peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/classify
/scikitlearn.py
| # Natural Language Toolkit: Interface to scikit-learn classifiers | |
| # | |
| # Author: Lars Buitinck <[email protected]> | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| """ | |
| scikit-learn (https://scikit-learn.org) is a machine learning library for | |
| Python. It supports many classification algorithms, including SVMs, | |
| Naive Bayes, logistic regression (MaxEnt) and decision trees. | |
| This package implements a wrapper around scikit-learn classifiers. To use this | |
| wrapper, construct a scikit-learn estimator object, then use that to construct | |
| a SklearnClassifier. E.g., to wrap a linear SVM with default settings: | |
| from sklearn.svm import LinearSVC | |
| from nltk.classify.scikitlearn import SklearnClassifier | |
| classif = SklearnClassifier(LinearSVC()) | |
| A scikit-learn classifier may include preprocessing steps when it's wrapped | |
| in a Pipeline object. The following constructs and wraps a Naive Bayes text | |
| classifier with tf-idf weighting and chi-square feature selection to get the | |
| best 1000 features: | |
| from sklearn.feature_extraction.text import TfidfTransformer | |
| from sklearn.feature_selection import SelectKBest, chi2 | |
| from sklearn.naive_bayes import MultinomialNB | |
| from sklearn.pipeline import Pipeline | |
| pipeline = Pipeline([('tfidf', TfidfTransformer()), | |
| ('chi2', SelectKBest(chi2, k=1000)), | |
| ('nb', MultinomialNB())]) | |
| classif = SklearnClassifier(pipeline) | |
| """ | |
| from nltk.classify.api import ClassifierI | |
| from nltk.probability import DictionaryProbDist | |
| try: | |
| from sklearn.feature_extraction import DictVectorizer | |
| from sklearn.preprocessing import LabelEncoder | |
| except ImportError: | |
| pass | |
| __all__ = ["SklearnClassifier"] | |
| class SklearnClassifier(ClassifierI): | |
| """Wrapper for scikit-learn classifiers.""" | |
| def __init__(self, estimator, dtype=float, sparse=True): | |
| """ | |
| :param estimator: scikit-learn classifier object. | |
| :param dtype: data type used when building feature array. | |
| scikit-learn estimators work exclusively on numeric data. The | |
| default value should be fine for almost all situations. | |
| :param sparse: Whether to use sparse matrices internally. | |
| The estimator must support these; not all scikit-learn classifiers | |
| do (see their respective documentation and look for "sparse | |
| matrix"). The default value is True, since most NLP problems | |
| involve sparse feature sets. Setting this to False may take a | |
| great amount of memory. | |
| :type sparse: boolean. | |
| """ | |
| self._clf = estimator | |
| self._encoder = LabelEncoder() | |
| self._vectorizer = DictVectorizer(dtype=dtype, sparse=sparse) | |
| def __repr__(self): | |
| return "<SklearnClassifier(%r)>" % self._clf | |
| def classify_many(self, featuresets): | |
| """Classify a batch of samples. | |
| :param featuresets: An iterable over featuresets, each a dict mapping | |
| strings to either numbers, booleans or strings. | |
| :return: The predicted class label for each input sample. | |
| :rtype: list | |
| """ | |
| X = self._vectorizer.transform(featuresets) | |
| classes = self._encoder.classes_ | |
| return [classes[i] for i in self._clf.predict(X)] | |
| def prob_classify_many(self, featuresets): | |
| """Compute per-class probabilities for a batch of samples. | |
| :param featuresets: An iterable over featuresets, each a dict mapping | |
| strings to either numbers, booleans or strings. | |
| :rtype: list of ``ProbDistI`` | |
| """ | |
| X = self._vectorizer.transform(featuresets) | |
| y_proba_list = self._clf.predict_proba(X) | |
| return [self._make_probdist(y_proba) for y_proba in y_proba_list] | |
| def labels(self): | |
| """The class labels used by this classifier. | |
| :rtype: list | |
| """ | |
| return list(self._encoder.classes_) | |
| def train(self, labeled_featuresets): | |
| """ | |
| Train (fit) the scikit-learn estimator. | |
| :param labeled_featuresets: A list of ``(featureset, label)`` | |
| where each ``featureset`` is a dict mapping strings to either | |
| numbers, booleans or strings. | |
| """ | |
| X, y = list(zip(*labeled_featuresets)) | |
| X = self._vectorizer.fit_transform(X) | |
| y = self._encoder.fit_transform(y) | |
| self._clf.fit(X, y) | |
| return self | |
| def _make_probdist(self, y_proba): | |
| classes = self._encoder.classes_ | |
| return DictionaryProbDist({classes[i]: p for i, p in enumerate(y_proba)}) | |
| if __name__ == "__main__": | |
| from sklearn.linear_model import LogisticRegression | |
| from sklearn.naive_bayes import BernoulliNB | |
| from nltk.classify.util import names_demo, names_demo_features | |
| # Bernoulli Naive Bayes is designed for binary classification. We set the | |
| # binarize option to False since we know we're passing boolean features. | |
| print("scikit-learn Naive Bayes:") | |
| names_demo( | |
| SklearnClassifier(BernoulliNB(binarize=False)).train, | |
| features=names_demo_features, | |
| ) | |
| # The C parameter on logistic regression (MaxEnt) controls regularization. | |
| # The higher it's set, the less regularized the classifier is. | |
| print("\n\nscikit-learn logistic regression:") | |
| names_demo( | |
| SklearnClassifier(LogisticRegression(C=1000)).train, | |
| features=names_demo_features, | |
| ) | |