peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/classify
/naivebayes.py
| # Natural Language Toolkit: Naive Bayes Classifiers | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # Author: Edward Loper <[email protected]> | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| """ | |
| A classifier based on the Naive Bayes algorithm. In order to find the | |
| probability for a label, this algorithm first uses the Bayes rule to | |
| express P(label|features) in terms of P(label) and P(features|label): | |
| | P(label) * P(features|label) | |
| | P(label|features) = ------------------------------ | |
| | P(features) | |
| The algorithm then makes the 'naive' assumption that all features are | |
| independent, given the label: | |
| | P(label) * P(f1|label) * ... * P(fn|label) | |
| | P(label|features) = -------------------------------------------- | |
| | P(features) | |
| Rather than computing P(features) explicitly, the algorithm just | |
| calculates the numerator for each label, and normalizes them so they | |
| sum to one: | |
| | P(label) * P(f1|label) * ... * P(fn|label) | |
| | P(label|features) = -------------------------------------------- | |
| | SUM[l]( P(l) * P(f1|l) * ... * P(fn|l) ) | |
| """ | |
| from collections import defaultdict | |
| from nltk.classify.api import ClassifierI | |
| from nltk.probability import DictionaryProbDist, ELEProbDist, FreqDist, sum_logs | |
| ##////////////////////////////////////////////////////// | |
| ## Naive Bayes Classifier | |
| ##////////////////////////////////////////////////////// | |
| class NaiveBayesClassifier(ClassifierI): | |
| """ | |
| A Naive Bayes classifier. Naive Bayes classifiers are | |
| paramaterized by two probability distributions: | |
| - P(label) gives the probability that an input will receive each | |
| label, given no information about the input's features. | |
| - P(fname=fval|label) gives the probability that a given feature | |
| (fname) will receive a given value (fval), given that the | |
| label (label). | |
| If the classifier encounters an input with a feature that has | |
| never been seen with any label, then rather than assigning a | |
| probability of 0 to all labels, it will ignore that feature. | |
| The feature value 'None' is reserved for unseen feature values; | |
| you generally should not use 'None' as a feature value for one of | |
| your own features. | |
| """ | |
| def __init__(self, label_probdist, feature_probdist): | |
| """ | |
| :param label_probdist: P(label), the probability distribution | |
| over labels. It is expressed as a ``ProbDistI`` whose | |
| samples are labels. I.e., P(label) = | |
| ``label_probdist.prob(label)``. | |
| :param feature_probdist: P(fname=fval|label), the probability | |
| distribution for feature values, given labels. It is | |
| expressed as a dictionary whose keys are ``(label, fname)`` | |
| pairs and whose values are ``ProbDistI`` objects over feature | |
| values. I.e., P(fname=fval|label) = | |
| ``feature_probdist[label,fname].prob(fval)``. If a given | |
| ``(label,fname)`` is not a key in ``feature_probdist``, then | |
| it is assumed that the corresponding P(fname=fval|label) | |
| is 0 for all values of ``fval``. | |
| """ | |
| self._label_probdist = label_probdist | |
| self._feature_probdist = feature_probdist | |
| self._labels = list(label_probdist.samples()) | |
| def labels(self): | |
| return self._labels | |
| def classify(self, featureset): | |
| return self.prob_classify(featureset).max() | |
| def prob_classify(self, featureset): | |
| # Discard any feature names that we've never seen before. | |
| # Otherwise, we'll just assign a probability of 0 to | |
| # everything. | |
| featureset = featureset.copy() | |
| for fname in list(featureset.keys()): | |
| for label in self._labels: | |
| if (label, fname) in self._feature_probdist: | |
| break | |
| else: | |
| # print('Ignoring unseen feature %s' % fname) | |
| del featureset[fname] | |
| # Find the log probability of each label, given the features. | |
| # Start with the log probability of the label itself. | |
| logprob = {} | |
| for label in self._labels: | |
| logprob[label] = self._label_probdist.logprob(label) | |
| # Then add in the log probability of features given labels. | |
| for label in self._labels: | |
| for (fname, fval) in featureset.items(): | |
| if (label, fname) in self._feature_probdist: | |
| feature_probs = self._feature_probdist[label, fname] | |
| logprob[label] += feature_probs.logprob(fval) | |
| else: | |
| # nb: This case will never come up if the | |
| # classifier was created by | |
| # NaiveBayesClassifier.train(). | |
| logprob[label] += sum_logs([]) # = -INF. | |
| return DictionaryProbDist(logprob, normalize=True, log=True) | |
| def show_most_informative_features(self, n=10): | |
| # Determine the most relevant features, and display them. | |
| cpdist = self._feature_probdist | |
| print("Most Informative Features") | |
| for (fname, fval) in self.most_informative_features(n): | |
| def labelprob(l): | |
| return cpdist[l, fname].prob(fval) | |
| labels = sorted( | |
| (l for l in self._labels if fval in cpdist[l, fname].samples()), | |
| key=lambda element: (-labelprob(element), element), | |
| reverse=True, | |
| ) | |
| if len(labels) == 1: | |
| continue | |
| l0 = labels[0] | |
| l1 = labels[-1] | |
| if cpdist[l0, fname].prob(fval) == 0: | |
| ratio = "INF" | |
| else: | |
| ratio = "%8.1f" % ( | |
| cpdist[l1, fname].prob(fval) / cpdist[l0, fname].prob(fval) | |
| ) | |
| print( | |
| "%24s = %-14r %6s : %-6s = %s : 1.0" | |
| % (fname, fval, ("%s" % l1)[:6], ("%s" % l0)[:6], ratio) | |
| ) | |
| def most_informative_features(self, n=100): | |
| """ | |
| Return a list of the 'most informative' features used by this | |
| classifier. For the purpose of this function, the | |
| informativeness of a feature ``(fname,fval)`` is equal to the | |
| highest value of P(fname=fval|label), for any label, divided by | |
| the lowest value of P(fname=fval|label), for any label: | |
| | max[ P(fname=fval|label1) / P(fname=fval|label2) ] | |
| """ | |
| if hasattr(self, "_most_informative_features"): | |
| return self._most_informative_features[:n] | |
| else: | |
| # The set of (fname, fval) pairs used by this classifier. | |
| features = set() | |
| # The max & min probability associated w/ each (fname, fval) | |
| # pair. Maps (fname,fval) -> float. | |
| maxprob = defaultdict(lambda: 0.0) | |
| minprob = defaultdict(lambda: 1.0) | |
| for (label, fname), probdist in self._feature_probdist.items(): | |
| for fval in probdist.samples(): | |
| feature = (fname, fval) | |
| features.add(feature) | |
| p = probdist.prob(fval) | |
| maxprob[feature] = max(p, maxprob[feature]) | |
| minprob[feature] = min(p, minprob[feature]) | |
| if minprob[feature] == 0: | |
| features.discard(feature) | |
| # Convert features to a list, & sort it by how informative | |
| # features are. | |
| self._most_informative_features = sorted( | |
| features, | |
| key=lambda feature_: ( | |
| minprob[feature_] / maxprob[feature_], | |
| feature_[0], | |
| feature_[1] in [None, False, True], | |
| str(feature_[1]).lower(), | |
| ), | |
| ) | |
| return self._most_informative_features[:n] | |
| def train(cls, labeled_featuresets, estimator=ELEProbDist): | |
| """ | |
| :param labeled_featuresets: A list of classified featuresets, | |
| i.e., a list of tuples ``(featureset, label)``. | |
| """ | |
| label_freqdist = FreqDist() | |
| feature_freqdist = defaultdict(FreqDist) | |
| feature_values = defaultdict(set) | |
| fnames = set() | |
| # Count up how many times each feature value occurred, given | |
| # the label and featurename. | |
| for featureset, label in labeled_featuresets: | |
| label_freqdist[label] += 1 | |
| for fname, fval in featureset.items(): | |
| # Increment freq(fval|label, fname) | |
| feature_freqdist[label, fname][fval] += 1 | |
| # Record that fname can take the value fval. | |
| feature_values[fname].add(fval) | |
| # Keep a list of all feature names. | |
| fnames.add(fname) | |
| # If a feature didn't have a value given for an instance, then | |
| # we assume that it gets the implicit value 'None.' This loop | |
| # counts up the number of 'missing' feature values for each | |
| # (label,fname) pair, and increments the count of the fval | |
| # 'None' by that amount. | |
| for label in label_freqdist: | |
| num_samples = label_freqdist[label] | |
| for fname in fnames: | |
| count = feature_freqdist[label, fname].N() | |
| # Only add a None key when necessary, i.e. if there are | |
| # any samples with feature 'fname' missing. | |
| if num_samples - count > 0: | |
| feature_freqdist[label, fname][None] += num_samples - count | |
| feature_values[fname].add(None) | |
| # Create the P(label) distribution | |
| label_probdist = estimator(label_freqdist) | |
| # Create the P(fval|label, fname) distribution | |
| feature_probdist = {} | |
| for ((label, fname), freqdist) in feature_freqdist.items(): | |
| probdist = estimator(freqdist, bins=len(feature_values[fname])) | |
| feature_probdist[label, fname] = probdist | |
| return cls(label_probdist, feature_probdist) | |
| ##////////////////////////////////////////////////////// | |
| ## Demo | |
| ##////////////////////////////////////////////////////// | |
| def demo(): | |
| from nltk.classify.util import names_demo | |
| classifier = names_demo(NaiveBayesClassifier.train) | |
| classifier.show_most_informative_features() | |
| if __name__ == "__main__": | |
| demo() | |