File size: 6,676 Bytes
33a13ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright 2022 The HuggingFace Evaluate Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from numbers import Number
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union

from datasets import Dataset, load_dataset
from typing_extensions import Literal

from ..module import EvaluationModule
from ..utils.file_utils import add_end_docstrings, add_start_docstrings
from .base import EVALUATOR_COMPUTE_RETURN_DOCSTRING, EVALUTOR_COMPUTE_START_DOCSTRING, Evaluator
from .utils import DatasetColumnPair


if TYPE_CHECKING:
    from transformers import FeatureExtractionMixin, Pipeline, PreTrainedModel, PreTrainedTokenizer, TFPreTrainedModel


TASK_DOCUMENTATION = r"""
    Examples:
    ```python
    >>> from evaluate import evaluator
    >>> from datasets import load_dataset
    >>> task_evaluator = evaluator("text-classification")
    >>> data = load_dataset("imdb", split="test[:2]")
    >>> results = task_evaluator.compute(
    >>>     model_or_pipeline="huggingface/prunebert-base-uncased-6-finepruned-w-distil-mnli",
    >>>     data=data,
    >>>     metric="accuracy",
    >>>     label_mapping={"LABEL_0": 0.0, "LABEL_1": 1.0},
    >>>     strategy="bootstrap",
    >>>     n_resamples=10,
    >>>     random_state=0
    >>> )
    ```
"""


class TextClassificationEvaluator(Evaluator):
    """
    Text classification evaluator.
    This text classification evaluator can currently be loaded from [`evaluator`] using the default task name
    `text-classification` or with a `"sentiment-analysis"` alias.
    Methods in this class assume a data format compatible with the [`~transformers.TextClassificationPipeline`] - a single textual
    feature as input and a categorical label as output.
    """

    PIPELINE_KWARGS = {"truncation": True}

    def __init__(self, task="text-classification", default_metric_name=None):
        super().__init__(task, default_metric_name=default_metric_name)

    def prepare_data(self, data: Union[str, Dataset], input_column: str, second_input_column: str, label_column: str):
        if data is None:
            raise ValueError(
                "Please specify a valid `data` object - either a `str` with a name or a `Dataset` object."
            )

        self.check_required_columns(data, {"input_column": input_column, "label_column": label_column})

        if second_input_column is not None:
            self.check_required_columns(data, {"second_input_column": second_input_column})

        data = load_dataset(data) if isinstance(data, str) else data

        return {"references": data[label_column]}, DatasetColumnPair(
            data, input_column, second_input_column, "text", "text_pair"
        )

    def predictions_processor(self, predictions, label_mapping):
        predictions = [
            label_mapping[element["label"]] if label_mapping is not None else element["label"]
            for element in predictions
        ]
        return {"predictions": predictions}

    @add_start_docstrings(EVALUTOR_COMPUTE_START_DOCSTRING)
    @add_end_docstrings(EVALUATOR_COMPUTE_RETURN_DOCSTRING, TASK_DOCUMENTATION)
    def compute(
        self,
        model_or_pipeline: Union[
            str, "Pipeline", Callable, "PreTrainedModel", "TFPreTrainedModel"  # noqa: F821
        ] = None,
        data: Union[str, Dataset] = None,
        subset: Optional[str] = None,
        split: Optional[str] = None,
        metric: Union[str, EvaluationModule] = None,
        tokenizer: Optional[Union[str, "PreTrainedTokenizer"]] = None,  # noqa: F821
        feature_extractor: Optional[Union[str, "FeatureExtractionMixin"]] = None,  # noqa: F821
        strategy: Literal["simple", "bootstrap"] = "simple",
        confidence_level: float = 0.95,
        n_resamples: int = 9999,
        device: int = None,
        random_state: Optional[int] = None,
        input_column: str = "text",
        second_input_column: Optional[str] = None,
        label_column: str = "label",
        label_mapping: Optional[Dict[str, Number]] = None,
    ) -> Tuple[Dict[str, float], Any]:
        """
        input_column (`str`, *optional*, defaults to `"text"`):
            The name of the column containing the text feature in the dataset specified by `data`.
        second_input_column (`str`, *optional*, defaults to `None`):
            The name of the second column containing the text features. This may be useful for classification tasks
            as MNLI, where two columns are used.
        label_column (`str`, defaults to `"label"`):
            The name of the column containing the labels in the dataset specified by `data`.
        label_mapping (`Dict[str, Number]`, *optional*, defaults to `None`):
            We want to map class labels defined by the model in the pipeline to values consistent with those
            defined in the `label_column` of the `data` dataset.
        """

        result = {}

        self.check_for_mismatch_in_device_setup(device, model_or_pipeline)

        # Prepare inputs
        data = self.load_data(data=data, subset=subset, split=split)
        metric_inputs, pipe_inputs = self.prepare_data(
            data=data, input_column=input_column, second_input_column=second_input_column, label_column=label_column
        )
        pipe = self.prepare_pipeline(
            model_or_pipeline=model_or_pipeline,
            tokenizer=tokenizer,
            feature_extractor=feature_extractor,
            device=device,
        )
        metric = self.prepare_metric(metric)

        # Compute predictions
        predictions, perf_results = self.call_pipeline(pipe, pipe_inputs)
        predictions = self.predictions_processor(predictions, label_mapping)
        metric_inputs.update(predictions)

        # Compute metrics from references and predictions
        metric_results = self.compute_metric(
            metric=metric,
            metric_inputs=metric_inputs,
            strategy=strategy,
            confidence_level=confidence_level,
            n_resamples=n_resamples,
            random_state=random_state,
        )

        result.update(metric_results)
        result.update(perf_results)

        return result