& config) : _config(config), _mask(nullptr) {}

    virtual ~Dropout() {}

    void Forward(int bsz, T* out, const T* vals, cudaStream_t stream, bool bwd = false)
    {
        launch_dropout<T>(
            out, vals, _mask, bsz * _config.dim, _config.dim, _config.RATIO(), stream, bwd);
    }

    void ForwardWithBias(int bsz, T* vals, const T* bias, cudaStream_t stream)
    {
        launch_dropout<T>(vals, bias, _mask, bsz, _config.dim, _config.RATIO(), stream);
    }

    void ForwardWithBias(int bsz,
                         T* out,
                         const T* vals,
                         const T* residual,
                         const T* bias,
                         cudaStream_t stream)
    {
        launch_dropout<T>(
            out, vals, residual, bias, _mask, bsz, _config.dim, _config.RATIO(), stream);
    }

    void Backward(int bsz, T* d_vals, cudaStream_t stream)
    {
        launch_dropout_grad<T>(d_vals, _mask, bsz * _config.dim, _config.RATIO(), stream);
    }

    void Backward(int bsz, T* d_vals_out, const T* d_vals, cudaStream_t stream)
    {
        launch_dropout_grad<T>(
            d_vals_out, d_vals, _mask, bsz * _config.dim, _config.RATIO(), stream);
    }

    bool HasDropout() const { return _config.RATIO() > 0.0; }

    void SetTrainingMode(bool training) { _config.training = training; }

    void SetMask(uint8_t* mask)
    {
        if (!mask) { throw std::runtime_error("Dropout mask is null."); }

        _mask = mask;
    }

    Config GetConfig() const { return _config; }

    inline void SetDimension(uint32_t dim) { _config.SetDim(dim); }

private:
    uint8_t* _mask;
    Config _config;
};