peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/sklearn
/linear_model
/_base.py
| """ | |
| Generalized Linear Models. | |
| """ | |
| # Author: Alexandre Gramfort <[email protected]> | |
| # Fabian Pedregosa <[email protected]> | |
| # Olivier Grisel <[email protected]> | |
| # Vincent Michel <[email protected]> | |
| # Peter Prettenhofer <[email protected]> | |
| # Mathieu Blondel <[email protected]> | |
| # Lars Buitinck | |
| # Maryan Morel <[email protected]> | |
| # Giorgio Patrini <[email protected]> | |
| # Maria Telenczuk <https://github.com/maikia> | |
| # License: BSD 3 clause | |
| import numbers | |
| import warnings | |
| from abc import ABCMeta, abstractmethod | |
| from numbers import Integral | |
| import numpy as np | |
| import scipy.sparse as sp | |
| from scipy import linalg, optimize, sparse | |
| from scipy.sparse.linalg import lsqr | |
| from scipy.special import expit | |
| from ..base import ( | |
| BaseEstimator, | |
| ClassifierMixin, | |
| MultiOutputMixin, | |
| RegressorMixin, | |
| _fit_context, | |
| ) | |
| from ..utils import check_array, check_random_state | |
| from ..utils._array_api import get_namespace | |
| from ..utils._seq_dataset import ( | |
| ArrayDataset32, | |
| ArrayDataset64, | |
| CSRDataset32, | |
| CSRDataset64, | |
| ) | |
| from ..utils.extmath import safe_sparse_dot | |
| from ..utils.parallel import Parallel, delayed | |
| from ..utils.sparsefuncs import mean_variance_axis | |
| from ..utils.validation import FLOAT_DTYPES, _check_sample_weight, check_is_fitted | |
| # TODO: bayesian_ridge_regression and bayesian_regression_ard | |
| # should be squashed into its respective objects. | |
| SPARSE_INTERCEPT_DECAY = 0.01 | |
| # For sparse data intercept updates are scaled by this decay factor to avoid | |
| # intercept oscillation. | |
| def make_dataset(X, y, sample_weight, random_state=None): | |
| """Create ``Dataset`` abstraction for sparse and dense inputs. | |
| This also returns the ``intercept_decay`` which is different | |
| for sparse datasets. | |
| Parameters | |
| ---------- | |
| X : array-like, shape (n_samples, n_features) | |
| Training data | |
| y : array-like, shape (n_samples, ) | |
| Target values. | |
| sample_weight : numpy array of shape (n_samples,) | |
| The weight of each sample | |
| random_state : int, RandomState instance or None (default) | |
| Determines random number generation for dataset random sampling. It is not | |
| used for dataset shuffling. | |
| Pass an int for reproducible output across multiple function calls. | |
| See :term:`Glossary <random_state>`. | |
| Returns | |
| ------- | |
| dataset | |
| The ``Dataset`` abstraction | |
| intercept_decay | |
| The intercept decay | |
| """ | |
| rng = check_random_state(random_state) | |
| # seed should never be 0 in SequentialDataset64 | |
| seed = rng.randint(1, np.iinfo(np.int32).max) | |
| if X.dtype == np.float32: | |
| CSRData = CSRDataset32 | |
| ArrayData = ArrayDataset32 | |
| else: | |
| CSRData = CSRDataset64 | |
| ArrayData = ArrayDataset64 | |
| if sp.issparse(X): | |
| dataset = CSRData(X.data, X.indptr, X.indices, y, sample_weight, seed=seed) | |
| intercept_decay = SPARSE_INTERCEPT_DECAY | |
| else: | |
| X = np.ascontiguousarray(X) | |
| dataset = ArrayData(X, y, sample_weight, seed=seed) | |
| intercept_decay = 1.0 | |
| return dataset, intercept_decay | |
| def _preprocess_data( | |
| X, | |
| y, | |
| *, | |
| fit_intercept, | |
| copy=True, | |
| copy_y=True, | |
| sample_weight=None, | |
| check_input=True, | |
| ): | |
| """Common data preprocessing for fitting linear models. | |
| This helper is in charge of the following steps: | |
| - Ensure that `sample_weight` is an array or `None`. | |
| - If `check_input=True`, perform standard input validation of `X`, `y`. | |
| - Perform copies if requested to avoid side-effects in case of inplace | |
| modifications of the input. | |
| Then, if `fit_intercept=True` this preprocessing centers both `X` and `y` as | |
| follows: | |
| - if `X` is dense, center the data and | |
| store the mean vector in `X_offset`. | |
| - if `X` is sparse, store the mean in `X_offset` | |
| without centering `X`. The centering is expected to be handled by the | |
| linear solver where appropriate. | |
| - in either case, always center `y` and store the mean in `y_offset`. | |
| - both `X_offset` and `y_offset` are always weighted by `sample_weight` | |
| if not set to `None`. | |
| If `fit_intercept=False`, no centering is performed and `X_offset`, `y_offset` | |
| are set to zero. | |
| Returns | |
| ------- | |
| X_out : {ndarray, sparse matrix} of shape (n_samples, n_features) | |
| If copy=True a copy of the input X is triggered, otherwise operations are | |
| inplace. | |
| If input X is dense, then X_out is centered. | |
| y_out : {ndarray, sparse matrix} of shape (n_samples,) or (n_samples, n_targets) | |
| Centered version of y. Possibly performed inplace on input y depending | |
| on the copy_y parameter. | |
| X_offset : ndarray of shape (n_features,) | |
| The mean per column of input X. | |
| y_offset : float or ndarray of shape (n_features,) | |
| X_scale : ndarray of shape (n_features,) | |
| Always an array of ones. TODO: refactor the code base to make it | |
| possible to remove this unused variable. | |
| """ | |
| if isinstance(sample_weight, numbers.Number): | |
| sample_weight = None | |
| if sample_weight is not None: | |
| sample_weight = np.asarray(sample_weight) | |
| if check_input: | |
| X = check_array(X, copy=copy, accept_sparse=["csr", "csc"], dtype=FLOAT_DTYPES) | |
| y = check_array(y, dtype=X.dtype, copy=copy_y, ensure_2d=False) | |
| else: | |
| y = y.astype(X.dtype, copy=copy_y) | |
| if copy: | |
| if sp.issparse(X): | |
| X = X.copy() | |
| else: | |
| X = X.copy(order="K") | |
| if fit_intercept: | |
| if sp.issparse(X): | |
| X_offset, X_var = mean_variance_axis(X, axis=0, weights=sample_weight) | |
| else: | |
| X_offset = np.average(X, axis=0, weights=sample_weight) | |
| X_offset = X_offset.astype(X.dtype, copy=False) | |
| X -= X_offset | |
| y_offset = np.average(y, axis=0, weights=sample_weight) | |
| y -= y_offset | |
| else: | |
| X_offset = np.zeros(X.shape[1], dtype=X.dtype) | |
| if y.ndim == 1: | |
| y_offset = X.dtype.type(0) | |
| else: | |
| y_offset = np.zeros(y.shape[1], dtype=X.dtype) | |
| # XXX: X_scale is no longer needed. It is an historic artifact from the | |
| # time where linear model exposed the normalize parameter. | |
| X_scale = np.ones(X.shape[1], dtype=X.dtype) | |
| return X, y, X_offset, y_offset, X_scale | |
| # TODO: _rescale_data should be factored into _preprocess_data. | |
| # Currently, the fact that sag implements its own way to deal with | |
| # sample_weight makes the refactoring tricky. | |
| def _rescale_data(X, y, sample_weight, inplace=False): | |
| """Rescale data sample-wise by square root of sample_weight. | |
| For many linear models, this enables easy support for sample_weight because | |
| (y - X w)' S (y - X w) | |
| with S = diag(sample_weight) becomes | |
| ||y_rescaled - X_rescaled w||_2^2 | |
| when setting | |
| y_rescaled = sqrt(S) y | |
| X_rescaled = sqrt(S) X | |
| Returns | |
| ------- | |
| X_rescaled : {array-like, sparse matrix} | |
| y_rescaled : {array-like, sparse matrix} | |
| """ | |
| # Assume that _validate_data and _check_sample_weight have been called by | |
| # the caller. | |
| n_samples = X.shape[0] | |
| sample_weight_sqrt = np.sqrt(sample_weight) | |
| if sp.issparse(X) or sp.issparse(y): | |
| sw_matrix = sparse.dia_matrix( | |
| (sample_weight_sqrt, 0), shape=(n_samples, n_samples) | |
| ) | |
| if sp.issparse(X): | |
| X = safe_sparse_dot(sw_matrix, X) | |
| else: | |
| if inplace: | |
| X *= sample_weight_sqrt[:, np.newaxis] | |
| else: | |
| X = X * sample_weight_sqrt[:, np.newaxis] | |
| if sp.issparse(y): | |
| y = safe_sparse_dot(sw_matrix, y) | |
| else: | |
| if inplace: | |
| if y.ndim == 1: | |
| y *= sample_weight_sqrt | |
| else: | |
| y *= sample_weight_sqrt[:, np.newaxis] | |
| else: | |
| if y.ndim == 1: | |
| y = y * sample_weight_sqrt | |
| else: | |
| y = y * sample_weight_sqrt[:, np.newaxis] | |
| return X, y, sample_weight_sqrt | |
| class LinearModel(BaseEstimator, metaclass=ABCMeta): | |
| """Base class for Linear Models""" | |
| def fit(self, X, y): | |
| """Fit model.""" | |
| def _decision_function(self, X): | |
| check_is_fitted(self) | |
| X = self._validate_data(X, accept_sparse=["csr", "csc", "coo"], reset=False) | |
| return safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ | |
| def predict(self, X): | |
| """ | |
| Predict using the linear model. | |
| Parameters | |
| ---------- | |
| X : array-like or sparse matrix, shape (n_samples, n_features) | |
| Samples. | |
| Returns | |
| ------- | |
| C : array, shape (n_samples,) | |
| Returns predicted values. | |
| """ | |
| return self._decision_function(X) | |
| def _set_intercept(self, X_offset, y_offset, X_scale): | |
| """Set the intercept_""" | |
| if self.fit_intercept: | |
| # We always want coef_.dtype=X.dtype. For instance, X.dtype can differ from | |
| # coef_.dtype if warm_start=True. | |
| self.coef_ = np.divide(self.coef_, X_scale, dtype=X_scale.dtype) | |
| self.intercept_ = y_offset - np.dot(X_offset, self.coef_.T) | |
| else: | |
| self.intercept_ = 0.0 | |
| def _more_tags(self): | |
| return {"requires_y": True} | |
| # XXX Should this derive from LinearModel? It should be a mixin, not an ABC. | |
| # Maybe the n_features checking can be moved to LinearModel. | |
| class LinearClassifierMixin(ClassifierMixin): | |
| """Mixin for linear classifiers. | |
| Handles prediction for sparse and dense X. | |
| """ | |
| def decision_function(self, X): | |
| """ | |
| Predict confidence scores for samples. | |
| The confidence score for a sample is proportional to the signed | |
| distance of that sample to the hyperplane. | |
| Parameters | |
| ---------- | |
| X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
| The data matrix for which we want to get the confidence scores. | |
| Returns | |
| ------- | |
| scores : ndarray of shape (n_samples,) or (n_samples, n_classes) | |
| Confidence scores per `(n_samples, n_classes)` combination. In the | |
| binary case, confidence score for `self.classes_[1]` where >0 means | |
| this class would be predicted. | |
| """ | |
| check_is_fitted(self) | |
| xp, _ = get_namespace(X) | |
| X = self._validate_data(X, accept_sparse="csr", reset=False) | |
| scores = safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ | |
| return xp.reshape(scores, (-1,)) if scores.shape[1] == 1 else scores | |
| def predict(self, X): | |
| """ | |
| Predict class labels for samples in X. | |
| Parameters | |
| ---------- | |
| X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
| The data matrix for which we want to get the predictions. | |
| Returns | |
| ------- | |
| y_pred : ndarray of shape (n_samples,) | |
| Vector containing the class labels for each sample. | |
| """ | |
| xp, _ = get_namespace(X) | |
| scores = self.decision_function(X) | |
| if len(scores.shape) == 1: | |
| indices = xp.astype(scores > 0, int) | |
| else: | |
| indices = xp.argmax(scores, axis=1) | |
| return xp.take(self.classes_, indices, axis=0) | |
| def _predict_proba_lr(self, X): | |
| """Probability estimation for OvR logistic regression. | |
| Positive class probabilities are computed as | |
| 1. / (1. + np.exp(-self.decision_function(X))); | |
| multiclass is handled by normalizing that over all classes. | |
| """ | |
| prob = self.decision_function(X) | |
| expit(prob, out=prob) | |
| if prob.ndim == 1: | |
| return np.vstack([1 - prob, prob]).T | |
| else: | |
| # OvR normalization, like LibLinear's predict_probability | |
| prob /= prob.sum(axis=1).reshape((prob.shape[0], -1)) | |
| return prob | |
| class SparseCoefMixin: | |
| """Mixin for converting coef_ to and from CSR format. | |
| L1-regularizing estimators should inherit this. | |
| """ | |
| def densify(self): | |
| """ | |
| Convert coefficient matrix to dense array format. | |
| Converts the ``coef_`` member (back) to a numpy.ndarray. This is the | |
| default format of ``coef_`` and is required for fitting, so calling | |
| this method is only required on models that have previously been | |
| sparsified; otherwise, it is a no-op. | |
| Returns | |
| ------- | |
| self | |
| Fitted estimator. | |
| """ | |
| msg = "Estimator, %(name)s, must be fitted before densifying." | |
| check_is_fitted(self, msg=msg) | |
| if sp.issparse(self.coef_): | |
| self.coef_ = self.coef_.toarray() | |
| return self | |
| def sparsify(self): | |
| """ | |
| Convert coefficient matrix to sparse format. | |
| Converts the ``coef_`` member to a scipy.sparse matrix, which for | |
| L1-regularized models can be much more memory- and storage-efficient | |
| than the usual numpy.ndarray representation. | |
| The ``intercept_`` member is not converted. | |
| Returns | |
| ------- | |
| self | |
| Fitted estimator. | |
| Notes | |
| ----- | |
| For non-sparse models, i.e. when there are not many zeros in ``coef_``, | |
| this may actually *increase* memory usage, so use this method with | |
| care. A rule of thumb is that the number of zero elements, which can | |
| be computed with ``(coef_ == 0).sum()``, must be more than 50% for this | |
| to provide significant benefits. | |
| After calling this method, further fitting with the partial_fit | |
| method (if any) will not work until you call densify. | |
| """ | |
| msg = "Estimator, %(name)s, must be fitted before sparsifying." | |
| check_is_fitted(self, msg=msg) | |
| self.coef_ = sp.csr_matrix(self.coef_) | |
| return self | |
| class LinearRegression(MultiOutputMixin, RegressorMixin, LinearModel): | |
| """ | |
| Ordinary least squares Linear Regression. | |
| LinearRegression fits a linear model with coefficients w = (w1, ..., wp) | |
| to minimize the residual sum of squares between the observed targets in | |
| the dataset, and the targets predicted by the linear approximation. | |
| Parameters | |
| ---------- | |
| fit_intercept : bool, default=True | |
| Whether to calculate the intercept for this model. If set | |
| to False, no intercept will be used in calculations | |
| (i.e. data is expected to be centered). | |
| copy_X : bool, default=True | |
| If True, X will be copied; else, it may be overwritten. | |
| n_jobs : int, default=None | |
| The number of jobs to use for the computation. This will only provide | |
| speedup in case of sufficiently large problems, that is if firstly | |
| `n_targets > 1` and secondly `X` is sparse or if `positive` is set | |
| to `True`. ``None`` means 1 unless in a | |
| :obj:`joblib.parallel_backend` context. ``-1`` means using all | |
| processors. See :term:`Glossary <n_jobs>` for more details. | |
| positive : bool, default=False | |
| When set to ``True``, forces the coefficients to be positive. This | |
| option is only supported for dense arrays. | |
| .. versionadded:: 0.24 | |
| Attributes | |
| ---------- | |
| coef_ : array of shape (n_features, ) or (n_targets, n_features) | |
| Estimated coefficients for the linear regression problem. | |
| If multiple targets are passed during the fit (y 2D), this | |
| is a 2D array of shape (n_targets, n_features), while if only | |
| one target is passed, this is a 1D array of length n_features. | |
| rank_ : int | |
| Rank of matrix `X`. Only available when `X` is dense. | |
| singular_ : array of shape (min(X, y),) | |
| Singular values of `X`. Only available when `X` is dense. | |
| intercept_ : float or array of shape (n_targets,) | |
| Independent term in the linear model. Set to 0.0 if | |
| `fit_intercept = False`. | |
| n_features_in_ : int | |
| Number of features seen during :term:`fit`. | |
| .. versionadded:: 0.24 | |
| feature_names_in_ : ndarray of shape (`n_features_in_`,) | |
| Names of features seen during :term:`fit`. Defined only when `X` | |
| has feature names that are all strings. | |
| .. versionadded:: 1.0 | |
| See Also | |
| -------- | |
| Ridge : Ridge regression addresses some of the | |
| problems of Ordinary Least Squares by imposing a penalty on the | |
| size of the coefficients with l2 regularization. | |
| Lasso : The Lasso is a linear model that estimates | |
| sparse coefficients with l1 regularization. | |
| ElasticNet : Elastic-Net is a linear regression | |
| model trained with both l1 and l2 -norm regularization of the | |
| coefficients. | |
| Notes | |
| ----- | |
| From the implementation point of view, this is just plain Ordinary | |
| Least Squares (scipy.linalg.lstsq) or Non Negative Least Squares | |
| (scipy.optimize.nnls) wrapped as a predictor object. | |
| Examples | |
| -------- | |
| >>> import numpy as np | |
| >>> from sklearn.linear_model import LinearRegression | |
| >>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]]) | |
| >>> # y = 1 * x_0 + 2 * x_1 + 3 | |
| >>> y = np.dot(X, np.array([1, 2])) + 3 | |
| >>> reg = LinearRegression().fit(X, y) | |
| >>> reg.score(X, y) | |
| 1.0 | |
| >>> reg.coef_ | |
| array([1., 2.]) | |
| >>> reg.intercept_ | |
| 3.0... | |
| >>> reg.predict(np.array([[3, 5]])) | |
| array([16.]) | |
| """ | |
| _parameter_constraints: dict = { | |
| "fit_intercept": ["boolean"], | |
| "copy_X": ["boolean"], | |
| "n_jobs": [None, Integral], | |
| "positive": ["boolean"], | |
| } | |
| def __init__( | |
| self, | |
| *, | |
| fit_intercept=True, | |
| copy_X=True, | |
| n_jobs=None, | |
| positive=False, | |
| ): | |
| self.fit_intercept = fit_intercept | |
| self.copy_X = copy_X | |
| self.n_jobs = n_jobs | |
| self.positive = positive | |
| def fit(self, X, y, sample_weight=None): | |
| """ | |
| Fit linear model. | |
| Parameters | |
| ---------- | |
| X : {array-like, sparse matrix} of shape (n_samples, n_features) | |
| Training data. | |
| y : array-like of shape (n_samples,) or (n_samples, n_targets) | |
| Target values. Will be cast to X's dtype if necessary. | |
| sample_weight : array-like of shape (n_samples,), default=None | |
| Individual weights for each sample. | |
| .. versionadded:: 0.17 | |
| parameter *sample_weight* support to LinearRegression. | |
| Returns | |
| ------- | |
| self : object | |
| Fitted Estimator. | |
| """ | |
| n_jobs_ = self.n_jobs | |
| accept_sparse = False if self.positive else ["csr", "csc", "coo"] | |
| X, y = self._validate_data( | |
| X, y, accept_sparse=accept_sparse, y_numeric=True, multi_output=True | |
| ) | |
| has_sw = sample_weight is not None | |
| if has_sw: | |
| sample_weight = _check_sample_weight( | |
| sample_weight, X, dtype=X.dtype, only_non_negative=True | |
| ) | |
| # Note that neither _rescale_data nor the rest of the fit method of | |
| # LinearRegression can benefit from in-place operations when X is a | |
| # sparse matrix. Therefore, let's not copy X when it is sparse. | |
| copy_X_in_preprocess_data = self.copy_X and not sp.issparse(X) | |
| X, y, X_offset, y_offset, X_scale = _preprocess_data( | |
| X, | |
| y, | |
| fit_intercept=self.fit_intercept, | |
| copy=copy_X_in_preprocess_data, | |
| sample_weight=sample_weight, | |
| ) | |
| if has_sw: | |
| # Sample weight can be implemented via a simple rescaling. Note | |
| # that we safely do inplace rescaling when _preprocess_data has | |
| # already made a copy if requested. | |
| X, y, sample_weight_sqrt = _rescale_data( | |
| X, y, sample_weight, inplace=copy_X_in_preprocess_data | |
| ) | |
| if self.positive: | |
| if y.ndim < 2: | |
| self.coef_ = optimize.nnls(X, y)[0] | |
| else: | |
| # scipy.optimize.nnls cannot handle y with shape (M, K) | |
| outs = Parallel(n_jobs=n_jobs_)( | |
| delayed(optimize.nnls)(X, y[:, j]) for j in range(y.shape[1]) | |
| ) | |
| self.coef_ = np.vstack([out[0] for out in outs]) | |
| elif sp.issparse(X): | |
| X_offset_scale = X_offset / X_scale | |
| if has_sw: | |
| def matvec(b): | |
| return X.dot(b) - sample_weight_sqrt * b.dot(X_offset_scale) | |
| def rmatvec(b): | |
| return X.T.dot(b) - X_offset_scale * b.dot(sample_weight_sqrt) | |
| else: | |
| def matvec(b): | |
| return X.dot(b) - b.dot(X_offset_scale) | |
| def rmatvec(b): | |
| return X.T.dot(b) - X_offset_scale * b.sum() | |
| X_centered = sparse.linalg.LinearOperator( | |
| shape=X.shape, matvec=matvec, rmatvec=rmatvec | |
| ) | |
| if y.ndim < 2: | |
| self.coef_ = lsqr(X_centered, y)[0] | |
| else: | |
| # sparse_lstsq cannot handle y with shape (M, K) | |
| outs = Parallel(n_jobs=n_jobs_)( | |
| delayed(lsqr)(X_centered, y[:, j].ravel()) | |
| for j in range(y.shape[1]) | |
| ) | |
| self.coef_ = np.vstack([out[0] for out in outs]) | |
| else: | |
| self.coef_, _, self.rank_, self.singular_ = linalg.lstsq(X, y) | |
| self.coef_ = self.coef_.T | |
| if y.ndim == 1: | |
| self.coef_ = np.ravel(self.coef_) | |
| self._set_intercept(X_offset, y_offset, X_scale) | |
| return self | |
| def _check_precomputed_gram_matrix( | |
| X, precompute, X_offset, X_scale, rtol=None, atol=1e-5 | |
| ): | |
| """Computes a single element of the gram matrix and compares it to | |
| the corresponding element of the user supplied gram matrix. | |
| If the values do not match a ValueError will be thrown. | |
| Parameters | |
| ---------- | |
| X : ndarray of shape (n_samples, n_features) | |
| Data array. | |
| precompute : array-like of shape (n_features, n_features) | |
| User-supplied gram matrix. | |
| X_offset : ndarray of shape (n_features,) | |
| Array of feature means used to center design matrix. | |
| X_scale : ndarray of shape (n_features,) | |
| Array of feature scale factors used to normalize design matrix. | |
| rtol : float, default=None | |
| Relative tolerance; see numpy.allclose | |
| If None, it is set to 1e-4 for arrays of dtype numpy.float32 and 1e-7 | |
| otherwise. | |
| atol : float, default=1e-5 | |
| absolute tolerance; see :func`numpy.allclose`. Note that the default | |
| here is more tolerant than the default for | |
| :func:`numpy.testing.assert_allclose`, where `atol=0`. | |
| Raises | |
| ------ | |
| ValueError | |
| Raised when the provided Gram matrix is not consistent. | |
| """ | |
| n_features = X.shape[1] | |
| f1 = n_features // 2 | |
| f2 = min(f1 + 1, n_features - 1) | |
| v1 = (X[:, f1] - X_offset[f1]) * X_scale[f1] | |
| v2 = (X[:, f2] - X_offset[f2]) * X_scale[f2] | |
| expected = np.dot(v1, v2) | |
| actual = precompute[f1, f2] | |
| dtypes = [precompute.dtype, expected.dtype] | |
| if rtol is None: | |
| rtols = [1e-4 if dtype == np.float32 else 1e-7 for dtype in dtypes] | |
| rtol = max(rtols) | |
| if not np.isclose(expected, actual, rtol=rtol, atol=atol): | |
| raise ValueError( | |
| "Gram matrix passed in via 'precompute' parameter " | |
| "did not pass validation when a single element was " | |
| "checked - please check that it was computed " | |
| f"properly. For element ({f1},{f2}) we computed " | |
| f"{expected} but the user-supplied value was " | |
| f"{actual}." | |
| ) | |
| def _pre_fit( | |
| X, | |
| y, | |
| Xy, | |
| precompute, | |
| fit_intercept, | |
| copy, | |
| check_input=True, | |
| sample_weight=None, | |
| ): | |
| """Function used at beginning of fit in linear models with L1 or L0 penalty. | |
| This function applies _preprocess_data and additionally computes the gram matrix | |
| `precompute` as needed as well as `Xy`. | |
| """ | |
| n_samples, n_features = X.shape | |
| if sparse.issparse(X): | |
| # copy is not needed here as X is not modified inplace when X is sparse | |
| precompute = False | |
| X, y, X_offset, y_offset, X_scale = _preprocess_data( | |
| X, | |
| y, | |
| fit_intercept=fit_intercept, | |
| copy=False, | |
| check_input=check_input, | |
| sample_weight=sample_weight, | |
| ) | |
| else: | |
| # copy was done in fit if necessary | |
| X, y, X_offset, y_offset, X_scale = _preprocess_data( | |
| X, | |
| y, | |
| fit_intercept=fit_intercept, | |
| copy=copy, | |
| check_input=check_input, | |
| sample_weight=sample_weight, | |
| ) | |
| # Rescale only in dense case. Sparse cd solver directly deals with | |
| # sample_weight. | |
| if sample_weight is not None: | |
| # This triggers copies anyway. | |
| X, y, _ = _rescale_data(X, y, sample_weight=sample_weight) | |
| if hasattr(precompute, "__array__"): | |
| if fit_intercept and not np.allclose(X_offset, np.zeros(n_features)): | |
| warnings.warn( | |
| ( | |
| "Gram matrix was provided but X was centered to fit " | |
| "intercept: recomputing Gram matrix." | |
| ), | |
| UserWarning, | |
| ) | |
| # TODO: instead of warning and recomputing, we could just center | |
| # the user provided Gram matrix a-posteriori (after making a copy | |
| # when `copy=True`). | |
| # recompute Gram | |
| precompute = "auto" | |
| Xy = None | |
| elif check_input: | |
| # If we're going to use the user's precomputed gram matrix, we | |
| # do a quick check to make sure its not totally bogus. | |
| _check_precomputed_gram_matrix(X, precompute, X_offset, X_scale) | |
| # precompute if n_samples > n_features | |
| if isinstance(precompute, str) and precompute == "auto": | |
| precompute = n_samples > n_features | |
| if precompute is True: | |
| # make sure that the 'precompute' array is contiguous. | |
| precompute = np.empty(shape=(n_features, n_features), dtype=X.dtype, order="C") | |
| np.dot(X.T, X, out=precompute) | |
| if not hasattr(precompute, "__array__"): | |
| Xy = None # cannot use Xy if precompute is not Gram | |
| if hasattr(precompute, "__array__") and Xy is None: | |
| common_dtype = np.result_type(X.dtype, y.dtype) | |
| if y.ndim == 1: | |
| # Xy is 1d, make sure it is contiguous. | |
| Xy = np.empty(shape=n_features, dtype=common_dtype, order="C") | |
| np.dot(X.T, y, out=Xy) | |
| else: | |
| # Make sure that Xy is always F contiguous even if X or y are not | |
| # contiguous: the goal is to make it fast to extract the data for a | |
| # specific target. | |
| n_targets = y.shape[1] | |
| Xy = np.empty(shape=(n_features, n_targets), dtype=common_dtype, order="F") | |
| np.dot(y.T, X, out=Xy.T) | |
| return X, y, X_offset, y_offset, X_scale, precompute, Xy | |