File size: 46,290 Bytes
33a13ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
# Copyright 2020 The HuggingFace Datasets Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
""" EvaluationModule base class."""
import collections
import itertools
import os
import types
import uuid
from typing import Any, Dict, List, Optional, Tuple, Union

import numpy as np
import pyarrow as pa
from datasets import DatasetInfo, DownloadConfig, DownloadManager
from datasets.arrow_dataset import Dataset
from datasets.arrow_reader import ArrowReader
from datasets.arrow_writer import ArrowWriter
from datasets.features import Features, Sequence, Value
from datasets.features.features import _check_non_null_non_empty_recursive
from datasets.utils.filelock import BaseFileLock, FileLock, Timeout
from datasets.utils.py_utils import copyfunc, temp_seed, zip_dict

from . import config
from .info import EvaluationModuleInfo
from .naming import camelcase_to_snakecase
from .utils.logging import get_logger


logger = get_logger(__name__)


class FileFreeLock(BaseFileLock):
    """Thread lock until a file **cannot** be locked"""

    def __init__(self, lock_file, *args, **kwargs):
        self.filelock = FileLock(lock_file)
        super().__init__(lock_file, *args, **kwargs)

    def _acquire(self):
        try:
            self.filelock.acquire(timeout=0.01, poll_intervall=0.02)  # Try to lock once
        except Timeout:
            # We couldn't acquire the lock, the file is locked!
            self._lock_file_fd = self.filelock.lock_file
        else:
            # We were able to acquire the lock, the file is not yet locked!
            self.filelock.release()
            self._lock_file_fd = None

    def _release(self):
        self._lock_file_fd = None


# lists - summarize long lists similarly to NumPy
# arrays/tensors - let the frameworks control formatting
def summarize_if_long_list(obj):
    if not type(obj) == list or len(obj) <= 6:
        return f"{obj}"

    def format_chunk(chunk):
        return ", ".join(repr(x) for x in chunk)

    return f"[{format_chunk(obj[:3])}, ..., {format_chunk(obj[-3:])}]"


class EvaluationModuleInfoMixin:
    """This base class exposes some attributes of EvaluationModuleInfo
    at the base level of the EvaluationModule for easy access.
    """

    def __init__(self, info: EvaluationModuleInfo):
        self._module_info = info

    @property
    def info(self):
        """:class:`evaluate.EvaluationModuleInfo` object containing all the metadata in the evaluation module."""
        return self._module_info

    @property
    def name(self) -> str:
        return self._module_info.module_name

    @property
    def experiment_id(self) -> Optional[str]:
        return self._module_info.experiment_id

    @property
    def description(self) -> str:
        return self._module_info.description

    @property
    def citation(self) -> str:
        return self._module_info.citation

    @property
    def features(self) -> Features:
        return self._module_info.features

    @property
    def inputs_description(self) -> str:
        return self._module_info.inputs_description

    @property
    def homepage(self) -> Optional[str]:
        return self._module_info.homepage

    @property
    def license(self) -> str:
        return self._module_info.license

    @property
    def codebase_urls(self) -> Optional[List[str]]:
        return self._module_info.codebase_urls

    @property
    def reference_urls(self) -> Optional[List[str]]:
        return self._module_info.reference_urls

    @property
    def streamable(self) -> bool:
        return self._module_info.streamable

    @property
    def format(self) -> Optional[str]:
        return self._module_info.format

    @property
    def module_type(self) -> str:
        return self._module_info.module_type


class EvaluationModule(EvaluationModuleInfoMixin):
    """A `EvaluationModule` is the base class and common API for metrics, comparisons, and measurements.

    Args:
        config_name (`str`):
            This is used to define a hash specific to a module computation script and prevents the module's data
            to be overridden when the module loading script is modified.
        keep_in_memory (`bool`):
            Keep all predictions and references in memory. Not possible in distributed settings.
        cache_dir (`str`):
            Path to a directory in which temporary prediction/references data will be stored.
            The data directory should be located on a shared file-system in distributed setups.
        num_process (`int`):
            Specify the total number of nodes in a distributed settings.
            This is useful to compute module in distributed setups (in particular non-additive modules like F1).
        process_id (`int`):
            Specify the id of the current process in a distributed setup (between 0 and num_process-1)
            This is useful to compute module in distributed setups (in particular non-additive metrics like F1).
        seed (`int`, optional):
            If specified, this will temporarily set numpy's random seed when [`~evaluate.EvaluationModule.compute`] is run.
        experiment_id (`str`):
            A specific experiment id. This is used if several distributed evaluations share the same file system.
            This is useful to compute module in distributed setups (in particular non-additive metrics like F1).
        hash (`str`):
            Used to identify the evaluation module according to the hashed file contents.
        max_concurrent_cache_files (`int`):
            Max number of concurrent module cache files (default `10000`).
        timeout (`Union[int, float]`):
            Timeout in second for distributed setting synchronization.
    """

    def __init__(
        self,
        config_name: Optional[str] = None,
        keep_in_memory: bool = False,
        cache_dir: Optional[str] = None,
        num_process: int = 1,
        process_id: int = 0,
        seed: Optional[int] = None,
        experiment_id: Optional[str] = None,
        hash: str = None,
        max_concurrent_cache_files: int = 10000,
        timeout: Union[int, float] = 100,
        **kwargs,
    ):
        # prepare info
        self.config_name = config_name or "default"
        info = self._info()
        info.module_name = camelcase_to_snakecase(self.__class__.__name__)
        info.config_name = self.config_name
        info.experiment_id = experiment_id or "default_experiment"
        EvaluationModuleInfoMixin.__init__(self, info)  # For easy access on low level

        # Safety checks on num_process and process_id
        if not isinstance(process_id, int) or process_id < 0:
            raise ValueError("'process_id' should be a number greater than 0")
        if not isinstance(num_process, int) or num_process <= process_id:
            raise ValueError("'num_process' should be a number greater than process_id")
        if keep_in_memory and num_process != 1:
            raise ValueError("Using 'keep_in_memory' is not possible in distributed setting (num_process > 1).")

        self.num_process = num_process
        self.process_id = process_id
        self.max_concurrent_cache_files = max_concurrent_cache_files

        self.keep_in_memory = keep_in_memory
        self._data_dir_root = os.path.expanduser(cache_dir or config.HF_METRICS_CACHE)
        self.data_dir = self._build_data_dir()
        if seed is None:
            _, seed, pos, *_ = np.random.get_state()
            self.seed: int = seed[pos] if pos < 624 else seed[0]
        else:
            self.seed: int = seed
        self.timeout: Union[int, float] = timeout

        # Update 'compute' and 'add' docstring
        # methods need to be copied otherwise it changes the docstrings of every instance
        self.compute = types.MethodType(copyfunc(self.compute), self)
        self.add_batch = types.MethodType(copyfunc(self.add_batch), self)
        self.add = types.MethodType(copyfunc(self.add), self)
        self.compute.__func__.__doc__ += self.info.inputs_description
        self.add_batch.__func__.__doc__ += self.info.inputs_description
        self.add.__func__.__doc__ += self.info.inputs_description

        # self.arrow_schema = pa.schema(field for field in self.info.features.type)
        self.selected_feature_format = None
        self.buf_writer = None
        self.writer = None
        self.writer_batch_size = None
        self.data = None

        # This is the cache file we store our predictions/references in
        # Keep it None for now so we can (cloud)pickle the object
        self.cache_file_name = None
        self.filelock = None
        self.rendez_vous_lock = None

        # This is all the cache files on which we have a lock when we are in a distributed setting
        self.file_paths = None
        self.filelocks = None

        # This fingerprints the evaluation module according to the hashed contents of the module code
        self._hash = hash

    def __len__(self):
        """Return the number of examples (predictions or predictions/references pair)
        currently stored in the evaluation module's cache.
        """
        return 0 if self.writer is None else len(self.writer)

    def __repr__(self):
        return (
            f'EvaluationModule(name: "{self.name}", module_type: "{self.module_type}", '
            f'features: {self.features}, usage: """{self.inputs_description}""", '
            f"stored examples: {len(self)})"
        )

    def _build_data_dir(self):
        """Path of this evaluation module in cache_dir:
        Will be:
            self._data_dir_root/self.name/self.config_name/self.hash (if not none)/
        If any of these element is missing or if ``with_version=False`` the corresponding subfolders are dropped.
        """
        builder_data_dir = self._data_dir_root
        builder_data_dir = os.path.join(builder_data_dir, self.name, self.config_name)
        os.makedirs(builder_data_dir, exist_ok=True)
        return builder_data_dir

    def _create_cache_file(self, timeout=1) -> Tuple[str, FileLock]:
        """Create a new cache file. If the default cache file is used, we generated a new hash."""
        file_path = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{self.process_id}.arrow")
        filelock = None
        for i in range(self.max_concurrent_cache_files):
            filelock = FileLock(file_path + ".lock")
            try:
                filelock.acquire(timeout=timeout)
            except Timeout:
                # If we have reached the max number of attempts or we are not allow to find a free name (distributed setup)
                # We raise an error
                if self.num_process != 1:
                    raise ValueError(
                        f"Error in _create_cache_file: another evaluation module instance is already using the local cache file at {file_path}. "
                        f"Please specify an experiment_id (currently: {self.experiment_id}) to avoid collision "
                        f"between distributed evaluation module instances."
                    ) from None
                if i == self.max_concurrent_cache_files - 1:
                    raise ValueError(
                        f"Cannot acquire lock, too many evaluation module instance are operating concurrently on this file system."
                        f"You should set a larger value of max_concurrent_cache_files when creating the evaluation module "
                        f"(current value is {self.max_concurrent_cache_files})."
                    ) from None
                # In other cases (allow to find new file name + not yet at max num of attempts) we can try to sample a new hashing name.
                file_uuid = str(uuid.uuid4())
                file_path = os.path.join(
                    self.data_dir, f"{self.experiment_id}-{file_uuid}-{self.num_process}-{self.process_id}.arrow"
                )
            else:
                break

        return file_path, filelock

    def _get_all_cache_files(self) -> Tuple[List[str], List[FileLock]]:
        """Get a lock on all the cache files in a distributed setup.
        We wait for timeout second to let all the distributed node finish their tasks (default is 100 seconds).
        """
        if self.num_process == 1:
            if self.cache_file_name is None:
                raise ValueError(
                    "Evaluation module cache file doesn't exist. Please make sure that you call `add` or `add_batch` "
                    "at least once before calling `compute`."
                )
            file_paths = [self.cache_file_name]
        else:
            file_paths = [
                os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{process_id}.arrow")
                for process_id in range(self.num_process)
            ]

        # Let's acquire a lock on each process files to be sure they are finished writing
        filelocks = []
        for process_id, file_path in enumerate(file_paths):
            if process_id == 0:  # process 0 already has its lock file
                filelocks.append(self.filelock)
            else:
                filelock = FileLock(file_path + ".lock")
                try:
                    filelock.acquire(timeout=self.timeout)
                except Timeout:
                    raise ValueError(
                        f"Cannot acquire lock on cached file {file_path} for process {process_id}."
                    ) from None
                else:
                    filelocks.append(filelock)

        return file_paths, filelocks

    def _check_all_processes_locks(self):
        expected_lock_file_names = [
            os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-{process_id}.arrow.lock")
            for process_id in range(self.num_process)
        ]
        for expected_lock_file_name in expected_lock_file_names:
            nofilelock = FileFreeLock(expected_lock_file_name)
            try:
                nofilelock.acquire(timeout=self.timeout)
            except Timeout:
                raise ValueError(
                    f"Expected to find locked file {expected_lock_file_name} from process {self.process_id} but it doesn't exist."
                ) from None
            else:
                nofilelock.release()

    def _check_rendez_vous(self):
        expected_lock_file_name = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-0.arrow.lock")
        nofilelock = FileFreeLock(expected_lock_file_name)
        try:
            nofilelock.acquire(timeout=self.timeout)
        except Timeout:
            raise ValueError(
                f"Expected to find locked file {expected_lock_file_name} from process {self.process_id} but it doesn't exist."
            ) from None
        else:
            nofilelock.release()
        lock_file_name = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-rdv.lock")
        rendez_vous_lock = FileLock(lock_file_name)
        try:
            rendez_vous_lock.acquire(timeout=self.timeout)
        except Timeout:
            raise ValueError(f"Couldn't acquire lock on {lock_file_name} from process {self.process_id}.") from None
        else:
            rendez_vous_lock.release()

    def _finalize(self):
        """Close all the writing process and load/gather the data
        from all the nodes if main node or all_process is True.
        """
        if self.writer is not None:
            self.writer.finalize()
        self.writer = None
        # release the locks of the processes > 0 so that process 0 can lock them to read + delete the data
        if self.filelock is not None and self.process_id > 0:
            self.filelock.release()

        if self.keep_in_memory:
            # Read the predictions and references
            reader = ArrowReader(path=self.data_dir, info=DatasetInfo(features=self.selected_feature_format))
            self.data = Dataset.from_buffer(self.buf_writer.getvalue())

        elif self.process_id == 0:
            # Let's acquire a lock on each node files to be sure they are finished writing
            file_paths, filelocks = self._get_all_cache_files()

            # Read the predictions and references
            try:
                reader = ArrowReader(path="", info=DatasetInfo(features=self.selected_feature_format))
                self.data = Dataset(**reader.read_files([{"filename": f} for f in file_paths]))
            except FileNotFoundError:
                raise ValueError(
                    "Error in finalize: another evaluation module instance is already using the local cache file. "
                    "Please specify an experiment_id to avoid collision between distributed evaluation module instances."
                ) from None

            # Store file paths and locks and we will release/delete them after the computation.
            self.file_paths = file_paths
            self.filelocks = filelocks

    def compute(self, *, predictions=None, references=None, **kwargs) -> Optional[dict]:
        """Compute the evaluation module.

        Usage of positional arguments is not allowed to prevent mistakes.

        Args:
            predictions (`list/array/tensor`, *optional*):
                Predictions.
            references (`list/array/tensor`, *optional*):
                References.
            **kwargs (optional):
                Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`]
                method (see details in the docstring).

        Return:
            `dict` or `None`

            - Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`).
            - `None` if the evaluation module is not run on the main process (`process_id != 0`).

        ```py
        >>> import evaluate
        >>> accuracy =  evaluate.load("accuracy")
        >>> accuracy.compute(predictions=[0, 1, 1, 0], references=[0, 1, 0, 1])
        ```
        """
        all_kwargs = {"predictions": predictions, "references": references, **kwargs}
        if predictions is None and references is None:
            missing_kwargs = {k: None for k in self._feature_names() if k not in all_kwargs}
            all_kwargs.update(missing_kwargs)
        else:
            missing_inputs = [k for k in self._feature_names() if k not in all_kwargs]
            if missing_inputs:
                raise ValueError(
                    f"Evaluation module inputs are missing: {missing_inputs}. All required inputs are {list(self._feature_names())}"
                )
        inputs = {input_name: all_kwargs[input_name] for input_name in self._feature_names()}
        compute_kwargs = {k: kwargs[k] for k in kwargs if k not in self._feature_names()}

        if any(v is not None for v in inputs.values()):
            self.add_batch(**inputs)
        self._finalize()

        self.cache_file_name = None
        self.filelock = None
        self.selected_feature_format = None

        if self.process_id == 0:
            self.data.set_format(type=self.info.format)

            inputs = {input_name: self.data[input_name] for input_name in self._feature_names()}
            with temp_seed(self.seed):
                output = self._compute(**inputs, **compute_kwargs)

            if self.buf_writer is not None:
                self.buf_writer = None
                del self.data
                self.data = None
            else:
                # Release locks and delete all the cache files. Process 0 is released last.
                for filelock, file_path in reversed(list(zip(self.filelocks, self.file_paths))):
                    logger.info(f"Removing {file_path}")
                    del self.data
                    self.data = None
                    del self.writer
                    self.writer = None
                    os.remove(file_path)
                    filelock.release()

            return output
        else:
            return None

    def add_batch(self, *, predictions=None, references=None, **kwargs):
        """Add a batch of predictions and references for the evaluation module's stack.

        Args:
            predictions (`list/array/tensor`, *optional*):
                Predictions.
            references (`list/array/tensor`, *optional*):
                References.

        Example:

        ```py
        >>> import evaluate
        >>> accuracy = evaluate.load("accuracy")
        >>> for refs, preds in zip([[0,1],[0,1]], [[1,0],[0,1]]):
        ...     accuracy.add_batch(references=refs, predictions=preds)
        ```
        """
        bad_inputs = [input_name for input_name in kwargs if input_name not in self._feature_names()]
        if bad_inputs:
            raise ValueError(
                f"Bad inputs for evaluation module: {bad_inputs}. All required inputs are {list(self._feature_names())}"
            )
        batch = {"predictions": predictions, "references": references, **kwargs}
        batch = {input_name: batch[input_name] for input_name in self._feature_names()}
        if self.writer is None:
            self.selected_feature_format = self._infer_feature_from_batch(batch)
            self._init_writer()
        try:
            for key, column in batch.items():
                if len(column) > 0:
                    self._enforce_nested_string_type(self.selected_feature_format[key], column[0])
            batch = self.selected_feature_format.encode_batch(batch)
            self.writer.write_batch(batch)
        except (pa.ArrowInvalid, TypeError):
            if any(len(batch[c]) != len(next(iter(batch.values()))) for c in batch):
                col0 = next(iter(batch))
                bad_col = [c for c in batch if len(batch[c]) != len(batch[col0])][0]
                error_msg = (
                    f"Mismatch in the number of {col0} ({len(batch[col0])}) and {bad_col} ({len(batch[bad_col])})"
                )
            elif set(self.selected_feature_format) != {"references", "predictions"}:
                error_msg = (
                    f"Module inputs don't match the expected format.\n"
                    f"Expected format: {self.selected_feature_format },\n"
                )
                error_msg_inputs = ",\n".join(
                    f"Input {input_name}: {summarize_if_long_list(batch[input_name])}"
                    for input_name in self.selected_feature_format
                )
                error_msg += error_msg_inputs
            else:
                error_msg = (
                    f"Predictions and/or references don't match the expected format.\n"
                    f"Expected format: {self.selected_feature_format },\n"
                    f"Input predictions: {summarize_if_long_list(predictions)},\n"
                    f"Input references: {summarize_if_long_list(references)}"
                )
            raise ValueError(error_msg) from None

    def add(self, *, prediction=None, reference=None, **kwargs):
        """Add one prediction and reference for the evaluation module's stack.

        Args:
            prediction (`list/array/tensor`, *optional*):
                Predictions.
            reference (`list/array/tensor`, *optional*):
                References.

        Example:

        ```py
        >>> import evaluate
        >>> accuracy = evaluate.load("accuracy")
        >>> accuracy.add(references=[0,1], predictions=[1,0])
        ```
        """
        bad_inputs = [input_name for input_name in kwargs if input_name not in self._feature_names()]
        if bad_inputs:
            raise ValueError(
                f"Bad inputs for evaluation module: {bad_inputs}. All required inputs are {list(self._feature_names())}"
            )
        example = {"predictions": prediction, "references": reference, **kwargs}
        example = {input_name: example[input_name] for input_name in self._feature_names()}
        if self.writer is None:
            self.selected_feature_format = self._infer_feature_from_example(example)
            self._init_writer()
        try:
            self._enforce_nested_string_type(self.selected_feature_format, example)
            example = self.selected_feature_format.encode_example(example)
            self.writer.write(example)
        except (pa.ArrowInvalid, TypeError):
            error_msg = (
                f"Evaluation module inputs don't match the expected format.\n"
                f"Expected format: {self.selected_feature_format},\n"
            )
            error_msg_inputs = ",\n".join(
                f"Input {input_name}: {summarize_if_long_list(example[input_name])}"
                for input_name in self.selected_feature_format
            )
            error_msg += error_msg_inputs
            raise ValueError(error_msg) from None

    def _infer_feature_from_batch(self, batch):
        if isinstance(self.features, Features):
            return self.features
        else:
            example = dict([(k, v[0]) for k, v in batch.items()])
            return self._infer_feature_from_example(example)

    def _infer_feature_from_example(self, example):
        if isinstance(self.features, Features):
            return self.features
        else:
            for features in self.features:
                try:
                    self._enforce_nested_string_type(features, example)
                    features.encode_example(example)
                    return features
                except (ValueError, TypeError):
                    continue
        feature_strings = "\n".join([f"Feature option {i}: {feature}" for i, feature in enumerate(self.features)])
        error_msg = (
            f"Predictions and/or references don't match the expected format.\n"
            f"Expected format:\n{feature_strings},\n"
            f"Input predictions: {summarize_if_long_list(example['predictions'])},\n"
            f"Input references: {summarize_if_long_list(example['references'])}"
        )
        raise ValueError(error_msg) from None

    def _feature_names(self):
        if isinstance(self.features, list):
            feature_names = list(self.features[0].keys())
        else:
            feature_names = list(self.features.keys())
        return feature_names

    def _init_writer(self, timeout=1):
        if self.num_process > 1:
            if self.process_id == 0:
                file_path = os.path.join(self.data_dir, f"{self.experiment_id}-{self.num_process}-rdv.lock")
                self.rendez_vous_lock = FileLock(file_path)
                try:
                    self.rendez_vous_lock.acquire(timeout=timeout)
                except TimeoutError:
                    raise ValueError(
                        f"Error in _init_writer: another evalution module instance is already using the local cache file at {file_path}. "
                        f"Please specify an experiment_id (currently: {self.experiment_id}) to avoid collision "
                        f"between distributed evaluation module instances."
                    ) from None

        if self.keep_in_memory:
            self.buf_writer = pa.BufferOutputStream()
            self.writer = ArrowWriter(
                features=self.selected_feature_format, stream=self.buf_writer, writer_batch_size=self.writer_batch_size
            )
        else:
            self.buf_writer = None

            # Get cache file name and lock it
            if self.cache_file_name is None or self.filelock is None:
                cache_file_name, filelock = self._create_cache_file()  # get ready
                self.cache_file_name = cache_file_name
                self.filelock = filelock

            self.writer = ArrowWriter(
                features=self.selected_feature_format,
                path=self.cache_file_name,
                writer_batch_size=self.writer_batch_size,
            )
        # Setup rendez-vous here if
        if self.num_process > 1:
            if self.process_id == 0:
                self._check_all_processes_locks()  # wait for everyone to be ready
                self.rendez_vous_lock.release()  # let everyone go
            else:
                self._check_rendez_vous()  # wait for master to be ready and to let everyone go

    def _info(self) -> EvaluationModuleInfo:
        """Construct the EvaluationModuleInfo object. See `EvaluationModuleInfo` for details.

        Warning: This function is only called once and the result is cached for all
        following .info() calls.

        Returns:
            info: (EvaluationModuleInfo) The EvaluationModule information
        """
        raise NotImplementedError

    def download_and_prepare(
        self,
        download_config: Optional[DownloadConfig] = None,
        dl_manager: Optional[DownloadManager] = None,
    ):
        """Downloads and prepares evaluation module for reading.

        Args:
            download_config ([`DownloadConfig`], *optional*):
                Specific download configuration parameters.
            dl_manager ([`DownloadManager`], *optional*):
                Specific download manager to use.

        Example:

        ```py
        >>> import evaluate
        ```
        """
        if dl_manager is None:
            if download_config is None:
                download_config = DownloadConfig()
                download_config.cache_dir = os.path.join(self.data_dir, "downloads")
                download_config.force_download = False

            dl_manager = DownloadManager(
                dataset_name=self.name, download_config=download_config, data_dir=self.data_dir
            )

        self._download_and_prepare(dl_manager)

    def _download_and_prepare(self, dl_manager):
        """Downloads and prepares resources for the evaluation module.

        This is the internal implementation to overwrite called when user calls
        `download_and_prepare`. It should download all required resources for the evaluation module.

        Args:
            dl_manager (:class:`DownloadManager`): `DownloadManager` used to download and cache data.
        """
        return None

    def _compute(self, *, predictions=None, references=None, **kwargs) -> Dict[str, Any]:
        """This method defines the common API for all the evaluation module in the library"""
        raise NotImplementedError

    def __del__(self):
        if hasattr(self, "filelock") and self.filelock is not None:
            self.filelock.release()
        if hasattr(self, "rendez_vous_lock") and self.rendez_vous_lock is not None:
            self.rendez_vous_lock.release()
        if hasattr(self, "writer"):  # in case it was already deleted
            del self.writer
        if hasattr(self, "data"):  # in case it was already deleted
            del self.data

    def _enforce_nested_string_type(self, schema, obj):
        """
        Recursively checks if there is any Value feature of type string and throws TypeError if corresponding object is not a string.
        Since any Python object can be cast to string this avoids implicitly casting wrong input types (e.g. lists) to string without error.
        """
        # Nested structures: we allow dict, list, tuples, sequences
        if isinstance(schema, dict):
            return [self._enforce_nested_string_type(sub_schema, o) for k, (sub_schema, o) in zip_dict(schema, obj)]

        elif isinstance(schema, (list, tuple)):
            sub_schema = schema[0]
            return [self._enforce_nested_string_type(sub_schema, o) for o in obj]
        elif isinstance(schema, Sequence):
            # We allow to reverse list of dict => dict of list for compatiblity with tfds
            if isinstance(schema.feature, dict):
                if isinstance(obj, (list, tuple)):
                    # obj is a list of dict
                    for k, dict_tuples in zip_dict(schema.feature, *obj):
                        for sub_obj in dict_tuples[1:]:
                            if _check_non_null_non_empty_recursive(sub_obj, dict_tuples[0]):
                                self._enforce_nested_string_type(dict_tuples[0], sub_obj)
                                break
                    return None
                else:
                    # obj is a single dict
                    for k, (sub_schema, sub_objs) in zip_dict(schema.feature, obj):
                        for sub_obj in sub_objs:
                            if _check_non_null_non_empty_recursive(sub_obj, sub_schema):
                                self._enforce_nested_string_type(sub_schema, sub_obj)
                                break
                    return None
            # schema.feature is not a dict
            if isinstance(obj, str):  # don't interpret a string as a list
                raise ValueError(f"Got a string but expected a list instead: '{obj}'")
            if obj is None:
                return None
            else:
                if len(obj) > 0:
                    for first_elmt in obj:
                        if _check_non_null_non_empty_recursive(first_elmt, schema.feature):
                            break
                    if not isinstance(first_elmt, list):
                        return self._enforce_nested_string_type(schema.feature, first_elmt)

        elif isinstance(schema, Value):
            if pa.types.is_string(schema.pa_type) and not isinstance(obj, str):
                raise TypeError(f"Expected type str but got {type(obj)}.")


class Metric(EvaluationModule):
    """A Metric is the base class and common API for all metrics.

    Args:
        config_name (`str`):
            This is used to define a hash specific to a metric computation script and prevents the metric's data
            to be overridden when the metric loading script is modified.
        keep_in_memory (`bool`):
            Keep all predictions and references in memory. Not possible in distributed settings.
        cache_dir (`str`):
            Path to a directory in which temporary prediction/references data will be stored.
            The data directory should be located on a shared file-system in distributed setups.
        num_process (`int`):
            Specify the total number of nodes in a distributed settings.
            This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1).
        process_id (`int`):
            Specify the id of the current process in a distributed setup (between 0 and num_process-1)
            This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1).
        seed (`int`, *optional*):
            If specified, this will temporarily set numpy's random seed when [`~evaluate.Metric.compute`] is run.
        experiment_id (`str`):
            A specific experiment id. This is used if several distributed evaluations share the same file system.
            This is useful to compute metrics in distributed setups (in particular non-additive metrics like F1).
        max_concurrent_cache_files (`int`):
            Max number of concurrent metric cache files (default `10000`).
        timeout (`Union[int, float]`):
            Timeout in second for distributed setting synchronization.
    """


class Comparison(EvaluationModule):
    """A Comparison is the base class and common API for all comparisons.

    Args:
        config_name (`str`):
            This is used to define a hash specific to a comparison computation script and prevents the comparison's data
            to be overridden when the comparison loading script is modified.
        keep_in_memory (`bool`):
            Keep all predictions and references in memory. Not possible in distributed settings.
        cache_dir (`str`):
            Path to a directory in which temporary prediction/references data will be stored.
            The data directory should be located on a shared file-system in distributed setups.
        num_process (`int`):
            Specify the total number of nodes in a distributed settings.
            This is useful to compute  comparisons in distributed setups (in particular non-additive comparisons).
        process_id (`int`):
            Specify the id of the current process in a distributed setup (between 0 and num_process-1)
            This is useful to compute  comparisons in distributed setups (in particular non-additive comparisons).
        seed (`int`, *optional*):
            If specified, this will temporarily set numpy's random seed when [`~evaluate.Comparison.compute`] is run.
        experiment_id (`str`):
            A specific experiment id. This is used if several distributed evaluations share the same file system.
            This is useful to compute  comparisons in distributed setups (in particular non-additive comparisons).
        max_concurrent_cache_files (`int`):
            Max number of concurrent comparison cache files (default `10000`).
        timeout (`Union[int, float]`):
            Timeout in second for distributed setting synchronization.
    """


class Measurement(EvaluationModule):
    """A Measurement is the base class and common API for all measurements.

    Args:
        config_name (`str`):
            This is used to define a hash specific to a measurement computation script and prevents the measurement's data
            to be overridden when the measurement loading script is modified.
        keep_in_memory (`bool`):
            Keep all predictions and references in memory. Not possible in distributed settings.
        cache_dir (`str`):
            Path to a directory in which temporary prediction/references data will be stored.
            The data directory should be located on a shared file-system in distributed setups.
        num_process (`int`):
            Specify the total number of nodes in a distributed settings.
            This is useful to compute measurements in distributed setups (in particular non-additive measurements).
        process_id (`int`):
            Specify the id of the current process in a distributed setup (between 0 and num_process-1)
            This is useful to compute measurements in distributed setups (in particular non-additive measurements).
        seed (`int`, *optional*):
            If specified, this will temporarily set numpy's random seed when [`~evaluate.Measurement.compute`] is run.
        experiment_id (`str`):
            A specific experiment id. This is used if several distributed evaluations share the same file system.
            This is useful to compute measurements in distributed setups (in particular non-additive measurements).
        max_concurrent_cache_files (`int`):
            Max number of concurrent measurement cache files (default `10000`).
        timeout (`Union[int, float]`):
            Timeout in second for distributed setting synchronization.
    """


class CombinedEvaluations:
    def __init__(self, evaluation_modules, force_prefix=False):
        from .loading import load  # avoid circular imports

        self.evaluation_module_names = None
        if isinstance(evaluation_modules, list):
            self.evaluation_modules = evaluation_modules
        elif isinstance(evaluation_modules, dict):
            self.evaluation_modules = list(evaluation_modules.values())
            self.evaluation_module_names = list(evaluation_modules.keys())
        loaded_modules = []

        for module in self.evaluation_modules:
            if isinstance(module, str):
                module = load(module)
            loaded_modules.append(module)
        self.evaluation_modules = loaded_modules

        if self.evaluation_module_names is None:
            self.evaluation_module_names = [module.name for module in self.evaluation_modules]

        self.force_prefix = force_prefix

    def add(self, prediction=None, reference=None, **kwargs):
        """Add one prediction and reference for each evaluation module's stack.

        Args:
            predictions (`list/array/tensor`, *optional*):
                Predictions.
            references (`list/array/tensor`, *optional*):
                References.

        Example:

        ```py
        >>> import evaluate
        >>> accuracy = evaluate.load("accuracy")
        >>> f1 = evaluate.load("f1")
        >>> clf_metrics = combine(["accuracy", "f1"])
        >>> for ref, pred in zip([0,1,0,1], [1,0,0,1]):
        ...     clf_metrics.add(references=ref, predictions=pred)
        ```
        """
        for evaluation_module in self.evaluation_modules:
            batch = {"predictions": prediction, "references": reference, **kwargs}
            batch = {input_name: batch[input_name] for input_name in evaluation_module._feature_names()}
            evaluation_module.add(**batch)

    def add_batch(self, predictions=None, references=None, **kwargs):
        """Add a batch of predictions and references for each evaluation module's stack.

        Args:
            predictions (`list/array/tensor`, *optional*):
                Predictions.
            references (`list/array/tensor`, *optional*):
                References.

        Example:
        ```py
        >>> import evaluate
        >>> accuracy = evaluate.load("accuracy")
        >>> f1 = evaluate.load("f1")
        >>> clf_metrics = combine(["accuracy", "f1"])
        >>> for refs, preds in zip([[0,1],[0,1]], [[1,0],[0,1]]):
        ...     clf_metrics.add(references=refs, predictions=preds)
        ```
        """
        for evaluation_module in self.evaluation_modules:
            batch = {"predictions": predictions, "references": references, **kwargs}
            batch = {input_name: batch[input_name] for input_name in evaluation_module._feature_names()}
            evaluation_module.add_batch(**batch)

    def compute(self, predictions=None, references=None, **kwargs):
        """Compute each evaluation module.

        Usage of positional arguments is not allowed to prevent mistakes.

        Args:
            predictions (`list/array/tensor`, *optional*):
                Predictions.
            references (`list/array/tensor`, *optional*):
                References.
            **kwargs (*optional*):
                Keyword arguments that will be forwarded to the evaluation module [`~evaluate.EvaluationModule.compute`]
                method (see details in the docstring).

        Return:
            `dict` or `None`

            - Dictionary with the results if this evaluation module is run on the main process (`process_id == 0`).
            - `None` if the evaluation module is not run on the main process (`process_id != 0`).

        Example:

        ```py
        >>> import evaluate
        >>> accuracy = evaluate.load("accuracy")
        >>> f1 = evaluate.load("f1")
        >>> clf_metrics = combine(["accuracy", "f1"])
        >>> clf_metrics.compute(predictions=[0,1], references=[1,1])
        {'accuracy': 0.5, 'f1': 0.6666666666666666}
        ```
        """
        results = []

        for evaluation_module in self.evaluation_modules:
            batch = {"predictions": predictions, "references": references, **kwargs}
            results.append(evaluation_module.compute(**batch))

        return self._merge_results(results)

    def _merge_results(self, results):
        merged_results = {}
        results_keys = list(itertools.chain.from_iterable([r.keys() for r in results]))
        duplicate_keys = {item for item, count in collections.Counter(results_keys).items() if count > 1}

        duplicate_names = [
            item for item, count in collections.Counter(self.evaluation_module_names).items() if count > 1
        ]
        duplicate_counter = {name: 0 for name in duplicate_names}

        for module_name, result in zip(self.evaluation_module_names, results):
            for k, v in result.items():
                if k not in duplicate_keys and not self.force_prefix:
                    merged_results[f"{k}"] = v
                elif module_name in duplicate_counter:
                    merged_results[f"{module_name}_{duplicate_counter[module_name]}_{k}"] = v
                else:
                    merged_results[f"{module_name}_{k}"] = v

            if module_name in duplicate_counter:
                duplicate_counter[module_name] += 1

        return merged_results


def combine(evaluations, force_prefix=False):
    """Combines several metrics, comparisons, or measurements into a single `CombinedEvaluations` object that
    can be used like a single evaluation module.

    If two scores have the same name, then they are prefixed with their module names.
    And if two modules have the same name, please use a dictionary to give them different names, otherwise an integer id is appended to the prefix.

    Args:
        evaluations (`Union[list, dict]`):
            A list or dictionary of evaluation modules. The modules can either be passed
            as strings or loaded `EvaluationModule`s. If a dictionary is passed its keys are the names used and the values the modules.
            The names are used as prefix in case there are name overlaps in the returned results of each module or if `force_prefix=True`.
        force_prefix (`bool`, *optional*, defaults to `False`):
            If `True` all scores from the modules are prefixed with their name. If
            a dictionary is passed the keys are used as name otherwise the module's name.

    Examples:

    ```py
    >>> import evaluate
    >>> accuracy = evaluate.load("accuracy")
    >>> f1 = evaluate.load("f1")
    >>> clf_metrics = combine(["accuracy", "f1"])
    ```
    """

    return CombinedEvaluations(evaluations, force_prefix=force_prefix)