File size: 4,550 Bytes
33a13ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from typing import Dict

import requests
from huggingface_hub import dataset_info, model_info
from huggingface_hub.repocard import metadata_update

from .config import HF_HUB_ALLOWED_TASKS
from .utils.logging import get_logger


logger = get_logger(__name__)


def push_to_hub(
    model_id: str,
    task_type: str,
    dataset_type: str,
    dataset_name: str,
    metric_type: str,
    metric_name: str,
    metric_value: float,
    task_name: str = None,
    dataset_config: str = None,
    dataset_split: str = None,
    dataset_revision: str = None,
    dataset_args: Dict[str, int] = None,
    metric_config: str = None,
    metric_args: Dict[str, int] = None,
    overwrite: bool = False,
):
    r"""
    Pushes the result of a metric to the metadata of a model repository in the Hub.

    Args:
        model_id (`str`):
            Model id from https://hf.co/models.
        task_type (`str`):
            Task id, refer to the [Hub allowed tasks](https://github.com/huggingface/evaluate/blob/main/src/evaluate/config.py#L154) for allowed values.
        dataset_type (`str`):
            Dataset id from https://hf.co/datasets.
        dataset_name (`str`):
            Pretty name for the dataset.
        metric_type (`str`):
            Metric id from https://hf.co/metrics.
        metric_name (`str`):
            Pretty name for the metric.
        metric_value (`float`):
            Computed metric value.
        task_name (`str`, *optional*):
            Pretty name for the task.
        dataset_config (`str`, *optional*):
            Dataset configuration used in [`~datasets.load_dataset`].
            See [`~datasets.load_dataset`] for more info.
        dataset_split (`str`, *optional*):
            Name of split used for metric computation.
        dataset_revision (`str`, *optional*):
            Git hash for the specific version of the dataset.
        dataset_args (`dict[str, int]`, *optional*):
            Additional arguments passed to [`~datasets.load_dataset`].
        metric_config (`str`, *optional*):
            Configuration for the metric (e.g. the GLUE metric has a configuration for each subset).
        metric_args (`dict[str, int]`, *optional*):
            Arguments passed during [`~evaluate.EvaluationModule.compute`].
        overwrite (`bool`, *optional*, defaults to `False`):
            If set to `True` an existing metric field can be overwritten, otherwise
             attempting to overwrite any existing fields will cause an error.

    Example:

    ```python
    >>> push_to_hub(
    ...     model_id="huggingface/gpt2-wikitext2",
    ...     metric_value=0.5
    ...     metric_type="bleu",
    ...     metric_name="BLEU",
    ...     dataset_name="WikiText",
    ...     dataset_type="wikitext",
    ...     dataset_split="test",
    ...     task_type="text-generation",
    ...     task_name="Text Generation"
    ... )
    ```"""
    if task_type not in HF_HUB_ALLOWED_TASKS:
        raise ValueError(f"Task type not supported. Task has to be one of {HF_HUB_ALLOWED_TASKS}")

    try:
        dataset_info(dataset_type)
    except requests.exceptions.HTTPError:
        logger.warning(f"Dataset {dataset_type} not found on the Hub at hf.co/datasets/{dataset_type}")

    try:
        model_info(model_id)
    except requests.exceptions.HTTPError:
        raise ValueError(f"Model {model_id} not found on the Hub at hf.co/{model_id}")

    result = {
        "task": {
            "type": task_type,
        },
        "dataset": {
            "type": dataset_type,
            "name": dataset_name,
        },
        "metrics": [
            {
                "type": metric_type,
                "value": metric_value,
            },
        ],
    }

    if dataset_config is not None:
        result["dataset"]["config"] = dataset_config
    if dataset_split is not None:
        result["dataset"]["split"] = dataset_split
    if dataset_revision is not None:
        result["dataset"]["revision"] = dataset_revision
    if dataset_args is not None:
        result["dataset"]["args"] = dataset_args

    if task_name is not None:
        result["task"]["name"] = task_name

    if metric_name is not None:
        result["metrics"][0]["name"] = metric_name
    if metric_config is not None:
        result["metrics"][0]["config"] = metric_config
    if metric_args is not None:
        result["metrics"][0]["args"] = metric_args

    metadata = {"model-index": [{"results": [result]}]}

    return metadata_update(repo_id=model_id, metadata=metadata, overwrite=overwrite)