peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/nltk
/classify
/textcat.py
| # Natural Language Toolkit: Language ID module using TextCat algorithm | |
| # | |
| # Copyright (C) 2001-2023 NLTK Project | |
| # Author: Avital Pekker <[email protected]> | |
| # | |
| # URL: <https://www.nltk.org/> | |
| # For license information, see LICENSE.TXT | |
| """ | |
| A module for language identification using the TextCat algorithm. | |
| An implementation of the text categorization algorithm | |
| presented in Cavnar, W. B. and J. M. Trenkle, | |
| "N-Gram-Based Text Categorization". | |
| The algorithm takes advantage of Zipf's law and uses | |
| n-gram frequencies to profile languages and text-yet to | |
| be identified-then compares using a distance measure. | |
| Language n-grams are provided by the "An Crubadan" | |
| project. A corpus reader was created separately to read | |
| those files. | |
| For details regarding the algorithm, see: | |
| https://www.let.rug.nl/~vannoord/TextCat/textcat.pdf | |
| For details about An Crubadan, see: | |
| https://borel.slu.edu/crubadan/index.html | |
| """ | |
| from sys import maxsize | |
| from nltk.util import trigrams | |
| # Note: this is NOT "re" you're likely used to. The regex module | |
| # is an alternative to the standard re module that supports | |
| # Unicode codepoint properties with the \p{} syntax. | |
| # You may have to "pip install regx" | |
| try: | |
| import regex as re | |
| except ImportError: | |
| re = None | |
| ###################################################################### | |
| ## Language identification using TextCat | |
| ###################################################################### | |
| class TextCat: | |
| _corpus = None | |
| fingerprints = {} | |
| _START_CHAR = "<" | |
| _END_CHAR = ">" | |
| last_distances = {} | |
| def __init__(self): | |
| if not re: | |
| raise OSError( | |
| "classify.textcat requires the regex module that " | |
| "supports unicode. Try '$ pip install regex' and " | |
| "see https://pypi.python.org/pypi/regex for " | |
| "further details." | |
| ) | |
| from nltk.corpus import crubadan | |
| self._corpus = crubadan | |
| # Load all language ngrams into cache | |
| for lang in self._corpus.langs(): | |
| self._corpus.lang_freq(lang) | |
| def remove_punctuation(self, text): | |
| """Get rid of punctuation except apostrophes""" | |
| return re.sub(r"[^\P{P}\']+", "", text) | |
| def profile(self, text): | |
| """Create FreqDist of trigrams within text""" | |
| from nltk import FreqDist, word_tokenize | |
| clean_text = self.remove_punctuation(text) | |
| tokens = word_tokenize(clean_text) | |
| fingerprint = FreqDist() | |
| for t in tokens: | |
| token_trigram_tuples = trigrams(self._START_CHAR + t + self._END_CHAR) | |
| token_trigrams = ["".join(tri) for tri in token_trigram_tuples] | |
| for cur_trigram in token_trigrams: | |
| if cur_trigram in fingerprint: | |
| fingerprint[cur_trigram] += 1 | |
| else: | |
| fingerprint[cur_trigram] = 1 | |
| return fingerprint | |
| def calc_dist(self, lang, trigram, text_profile): | |
| """Calculate the "out-of-place" measure between the | |
| text and language profile for a single trigram""" | |
| lang_fd = self._corpus.lang_freq(lang) | |
| dist = 0 | |
| if trigram in lang_fd: | |
| idx_lang_profile = list(lang_fd.keys()).index(trigram) | |
| idx_text = list(text_profile.keys()).index(trigram) | |
| # print(idx_lang_profile, ", ", idx_text) | |
| dist = abs(idx_lang_profile - idx_text) | |
| else: | |
| # Arbitrary but should be larger than | |
| # any possible trigram file length | |
| # in terms of total lines | |
| dist = maxsize | |
| return dist | |
| def lang_dists(self, text): | |
| """Calculate the "out-of-place" measure between | |
| the text and all languages""" | |
| distances = {} | |
| profile = self.profile(text) | |
| # For all the languages | |
| for lang in self._corpus._all_lang_freq.keys(): | |
| # Calculate distance metric for every trigram in | |
| # input text to be identified | |
| lang_dist = 0 | |
| for trigram in profile: | |
| lang_dist += self.calc_dist(lang, trigram, profile) | |
| distances[lang] = lang_dist | |
| return distances | |
| def guess_language(self, text): | |
| """Find the language with the min distance | |
| to the text and return its ISO 639-3 code""" | |
| self.last_distances = self.lang_dists(text) | |
| return min(self.last_distances, key=self.last_distances.get) | |
| #################################################') | |
| def demo(): | |
| from nltk.corpus import udhr | |
| langs = [ | |
| "Kurdish-UTF8", | |
| "Abkhaz-UTF8", | |
| "Farsi_Persian-UTF8", | |
| "Hindi-UTF8", | |
| "Hawaiian-UTF8", | |
| "Russian-UTF8", | |
| "Vietnamese-UTF8", | |
| "Serbian_Srpski-UTF8", | |
| "Esperanto-UTF8", | |
| ] | |
| friendly = { | |
| "kmr": "Northern Kurdish", | |
| "abk": "Abkhazian", | |
| "pes": "Iranian Persian", | |
| "hin": "Hindi", | |
| "haw": "Hawaiian", | |
| "rus": "Russian", | |
| "vie": "Vietnamese", | |
| "srp": "Serbian", | |
| "epo": "Esperanto", | |
| } | |
| tc = TextCat() | |
| for cur_lang in langs: | |
| # Get raw data from UDHR corpus | |
| raw_sentences = udhr.sents(cur_lang) | |
| rows = len(raw_sentences) - 1 | |
| cols = list(map(len, raw_sentences)) | |
| sample = "" | |
| # Generate a sample text of the language | |
| for i in range(0, rows): | |
| cur_sent = "" | |
| for j in range(0, cols[i]): | |
| cur_sent += " " + raw_sentences[i][j] | |
| sample += cur_sent | |
| # Try to detect what it is | |
| print("Language snippet: " + sample[0:140] + "...") | |
| guess = tc.guess_language(sample) | |
| print(f"Language detection: {guess} ({friendly[guess]})") | |
| print("#" * 140) | |
| if __name__ == "__main__": | |
| demo() | |