peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/deepspeed
/inference
/v2
/inference_utils.py
| # Copyright (c) Microsoft Corporation. | |
| # SPDX-License-Identifier: Apache-2.0 | |
| # DeepSpeed Team | |
| from typing import Dict | |
| import torch | |
| from enum import Enum, IntEnum | |
| class NormTypeEnum(Enum): | |
| LayerNorm: str = "layer_norm" | |
| RMSNorm: str = "rms_norm" | |
| class DtypeEnum(Enum): | |
| # The torch dtype must always be the first value (so we return torch.dtype) | |
| fp16 = torch.float16, "torch.float16", "fp16", "float16", "half" | |
| fp32 = torch.float32, "torch.float32", "fp32", "float32", "float" | |
| bf16 = torch.bfloat16, "torch.bfloat16", "bf16", "bfloat16", "bfloat" | |
| int8 = torch.int8, "torch.int8", "int8" | |
| # Copied from https://stackoverflow.com/a/43210118 | |
| # Allows us to use multiple values for each Enum index and returns first | |
| # listed value when Enum is called | |
| def __new__(cls, *values): | |
| obj = object.__new__(cls) | |
| # first value is canonical value | |
| obj._value_ = values[0] | |
| for other_value in values[1:]: | |
| cls._value2member_map_[other_value] = obj | |
| obj._all_values = values | |
| return obj | |
| def __repr__(self): | |
| return "<%s.%s: %s>" % ( | |
| self.__class__.__name__, | |
| self._name_, | |
| ", ".join([repr(v) for v in self._all_values]), | |
| ) | |
| ELEM_SIZES: Dict[torch.dtype, int] = { | |
| torch.float16: 2, | |
| torch.bfloat16: 2, | |
| torch.float32: 4, | |
| torch.float64: 8, | |
| torch.int8: 1, | |
| torch.uint8: 1, | |
| torch.int16: 2, | |
| torch.int32: 4, | |
| torch.int64: 8, | |
| torch.bool: 1, | |
| } | |
| class ActivationType(IntEnum): | |
| """ | |
| Types of activations supported by DS-Inference | |
| """ | |
| GELU = 0 | |
| RELU = 1 | |
| SILU = 2 | |
| GEGLU = 3 | |
| ReGLU = 4 | |
| SiGLU = 5 | |
| IDENTITY = 6 | |
| InvalidType = -1 | |
| def is_gated(act_fn: ActivationType) -> bool: | |
| """ | |
| Return True if the given activation function is gated. | |
| """ | |
| if not isinstance(act_fn, ActivationType): | |
| act_fn = ActivationType(act_fn) | |
| return act_fn in [ActivationType.GEGLU, ActivationType.ReGLU, ActivationType.SiGLU] | |
| def elem_size(dtype: torch.dtype) -> int: | |
| """ | |
| Return size in bytes of the given dtype. | |
| """ | |
| try: | |
| return ELEM_SIZES[dtype] | |
| except KeyError: | |
| raise ValueError("Unknown dtype size for {}".format(dtype)) | |
| def ceil_div(a: int, b: int) -> int: | |
| """ | |
| Return ceil(a / b). | |
| """ | |
| return -(-a // b) | |