peacock-data-public-datasets-idc-cronscript
/
venv
/lib
/python3.10
/site-packages
/scipy
/cluster
/tests
/test_hierarchy.py
# | |
# Author: Damian Eads | |
# Date: April 17, 2008 | |
# | |
# Copyright (C) 2008 Damian Eads | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions | |
# are met: | |
# | |
# 1. Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# | |
# 2. Redistributions in binary form must reproduce the above | |
# copyright notice, this list of conditions and the following | |
# disclaimer in the documentation and/or other materials provided | |
# with the distribution. | |
# | |
# 3. The name of the author may not be used to endorse or promote | |
# products derived from this software without specific prior | |
# written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS | |
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | |
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | |
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE | |
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | |
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING | |
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | |
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
import numpy as np | |
from numpy.testing import assert_allclose, assert_equal, assert_, assert_warns | |
import pytest | |
from pytest import raises as assert_raises | |
import scipy.cluster.hierarchy | |
from scipy.cluster.hierarchy import ( | |
ClusterWarning, linkage, from_mlab_linkage, to_mlab_linkage, | |
num_obs_linkage, inconsistent, cophenet, fclusterdata, fcluster, | |
is_isomorphic, single, leaders, | |
correspond, is_monotonic, maxdists, maxinconsts, maxRstat, | |
is_valid_linkage, is_valid_im, to_tree, leaves_list, dendrogram, | |
set_link_color_palette, cut_tree, optimal_leaf_ordering, | |
_order_cluster_tree, _hierarchy, _LINKAGE_METHODS) | |
from scipy.spatial.distance import pdist | |
from scipy.cluster._hierarchy import Heap | |
from scipy.conftest import array_api_compatible | |
from scipy._lib._array_api import xp_assert_close, xp_assert_equal | |
from . import hierarchy_test_data | |
# Matplotlib is not a scipy dependency but is optionally used in dendrogram, so | |
# check if it's available | |
try: | |
import matplotlib | |
# and set the backend to be Agg (no gui) | |
matplotlib.use('Agg') | |
# before importing pyplot | |
import matplotlib.pyplot as plt | |
have_matplotlib = True | |
except Exception: | |
have_matplotlib = False | |
pytestmark = [array_api_compatible, pytest.mark.usefixtures("skip_if_array_api")] | |
skip_if_array_api = pytest.mark.skip_if_array_api | |
class TestLinkage: | |
def test_linkage_non_finite_elements_in_distance_matrix(self, xp): | |
# Tests linkage(Y) where Y contains a non-finite element (e.g. NaN or Inf). | |
# Exception expected. | |
y = xp.zeros((6,)) | |
y[0] = xp.nan | |
assert_raises(ValueError, linkage, y) | |
def test_linkage_empty_distance_matrix(self, xp): | |
# Tests linkage(Y) where Y is a 0x4 linkage matrix. Exception expected. | |
y = xp.zeros((0,)) | |
assert_raises(ValueError, linkage, y) | |
def test_linkage_tdist(self, xp): | |
for method in ['single', 'complete', 'average', 'weighted']: | |
self.check_linkage_tdist(method, xp) | |
def check_linkage_tdist(self, method, xp): | |
# Tests linkage(Y, method) on the tdist data set. | |
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), method) | |
expectedZ = getattr(hierarchy_test_data, 'linkage_ytdist_' + method) | |
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-10) | |
def test_linkage_X(self, xp): | |
for method in ['centroid', 'median', 'ward']: | |
self.check_linkage_q(method, xp) | |
def check_linkage_q(self, method, xp): | |
# Tests linkage(Y, method) on the Q data set. | |
Z = linkage(xp.asarray(hierarchy_test_data.X), method) | |
expectedZ = getattr(hierarchy_test_data, 'linkage_X_' + method) | |
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-06) | |
y = scipy.spatial.distance.pdist(hierarchy_test_data.X, | |
metric="euclidean") | |
Z = linkage(xp.asarray(y), method) | |
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-06) | |
def test_compare_with_trivial(self, xp): | |
rng = np.random.RandomState(0) | |
n = 20 | |
X = rng.rand(n, 2) | |
d = pdist(X) | |
for method, code in _LINKAGE_METHODS.items(): | |
Z_trivial = _hierarchy.linkage(d, n, code) | |
Z = linkage(xp.asarray(d), method) | |
xp_assert_close(Z, xp.asarray(Z_trivial), rtol=1e-14, atol=1e-15) | |
def test_optimal_leaf_ordering(self, xp): | |
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), optimal_ordering=True) | |
expectedZ = getattr(hierarchy_test_data, 'linkage_ytdist_single_olo') | |
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-10) | |
class TestLinkageTies: | |
_expectations = { | |
'single': np.array([[0, 1, 1.41421356, 2], | |
[2, 3, 1.41421356, 3]]), | |
'complete': np.array([[0, 1, 1.41421356, 2], | |
[2, 3, 2.82842712, 3]]), | |
'average': np.array([[0, 1, 1.41421356, 2], | |
[2, 3, 2.12132034, 3]]), | |
'weighted': np.array([[0, 1, 1.41421356, 2], | |
[2, 3, 2.12132034, 3]]), | |
'centroid': np.array([[0, 1, 1.41421356, 2], | |
[2, 3, 2.12132034, 3]]), | |
'median': np.array([[0, 1, 1.41421356, 2], | |
[2, 3, 2.12132034, 3]]), | |
'ward': np.array([[0, 1, 1.41421356, 2], | |
[2, 3, 2.44948974, 3]]), | |
} | |
def test_linkage_ties(self, xp): | |
for method in ['single', 'complete', 'average', 'weighted', | |
'centroid', 'median', 'ward']: | |
self.check_linkage_ties(method, xp) | |
def check_linkage_ties(self, method, xp): | |
X = xp.asarray([[-1, -1], [0, 0], [1, 1]]) | |
Z = linkage(X, method=method) | |
expectedZ = self._expectations[method] | |
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-06) | |
class TestInconsistent: | |
def test_inconsistent_tdist(self, xp): | |
for depth in hierarchy_test_data.inconsistent_ytdist: | |
self.check_inconsistent_tdist(depth, xp) | |
def check_inconsistent_tdist(self, depth, xp): | |
Z = xp.asarray(hierarchy_test_data.linkage_ytdist_single) | |
xp_assert_close(inconsistent(Z, depth), | |
xp.asarray(hierarchy_test_data.inconsistent_ytdist[depth])) | |
class TestCopheneticDistance: | |
def test_linkage_cophenet_tdist_Z(self, xp): | |
# Tests cophenet(Z) on tdist data set. | |
expectedM = xp.asarray([268, 295, 255, 255, 295, 295, 268, 268, 295, 295, | |
295, 138, 219, 295, 295]) | |
Z = xp.asarray(hierarchy_test_data.linkage_ytdist_single) | |
M = cophenet(Z) | |
xp_assert_close(M, xp.asarray(expectedM, dtype=xp.float64), atol=1e-10) | |
def test_linkage_cophenet_tdist_Z_Y(self, xp): | |
# Tests cophenet(Z, Y) on tdist data set. | |
Z = xp.asarray(hierarchy_test_data.linkage_ytdist_single) | |
(c, M) = cophenet(Z, xp.asarray(hierarchy_test_data.ytdist)) | |
expectedM = xp.asarray([268, 295, 255, 255, 295, 295, 268, 268, 295, 295, | |
295, 138, 219, 295, 295], dtype=xp.float64) | |
expectedc = xp.asarray(0.639931296433393415057366837573, dtype=xp.float64)[()] | |
xp_assert_close(c, expectedc, atol=1e-10) | |
xp_assert_close(M, expectedM, atol=1e-10) | |
class TestMLabLinkageConversion: | |
def test_mlab_linkage_conversion_empty(self, xp): | |
# Tests from/to_mlab_linkage on empty linkage array. | |
X = xp.asarray([], dtype=xp.float64) | |
xp_assert_equal(from_mlab_linkage(X), X) | |
xp_assert_equal(to_mlab_linkage(X), X) | |
def test_mlab_linkage_conversion_single_row(self, xp): | |
# Tests from/to_mlab_linkage on linkage array with single row. | |
Z = xp.asarray([[0., 1., 3., 2.]]) | |
Zm = xp.asarray([[1, 2, 3]]) | |
xp_assert_close(from_mlab_linkage(Zm), xp.asarray(Z, dtype=xp.float64), | |
rtol=1e-15) | |
xp_assert_close(to_mlab_linkage(Z), xp.asarray(Zm, dtype=xp.float64), | |
rtol=1e-15) | |
def test_mlab_linkage_conversion_multiple_rows(self, xp): | |
# Tests from/to_mlab_linkage on linkage array with multiple rows. | |
Zm = xp.asarray([[3, 6, 138], [4, 5, 219], | |
[1, 8, 255], [2, 9, 268], [7, 10, 295]]) | |
Z = xp.asarray([[2., 5., 138., 2.], | |
[3., 4., 219., 2.], | |
[0., 7., 255., 3.], | |
[1., 8., 268., 4.], | |
[6., 9., 295., 6.]], | |
dtype=xp.float64) | |
xp_assert_close(from_mlab_linkage(Zm), Z, rtol=1e-15) | |
xp_assert_close(to_mlab_linkage(Z), xp.asarray(Zm, dtype=xp.float64), | |
rtol=1e-15) | |
class TestFcluster: | |
def test_fclusterdata(self, xp): | |
for t in hierarchy_test_data.fcluster_inconsistent: | |
self.check_fclusterdata(t, 'inconsistent', xp) | |
for t in hierarchy_test_data.fcluster_distance: | |
self.check_fclusterdata(t, 'distance', xp) | |
for t in hierarchy_test_data.fcluster_maxclust: | |
self.check_fclusterdata(t, 'maxclust', xp) | |
def check_fclusterdata(self, t, criterion, xp): | |
# Tests fclusterdata(X, criterion=criterion, t=t) on a random 3-cluster data set | |
expectedT = xp.asarray(getattr(hierarchy_test_data, 'fcluster_' + criterion)[t]) | |
X = xp.asarray(hierarchy_test_data.Q_X) | |
T = fclusterdata(X, criterion=criterion, t=t) | |
assert_(is_isomorphic(T, expectedT)) | |
def test_fcluster(self, xp): | |
for t in hierarchy_test_data.fcluster_inconsistent: | |
self.check_fcluster(t, 'inconsistent', xp) | |
for t in hierarchy_test_data.fcluster_distance: | |
self.check_fcluster(t, 'distance', xp) | |
for t in hierarchy_test_data.fcluster_maxclust: | |
self.check_fcluster(t, 'maxclust', xp) | |
def check_fcluster(self, t, criterion, xp): | |
# Tests fcluster(Z, criterion=criterion, t=t) on a random 3-cluster data set. | |
expectedT = xp.asarray(getattr(hierarchy_test_data, 'fcluster_' + criterion)[t]) | |
Z = single(xp.asarray(hierarchy_test_data.Q_X)) | |
T = fcluster(Z, criterion=criterion, t=t) | |
assert_(is_isomorphic(T, expectedT)) | |
def test_fcluster_monocrit(self, xp): | |
for t in hierarchy_test_data.fcluster_distance: | |
self.check_fcluster_monocrit(t, xp) | |
for t in hierarchy_test_data.fcluster_maxclust: | |
self.check_fcluster_maxclust_monocrit(t, xp) | |
def check_fcluster_monocrit(self, t, xp): | |
expectedT = xp.asarray(hierarchy_test_data.fcluster_distance[t]) | |
Z = single(xp.asarray(hierarchy_test_data.Q_X)) | |
T = fcluster(Z, t, criterion='monocrit', monocrit=maxdists(Z)) | |
assert_(is_isomorphic(T, expectedT)) | |
def check_fcluster_maxclust_monocrit(self, t, xp): | |
expectedT = xp.asarray(hierarchy_test_data.fcluster_maxclust[t]) | |
Z = single(xp.asarray(hierarchy_test_data.Q_X)) | |
T = fcluster(Z, t, criterion='maxclust_monocrit', monocrit=maxdists(Z)) | |
assert_(is_isomorphic(T, expectedT)) | |
class TestLeaders: | |
def test_leaders_single(self, xp): | |
# Tests leaders using a flat clustering generated by single linkage. | |
X = hierarchy_test_data.Q_X | |
Y = pdist(X) | |
Y = xp.asarray(Y) | |
Z = linkage(Y) | |
T = fcluster(Z, criterion='maxclust', t=3) | |
Lright = (xp.asarray([53, 55, 56]), xp.asarray([2, 3, 1])) | |
T = xp.asarray(T, dtype=xp.int32) | |
L = leaders(Z, T) | |
assert_allclose(np.concatenate(L), np.concatenate(Lright), rtol=1e-15) | |
class TestIsIsomorphic: | |
def test_array_like(self, xp): | |
assert is_isomorphic([1, 1, 1], [2, 2, 2]) | |
assert is_isomorphic([], []) | |
def test_is_isomorphic_1(self, xp): | |
# Tests is_isomorphic on test case #1 (one flat cluster, different labellings) | |
a = xp.asarray([1, 1, 1]) | |
b = xp.asarray([2, 2, 2]) | |
assert is_isomorphic(a, b) | |
assert is_isomorphic(b, a) | |
def test_is_isomorphic_2(self, xp): | |
# Tests is_isomorphic on test case #2 (two flat clusters, different labelings) | |
a = xp.asarray([1, 7, 1]) | |
b = xp.asarray([2, 3, 2]) | |
assert is_isomorphic(a, b) | |
assert is_isomorphic(b, a) | |
def test_is_isomorphic_3(self, xp): | |
# Tests is_isomorphic on test case #3 (no flat clusters) | |
a = xp.asarray([]) | |
b = xp.asarray([]) | |
assert is_isomorphic(a, b) | |
def test_is_isomorphic_4A(self, xp): | |
# Tests is_isomorphic on test case #4A | |
# (3 flat clusters, different labelings, isomorphic) | |
a = xp.asarray([1, 2, 3]) | |
b = xp.asarray([1, 3, 2]) | |
assert is_isomorphic(a, b) | |
assert is_isomorphic(b, a) | |
def test_is_isomorphic_4B(self, xp): | |
# Tests is_isomorphic on test case #4B | |
# (3 flat clusters, different labelings, nonisomorphic) | |
a = xp.asarray([1, 2, 3, 3]) | |
b = xp.asarray([1, 3, 2, 3]) | |
assert is_isomorphic(a, b) is False | |
assert is_isomorphic(b, a) is False | |
def test_is_isomorphic_4C(self, xp): | |
# Tests is_isomorphic on test case #4C | |
# (3 flat clusters, different labelings, isomorphic) | |
a = xp.asarray([7, 2, 3]) | |
b = xp.asarray([6, 3, 2]) | |
assert is_isomorphic(a, b) | |
assert is_isomorphic(b, a) | |
def test_is_isomorphic_5(self, xp): | |
# Tests is_isomorphic on test case #5 (1000 observations, 2/3/5 random | |
# clusters, random permutation of the labeling). | |
for nc in [2, 3, 5]: | |
self.help_is_isomorphic_randperm(1000, nc, xp=xp) | |
def test_is_isomorphic_6(self, xp): | |
# Tests is_isomorphic on test case #5A (1000 observations, 2/3/5 random | |
# clusters, random permutation of the labeling, slightly | |
# nonisomorphic.) | |
for nc in [2, 3, 5]: | |
self.help_is_isomorphic_randperm(1000, nc, True, 5, xp=xp) | |
def test_is_isomorphic_7(self, xp): | |
# Regression test for gh-6271 | |
a = xp.asarray([1, 2, 3]) | |
b = xp.asarray([1, 1, 1]) | |
assert not is_isomorphic(a, b) | |
def help_is_isomorphic_randperm(self, nobs, nclusters, noniso=False, nerrors=0, | |
*, xp): | |
for k in range(3): | |
a = (np.random.rand(nobs) * nclusters).astype(int) | |
b = np.zeros(a.size, dtype=int) | |
P = np.random.permutation(nclusters) | |
for i in range(0, a.shape[0]): | |
b[i] = P[a[i]] | |
if noniso: | |
Q = np.random.permutation(nobs) | |
b[Q[0:nerrors]] += 1 | |
b[Q[0:nerrors]] %= nclusters | |
a = xp.asarray(a) | |
b = xp.asarray(b) | |
assert is_isomorphic(a, b) == (not noniso) | |
assert is_isomorphic(b, a) == (not noniso) | |
class TestIsValidLinkage: | |
def test_is_valid_linkage_various_size(self, xp): | |
for nrow, ncol, valid in [(2, 5, False), (2, 3, False), | |
(1, 4, True), (2, 4, True)]: | |
self.check_is_valid_linkage_various_size(nrow, ncol, valid, xp) | |
def check_is_valid_linkage_various_size(self, nrow, ncol, valid, xp): | |
# Tests is_valid_linkage(Z) with linkage matrices of various sizes | |
Z = xp.asarray([[0, 1, 3.0, 2, 5], | |
[3, 2, 4.0, 3, 3]], dtype=xp.float64) | |
Z = Z[:nrow, :ncol] | |
assert_(is_valid_linkage(Z) == valid) | |
if not valid: | |
assert_raises(ValueError, is_valid_linkage, Z, throw=True) | |
def test_is_valid_linkage_int_type(self, xp): | |
# Tests is_valid_linkage(Z) with integer type. | |
Z = xp.asarray([[0, 1, 3.0, 2], | |
[3, 2, 4.0, 3]], dtype=xp.int64) | |
assert_(is_valid_linkage(Z) is False) | |
assert_raises(TypeError, is_valid_linkage, Z, throw=True) | |
def test_is_valid_linkage_empty(self, xp): | |
# Tests is_valid_linkage(Z) with empty linkage. | |
Z = xp.zeros((0, 4), dtype=xp.float64) | |
assert_(is_valid_linkage(Z) is False) | |
assert_raises(ValueError, is_valid_linkage, Z, throw=True) | |
def test_is_valid_linkage_4_and_up(self, xp): | |
# Tests is_valid_linkage(Z) on linkage on observation sets between | |
# sizes 4 and 15 (step size 3). | |
for i in range(4, 15, 3): | |
y = np.random.rand(i*(i-1)//2) | |
y = xp.asarray(y) | |
Z = linkage(y) | |
assert_(is_valid_linkage(Z) is True) | |
def test_is_valid_linkage_4_and_up_neg_index_left(self, xp): | |
# Tests is_valid_linkage(Z) on linkage on observation sets between | |
# sizes 4 and 15 (step size 3) with negative indices (left). | |
for i in range(4, 15, 3): | |
y = np.random.rand(i*(i-1)//2) | |
y = xp.asarray(y) | |
Z = linkage(y) | |
Z[i//2,0] = -2 | |
assert_(is_valid_linkage(Z) is False) | |
assert_raises(ValueError, is_valid_linkage, Z, throw=True) | |
def test_is_valid_linkage_4_and_up_neg_index_right(self, xp): | |
# Tests is_valid_linkage(Z) on linkage on observation sets between | |
# sizes 4 and 15 (step size 3) with negative indices (right). | |
for i in range(4, 15, 3): | |
y = np.random.rand(i*(i-1)//2) | |
y = xp.asarray(y) | |
Z = linkage(y) | |
Z[i//2,1] = -2 | |
assert_(is_valid_linkage(Z) is False) | |
assert_raises(ValueError, is_valid_linkage, Z, throw=True) | |
def test_is_valid_linkage_4_and_up_neg_dist(self, xp): | |
# Tests is_valid_linkage(Z) on linkage on observation sets between | |
# sizes 4 and 15 (step size 3) with negative distances. | |
for i in range(4, 15, 3): | |
y = np.random.rand(i*(i-1)//2) | |
y = xp.asarray(y) | |
Z = linkage(y) | |
Z[i//2,2] = -0.5 | |
assert_(is_valid_linkage(Z) is False) | |
assert_raises(ValueError, is_valid_linkage, Z, throw=True) | |
def test_is_valid_linkage_4_and_up_neg_counts(self, xp): | |
# Tests is_valid_linkage(Z) on linkage on observation sets between | |
# sizes 4 and 15 (step size 3) with negative counts. | |
for i in range(4, 15, 3): | |
y = np.random.rand(i*(i-1)//2) | |
y = xp.asarray(y) | |
Z = linkage(y) | |
Z[i//2,3] = -2 | |
assert_(is_valid_linkage(Z) is False) | |
assert_raises(ValueError, is_valid_linkage, Z, throw=True) | |
class TestIsValidInconsistent: | |
def test_is_valid_im_int_type(self, xp): | |
# Tests is_valid_im(R) with integer type. | |
R = xp.asarray([[0, 1, 3.0, 2], | |
[3, 2, 4.0, 3]], dtype=xp.int64) | |
assert_(is_valid_im(R) is False) | |
assert_raises(TypeError, is_valid_im, R, throw=True) | |
def test_is_valid_im_various_size(self, xp): | |
for nrow, ncol, valid in [(2, 5, False), (2, 3, False), | |
(1, 4, True), (2, 4, True)]: | |
self.check_is_valid_im_various_size(nrow, ncol, valid, xp) | |
def check_is_valid_im_various_size(self, nrow, ncol, valid, xp): | |
# Tests is_valid_im(R) with linkage matrices of various sizes | |
R = xp.asarray([[0, 1, 3.0, 2, 5], | |
[3, 2, 4.0, 3, 3]], dtype=xp.float64) | |
R = R[:nrow, :ncol] | |
assert_(is_valid_im(R) == valid) | |
if not valid: | |
assert_raises(ValueError, is_valid_im, R, throw=True) | |
def test_is_valid_im_empty(self, xp): | |
# Tests is_valid_im(R) with empty inconsistency matrix. | |
R = xp.zeros((0, 4), dtype=xp.float64) | |
assert_(is_valid_im(R) is False) | |
assert_raises(ValueError, is_valid_im, R, throw=True) | |
def test_is_valid_im_4_and_up(self, xp): | |
# Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 | |
# (step size 3). | |
for i in range(4, 15, 3): | |
y = np.random.rand(i*(i-1)//2) | |
y = xp.asarray(y) | |
Z = linkage(y) | |
R = inconsistent(Z) | |
assert_(is_valid_im(R) is True) | |
def test_is_valid_im_4_and_up_neg_index_left(self, xp): | |
# Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 | |
# (step size 3) with negative link height means. | |
for i in range(4, 15, 3): | |
y = np.random.rand(i*(i-1)//2) | |
y = xp.asarray(y) | |
Z = linkage(y) | |
R = inconsistent(Z) | |
R[i//2,0] = -2.0 | |
assert_(is_valid_im(R) is False) | |
assert_raises(ValueError, is_valid_im, R, throw=True) | |
def test_is_valid_im_4_and_up_neg_index_right(self, xp): | |
# Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 | |
# (step size 3) with negative link height standard deviations. | |
for i in range(4, 15, 3): | |
y = np.random.rand(i*(i-1)//2) | |
y = xp.asarray(y) | |
Z = linkage(y) | |
R = inconsistent(Z) | |
R[i//2,1] = -2.0 | |
assert_(is_valid_im(R) is False) | |
assert_raises(ValueError, is_valid_im, R, throw=True) | |
def test_is_valid_im_4_and_up_neg_dist(self, xp): | |
# Tests is_valid_im(R) on im on observation sets between sizes 4 and 15 | |
# (step size 3) with negative link counts. | |
for i in range(4, 15, 3): | |
y = np.random.rand(i*(i-1)//2) | |
y = xp.asarray(y) | |
Z = linkage(y) | |
R = inconsistent(Z) | |
R[i//2,2] = -0.5 | |
assert_(is_valid_im(R) is False) | |
assert_raises(ValueError, is_valid_im, R, throw=True) | |
class TestNumObsLinkage: | |
def test_num_obs_linkage_empty(self, xp): | |
# Tests num_obs_linkage(Z) with empty linkage. | |
Z = xp.zeros((0, 4), dtype=xp.float64) | |
assert_raises(ValueError, num_obs_linkage, Z) | |
def test_num_obs_linkage_1x4(self, xp): | |
# Tests num_obs_linkage(Z) on linkage over 2 observations. | |
Z = xp.asarray([[0, 1, 3.0, 2]], dtype=xp.float64) | |
assert_equal(num_obs_linkage(Z), 2) | |
def test_num_obs_linkage_2x4(self, xp): | |
# Tests num_obs_linkage(Z) on linkage over 3 observations. | |
Z = xp.asarray([[0, 1, 3.0, 2], | |
[3, 2, 4.0, 3]], dtype=xp.float64) | |
assert_equal(num_obs_linkage(Z), 3) | |
def test_num_obs_linkage_4_and_up(self, xp): | |
# Tests num_obs_linkage(Z) on linkage on observation sets between sizes | |
# 4 and 15 (step size 3). | |
for i in range(4, 15, 3): | |
y = np.random.rand(i*(i-1)//2) | |
y = xp.asarray(y) | |
Z = linkage(y) | |
assert_equal(num_obs_linkage(Z), i) | |
class TestLeavesList: | |
def test_leaves_list_1x4(self, xp): | |
# Tests leaves_list(Z) on a 1x4 linkage. | |
Z = xp.asarray([[0, 1, 3.0, 2]], dtype=xp.float64) | |
to_tree(Z) | |
assert_allclose(leaves_list(Z), [0, 1], rtol=1e-15) | |
def test_leaves_list_2x4(self, xp): | |
# Tests leaves_list(Z) on a 2x4 linkage. | |
Z = xp.asarray([[0, 1, 3.0, 2], | |
[3, 2, 4.0, 3]], dtype=xp.float64) | |
to_tree(Z) | |
assert_allclose(leaves_list(Z), [0, 1, 2], rtol=1e-15) | |
def test_leaves_list_Q(self, xp): | |
for method in ['single', 'complete', 'average', 'weighted', 'centroid', | |
'median', 'ward']: | |
self.check_leaves_list_Q(method, xp) | |
def check_leaves_list_Q(self, method, xp): | |
# Tests leaves_list(Z) on the Q data set | |
X = xp.asarray(hierarchy_test_data.Q_X) | |
Z = linkage(X, method) | |
node = to_tree(Z) | |
assert_allclose(node.pre_order(), leaves_list(Z), rtol=1e-15) | |
def test_Q_subtree_pre_order(self, xp): | |
# Tests that pre_order() works when called on sub-trees. | |
X = xp.asarray(hierarchy_test_data.Q_X) | |
Z = linkage(X, 'single') | |
node = to_tree(Z) | |
assert_allclose(node.pre_order(), (node.get_left().pre_order() | |
+ node.get_right().pre_order()), | |
rtol=1e-15) | |
class TestCorrespond: | |
def test_correspond_empty(self, xp): | |
# Tests correspond(Z, y) with empty linkage and condensed distance matrix. | |
y = xp.zeros((0,), dtype=xp.float64) | |
Z = xp.zeros((0,4), dtype=xp.float64) | |
assert_raises(ValueError, correspond, Z, y) | |
def test_correspond_2_and_up(self, xp): | |
# Tests correspond(Z, y) on linkage and CDMs over observation sets of | |
# different sizes. | |
for i in range(2, 4): | |
y = np.random.rand(i*(i-1)//2) | |
y = xp.asarray(y) | |
Z = linkage(y) | |
assert_(correspond(Z, y)) | |
for i in range(4, 15, 3): | |
y = np.random.rand(i*(i-1)//2) | |
y = xp.asarray(y) | |
Z = linkage(y) | |
assert_(correspond(Z, y)) | |
def test_correspond_4_and_up(self, xp): | |
# Tests correspond(Z, y) on linkage and CDMs over observation sets of | |
# different sizes. Correspondence should be false. | |
for (i, j) in (list(zip(list(range(2, 4)), list(range(3, 5)))) + | |
list(zip(list(range(3, 5)), list(range(2, 4))))): | |
y = np.random.rand(i*(i-1)//2) | |
y2 = np.random.rand(j*(j-1)//2) | |
y = xp.asarray(y) | |
y2 = xp.asarray(y2) | |
Z = linkage(y) | |
Z2 = linkage(y2) | |
assert not correspond(Z, y2) | |
assert not correspond(Z2, y) | |
def test_correspond_4_and_up_2(self, xp): | |
# Tests correspond(Z, y) on linkage and CDMs over observation sets of | |
# different sizes. Correspondence should be false. | |
for (i, j) in (list(zip(list(range(2, 7)), list(range(16, 21)))) + | |
list(zip(list(range(2, 7)), list(range(16, 21))))): | |
y = np.random.rand(i*(i-1)//2) | |
y2 = np.random.rand(j*(j-1)//2) | |
y = xp.asarray(y) | |
y2 = xp.asarray(y2) | |
Z = linkage(y) | |
Z2 = linkage(y2) | |
assert not correspond(Z, y2) | |
assert not correspond(Z2, y) | |
def test_num_obs_linkage_multi_matrix(self, xp): | |
# Tests num_obs_linkage with observation matrices of multiple sizes. | |
for n in range(2, 10): | |
X = np.random.rand(n, 4) | |
Y = pdist(X) | |
Y = xp.asarray(Y) | |
Z = linkage(Y) | |
assert_equal(num_obs_linkage(Z), n) | |
class TestIsMonotonic: | |
def test_is_monotonic_empty(self, xp): | |
# Tests is_monotonic(Z) on an empty linkage. | |
Z = xp.zeros((0, 4), dtype=xp.float64) | |
assert_raises(ValueError, is_monotonic, Z) | |
def test_is_monotonic_1x4(self, xp): | |
# Tests is_monotonic(Z) on 1x4 linkage. Expecting True. | |
Z = xp.asarray([[0, 1, 0.3, 2]], dtype=xp.float64) | |
assert is_monotonic(Z) | |
def test_is_monotonic_2x4_T(self, xp): | |
# Tests is_monotonic(Z) on 2x4 linkage. Expecting True. | |
Z = xp.asarray([[0, 1, 0.3, 2], | |
[2, 3, 0.4, 3]], dtype=xp.float64) | |
assert is_monotonic(Z) | |
def test_is_monotonic_2x4_F(self, xp): | |
# Tests is_monotonic(Z) on 2x4 linkage. Expecting False. | |
Z = xp.asarray([[0, 1, 0.4, 2], | |
[2, 3, 0.3, 3]], dtype=xp.float64) | |
assert not is_monotonic(Z) | |
def test_is_monotonic_3x4_T(self, xp): | |
# Tests is_monotonic(Z) on 3x4 linkage. Expecting True. | |
Z = xp.asarray([[0, 1, 0.3, 2], | |
[2, 3, 0.4, 2], | |
[4, 5, 0.6, 4]], dtype=xp.float64) | |
assert is_monotonic(Z) | |
def test_is_monotonic_3x4_F1(self, xp): | |
# Tests is_monotonic(Z) on 3x4 linkage (case 1). Expecting False. | |
Z = xp.asarray([[0, 1, 0.3, 2], | |
[2, 3, 0.2, 2], | |
[4, 5, 0.6, 4]], dtype=xp.float64) | |
assert not is_monotonic(Z) | |
def test_is_monotonic_3x4_F2(self, xp): | |
# Tests is_monotonic(Z) on 3x4 linkage (case 2). Expecting False. | |
Z = xp.asarray([[0, 1, 0.8, 2], | |
[2, 3, 0.4, 2], | |
[4, 5, 0.6, 4]], dtype=xp.float64) | |
assert not is_monotonic(Z) | |
def test_is_monotonic_3x4_F3(self, xp): | |
# Tests is_monotonic(Z) on 3x4 linkage (case 3). Expecting False | |
Z = xp.asarray([[0, 1, 0.3, 2], | |
[2, 3, 0.4, 2], | |
[4, 5, 0.2, 4]], dtype=xp.float64) | |
assert not is_monotonic(Z) | |
def test_is_monotonic_tdist_linkage1(self, xp): | |
# Tests is_monotonic(Z) on clustering generated by single linkage on | |
# tdist data set. Expecting True. | |
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single') | |
assert is_monotonic(Z) | |
def test_is_monotonic_tdist_linkage2(self, xp): | |
# Tests is_monotonic(Z) on clustering generated by single linkage on | |
# tdist data set. Perturbing. Expecting False. | |
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single') | |
Z[2,2] = 0.0 | |
assert not is_monotonic(Z) | |
def test_is_monotonic_Q_linkage(self, xp): | |
# Tests is_monotonic(Z) on clustering generated by single linkage on | |
# Q data set. Expecting True. | |
X = xp.asarray(hierarchy_test_data.Q_X) | |
Z = linkage(X, 'single') | |
assert is_monotonic(Z) | |
class TestMaxDists: | |
def test_maxdists_empty_linkage(self, xp): | |
# Tests maxdists(Z) on empty linkage. Expecting exception. | |
Z = xp.zeros((0, 4), dtype=xp.float64) | |
assert_raises(ValueError, maxdists, Z) | |
def test_maxdists_one_cluster_linkage(self, xp): | |
# Tests maxdists(Z) on linkage with one cluster. | |
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64) | |
MD = maxdists(Z) | |
expectedMD = calculate_maximum_distances(Z, xp) | |
xp_assert_close(MD, expectedMD, atol=1e-15) | |
def test_maxdists_Q_linkage(self, xp): | |
for method in ['single', 'complete', 'ward', 'centroid', 'median']: | |
self.check_maxdists_Q_linkage(method, xp) | |
def check_maxdists_Q_linkage(self, method, xp): | |
# Tests maxdists(Z) on the Q data set | |
X = xp.asarray(hierarchy_test_data.Q_X) | |
Z = linkage(X, method) | |
MD = maxdists(Z) | |
expectedMD = calculate_maximum_distances(Z, xp) | |
xp_assert_close(MD, expectedMD, atol=1e-15) | |
class TestMaxInconsts: | |
def test_maxinconsts_empty_linkage(self, xp): | |
# Tests maxinconsts(Z, R) on empty linkage. Expecting exception. | |
Z = xp.zeros((0, 4), dtype=xp.float64) | |
R = xp.zeros((0, 4), dtype=xp.float64) | |
assert_raises(ValueError, maxinconsts, Z, R) | |
def test_maxinconsts_difrow_linkage(self, xp): | |
# Tests maxinconsts(Z, R) on linkage and inconsistency matrices with | |
# different numbers of clusters. Expecting exception. | |
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64) | |
R = np.random.rand(2, 4) | |
R = xp.asarray(R) | |
assert_raises(ValueError, maxinconsts, Z, R) | |
def test_maxinconsts_one_cluster_linkage(self, xp): | |
# Tests maxinconsts(Z, R) on linkage with one cluster. | |
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64) | |
R = xp.asarray([[0, 0, 0, 0.3]], dtype=xp.float64) | |
MD = maxinconsts(Z, R) | |
expectedMD = calculate_maximum_inconsistencies(Z, R, xp=xp) | |
xp_assert_close(MD, expectedMD, atol=1e-15) | |
def test_maxinconsts_Q_linkage(self, xp): | |
for method in ['single', 'complete', 'ward', 'centroid', 'median']: | |
self.check_maxinconsts_Q_linkage(method, xp) | |
def check_maxinconsts_Q_linkage(self, method, xp): | |
# Tests maxinconsts(Z, R) on the Q data set | |
X = xp.asarray(hierarchy_test_data.Q_X) | |
Z = linkage(X, method) | |
R = inconsistent(Z) | |
MD = maxinconsts(Z, R) | |
expectedMD = calculate_maximum_inconsistencies(Z, R, xp=xp) | |
xp_assert_close(MD, expectedMD, atol=1e-15) | |
class TestMaxRStat: | |
def test_maxRstat_invalid_index(self, xp): | |
for i in [3.3, -1, 4]: | |
self.check_maxRstat_invalid_index(i, xp) | |
def check_maxRstat_invalid_index(self, i, xp): | |
# Tests maxRstat(Z, R, i). Expecting exception. | |
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64) | |
R = xp.asarray([[0, 0, 0, 0.3]], dtype=xp.float64) | |
if isinstance(i, int): | |
assert_raises(ValueError, maxRstat, Z, R, i) | |
else: | |
assert_raises(TypeError, maxRstat, Z, R, i) | |
def test_maxRstat_empty_linkage(self, xp): | |
for i in range(4): | |
self.check_maxRstat_empty_linkage(i, xp) | |
def check_maxRstat_empty_linkage(self, i, xp): | |
# Tests maxRstat(Z, R, i) on empty linkage. Expecting exception. | |
Z = xp.zeros((0, 4), dtype=xp.float64) | |
R = xp.zeros((0, 4), dtype=xp.float64) | |
assert_raises(ValueError, maxRstat, Z, R, i) | |
def test_maxRstat_difrow_linkage(self, xp): | |
for i in range(4): | |
self.check_maxRstat_difrow_linkage(i, xp) | |
def check_maxRstat_difrow_linkage(self, i, xp): | |
# Tests maxRstat(Z, R, i) on linkage and inconsistency matrices with | |
# different numbers of clusters. Expecting exception. | |
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64) | |
R = np.random.rand(2, 4) | |
R = xp.asarray(R) | |
assert_raises(ValueError, maxRstat, Z, R, i) | |
def test_maxRstat_one_cluster_linkage(self, xp): | |
for i in range(4): | |
self.check_maxRstat_one_cluster_linkage(i, xp) | |
def check_maxRstat_one_cluster_linkage(self, i, xp): | |
# Tests maxRstat(Z, R, i) on linkage with one cluster. | |
Z = xp.asarray([[0, 1, 0.3, 4]], dtype=xp.float64) | |
R = xp.asarray([[0, 0, 0, 0.3]], dtype=xp.float64) | |
MD = maxRstat(Z, R, 1) | |
expectedMD = calculate_maximum_inconsistencies(Z, R, 1, xp) | |
xp_assert_close(MD, expectedMD, atol=1e-15) | |
def test_maxRstat_Q_linkage(self, xp): | |
for method in ['single', 'complete', 'ward', 'centroid', 'median']: | |
for i in range(4): | |
self.check_maxRstat_Q_linkage(method, i, xp) | |
def check_maxRstat_Q_linkage(self, method, i, xp): | |
# Tests maxRstat(Z, R, i) on the Q data set | |
X = xp.asarray(hierarchy_test_data.Q_X) | |
Z = linkage(X, method) | |
R = inconsistent(Z) | |
MD = maxRstat(Z, R, 1) | |
expectedMD = calculate_maximum_inconsistencies(Z, R, 1, xp) | |
xp_assert_close(MD, expectedMD, atol=1e-15) | |
class TestDendrogram: | |
def test_dendrogram_single_linkage_tdist(self, xp): | |
# Tests dendrogram calculation on single linkage of the tdist data set. | |
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single') | |
R = dendrogram(Z, no_plot=True) | |
leaves = R["leaves"] | |
assert_equal(leaves, [2, 5, 1, 0, 3, 4]) | |
def test_valid_orientation(self, xp): | |
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single') | |
assert_raises(ValueError, dendrogram, Z, orientation="foo") | |
def test_labels_as_array_or_list(self, xp): | |
# test for gh-12418 | |
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single') | |
labels = xp.asarray([1, 3, 2, 6, 4, 5]) | |
result1 = dendrogram(Z, labels=labels, no_plot=True) | |
result2 = dendrogram(Z, labels=list(labels), no_plot=True) | |
assert result1 == result2 | |
def test_valid_label_size(self, xp): | |
link = xp.asarray([ | |
[0, 1, 1.0, 4], | |
[2, 3, 1.0, 5], | |
[4, 5, 2.0, 6], | |
]) | |
plt.figure() | |
with pytest.raises(ValueError) as exc_info: | |
dendrogram(link, labels=list(range(100))) | |
assert "Dimensions of Z and labels must be consistent."\ | |
in str(exc_info.value) | |
with pytest.raises( | |
ValueError, | |
match="Dimensions of Z and labels must be consistent."): | |
dendrogram(link, labels=[]) | |
plt.close() | |
def test_dendrogram_plot(self, xp): | |
for orientation in ['top', 'bottom', 'left', 'right']: | |
self.check_dendrogram_plot(orientation, xp) | |
def check_dendrogram_plot(self, orientation, xp): | |
# Tests dendrogram plotting. | |
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single') | |
expected = {'color_list': ['C1', 'C0', 'C0', 'C0', 'C0'], | |
'dcoord': [[0.0, 138.0, 138.0, 0.0], | |
[0.0, 219.0, 219.0, 0.0], | |
[0.0, 255.0, 255.0, 219.0], | |
[0.0, 268.0, 268.0, 255.0], | |
[138.0, 295.0, 295.0, 268.0]], | |
'icoord': [[5.0, 5.0, 15.0, 15.0], | |
[45.0, 45.0, 55.0, 55.0], | |
[35.0, 35.0, 50.0, 50.0], | |
[25.0, 25.0, 42.5, 42.5], | |
[10.0, 10.0, 33.75, 33.75]], | |
'ivl': ['2', '5', '1', '0', '3', '4'], | |
'leaves': [2, 5, 1, 0, 3, 4], | |
'leaves_color_list': ['C1', 'C1', 'C0', 'C0', 'C0', 'C0'], | |
} | |
fig = plt.figure() | |
ax = fig.add_subplot(221) | |
# test that dendrogram accepts ax keyword | |
R1 = dendrogram(Z, ax=ax, orientation=orientation) | |
R1['dcoord'] = np.asarray(R1['dcoord']) | |
assert_equal(R1, expected) | |
# test that dendrogram accepts and handle the leaf_font_size and | |
# leaf_rotation keywords | |
dendrogram(Z, ax=ax, orientation=orientation, | |
leaf_font_size=20, leaf_rotation=90) | |
testlabel = ( | |
ax.get_xticklabels()[0] | |
if orientation in ['top', 'bottom'] | |
else ax.get_yticklabels()[0] | |
) | |
assert_equal(testlabel.get_rotation(), 90) | |
assert_equal(testlabel.get_size(), 20) | |
dendrogram(Z, ax=ax, orientation=orientation, | |
leaf_rotation=90) | |
testlabel = ( | |
ax.get_xticklabels()[0] | |
if orientation in ['top', 'bottom'] | |
else ax.get_yticklabels()[0] | |
) | |
assert_equal(testlabel.get_rotation(), 90) | |
dendrogram(Z, ax=ax, orientation=orientation, | |
leaf_font_size=20) | |
testlabel = ( | |
ax.get_xticklabels()[0] | |
if orientation in ['top', 'bottom'] | |
else ax.get_yticklabels()[0] | |
) | |
assert_equal(testlabel.get_size(), 20) | |
plt.close() | |
# test plotting to gca (will import pylab) | |
R2 = dendrogram(Z, orientation=orientation) | |
plt.close() | |
R2['dcoord'] = np.asarray(R2['dcoord']) | |
assert_equal(R2, expected) | |
def test_dendrogram_truncate_mode(self, xp): | |
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single') | |
R = dendrogram(Z, 2, 'lastp', show_contracted=True) | |
plt.close() | |
R['dcoord'] = np.asarray(R['dcoord']) | |
assert_equal(R, {'color_list': ['C0'], | |
'dcoord': [[0.0, 295.0, 295.0, 0.0]], | |
'icoord': [[5.0, 5.0, 15.0, 15.0]], | |
'ivl': ['(2)', '(4)'], | |
'leaves': [6, 9], | |
'leaves_color_list': ['C0', 'C0'], | |
}) | |
R = dendrogram(Z, 2, 'mtica', show_contracted=True) | |
plt.close() | |
R['dcoord'] = np.asarray(R['dcoord']) | |
assert_equal(R, {'color_list': ['C1', 'C0', 'C0', 'C0'], | |
'dcoord': [[0.0, 138.0, 138.0, 0.0], | |
[0.0, 255.0, 255.0, 0.0], | |
[0.0, 268.0, 268.0, 255.0], | |
[138.0, 295.0, 295.0, 268.0]], | |
'icoord': [[5.0, 5.0, 15.0, 15.0], | |
[35.0, 35.0, 45.0, 45.0], | |
[25.0, 25.0, 40.0, 40.0], | |
[10.0, 10.0, 32.5, 32.5]], | |
'ivl': ['2', '5', '1', '0', '(2)'], | |
'leaves': [2, 5, 1, 0, 7], | |
'leaves_color_list': ['C1', 'C1', 'C0', 'C0', 'C0'], | |
}) | |
def test_dendrogram_colors(self, xp): | |
# Tests dendrogram plots with alternate colors | |
Z = linkage(xp.asarray(hierarchy_test_data.ytdist), 'single') | |
set_link_color_palette(['c', 'm', 'y', 'k']) | |
R = dendrogram(Z, no_plot=True, | |
above_threshold_color='g', color_threshold=250) | |
set_link_color_palette(['g', 'r', 'c', 'm', 'y', 'k']) | |
color_list = R['color_list'] | |
assert_equal(color_list, ['c', 'm', 'g', 'g', 'g']) | |
# reset color palette (global list) | |
set_link_color_palette(None) | |
def test_dendrogram_leaf_colors_zero_dist(self, xp): | |
# tests that the colors of leafs are correct for tree | |
# with two identical points | |
x = xp.asarray([[1, 0, 0], | |
[0, 0, 1], | |
[0, 2, 0], | |
[0, 0, 1], | |
[0, 1, 0], | |
[0, 1, 0]]) | |
z = linkage(x, "single") | |
d = dendrogram(z, no_plot=True) | |
exp_colors = ['C0', 'C1', 'C1', 'C0', 'C2', 'C2'] | |
colors = d["leaves_color_list"] | |
assert_equal(colors, exp_colors) | |
def test_dendrogram_leaf_colors(self, xp): | |
# tests that the colors are correct for a tree | |
# with two near points ((0, 0, 1.1) and (0, 0, 1)) | |
x = xp.asarray([[1, 0, 0], | |
[0, 0, 1.1], | |
[0, 2, 0], | |
[0, 0, 1], | |
[0, 1, 0], | |
[0, 1, 0]]) | |
z = linkage(x, "single") | |
d = dendrogram(z, no_plot=True) | |
exp_colors = ['C0', 'C1', 'C1', 'C0', 'C2', 'C2'] | |
colors = d["leaves_color_list"] | |
assert_equal(colors, exp_colors) | |
def calculate_maximum_distances(Z, xp): | |
# Used for testing correctness of maxdists. | |
n = Z.shape[0] + 1 | |
B = xp.zeros((n-1,), dtype=Z.dtype) | |
q = xp.zeros((3,)) | |
for i in range(0, n - 1): | |
q[:] = 0.0 | |
left = Z[i, 0] | |
right = Z[i, 1] | |
if left >= n: | |
q[0] = B[xp.asarray(left, dtype=xp.int64) - n] | |
if right >= n: | |
q[1] = B[xp.asarray(right, dtype=xp.int64) - n] | |
q[2] = Z[i, 2] | |
B[i] = xp.max(q) | |
return B | |
def calculate_maximum_inconsistencies(Z, R, k=3, xp=np): | |
# Used for testing correctness of maxinconsts. | |
n = Z.shape[0] + 1 | |
dtype = xp.result_type(Z, R) | |
B = xp.zeros((n-1,), dtype=dtype) | |
q = xp.zeros((3,)) | |
for i in range(0, n - 1): | |
q[:] = 0.0 | |
left = Z[i, 0] | |
right = Z[i, 1] | |
if left >= n: | |
q[0] = B[xp.asarray(left, dtype=xp.int64) - n] | |
if right >= n: | |
q[1] = B[xp.asarray(right, dtype=xp.int64) - n] | |
q[2] = R[i, k] | |
B[i] = xp.max(q) | |
return B | |
def test_unsupported_uncondensed_distance_matrix_linkage_warning(xp): | |
assert_warns(ClusterWarning, linkage, xp.asarray([[0, 1], [1, 0]])) | |
def test_euclidean_linkage_value_error(xp): | |
for method in scipy.cluster.hierarchy._EUCLIDEAN_METHODS: | |
assert_raises(ValueError, linkage, xp.asarray([[1, 1], [1, 1]]), | |
method=method, metric='cityblock') | |
def test_2x2_linkage(xp): | |
Z1 = linkage(xp.asarray([1]), method='single', metric='euclidean') | |
Z2 = linkage(xp.asarray([[0, 1], [0, 0]]), method='single', metric='euclidean') | |
xp_assert_close(Z1, Z2, rtol=1e-15) | |
def test_node_compare(xp): | |
np.random.seed(23) | |
nobs = 50 | |
X = np.random.randn(nobs, 4) | |
X = xp.asarray(X) | |
Z = scipy.cluster.hierarchy.ward(X) | |
tree = to_tree(Z) | |
assert_(tree > tree.get_left()) | |
assert_(tree.get_right() > tree.get_left()) | |
assert_(tree.get_right() == tree.get_right()) | |
assert_(tree.get_right() != tree.get_left()) | |
def test_cut_tree(xp): | |
np.random.seed(23) | |
nobs = 50 | |
X = np.random.randn(nobs, 4) | |
X = xp.asarray(X) | |
Z = scipy.cluster.hierarchy.ward(X) | |
cutree = cut_tree(Z) | |
# cutree.dtype varies between int32 and int64 over platforms | |
xp_assert_close(cutree[:, 0], xp.arange(nobs), rtol=1e-15, check_dtype=False) | |
xp_assert_close(cutree[:, -1], xp.zeros(nobs), rtol=1e-15, check_dtype=False) | |
assert_equal(np.asarray(cutree).max(0), np.arange(nobs - 1, -1, -1)) | |
xp_assert_close(cutree[:, [-5]], cut_tree(Z, n_clusters=5), rtol=1e-15) | |
xp_assert_close(cutree[:, [-5, -10]], cut_tree(Z, n_clusters=[5, 10]), rtol=1e-15) | |
xp_assert_close(cutree[:, [-10, -5]], cut_tree(Z, n_clusters=[10, 5]), rtol=1e-15) | |
nodes = _order_cluster_tree(Z) | |
heights = xp.asarray([node.dist for node in nodes]) | |
xp_assert_close(cutree[:, np.searchsorted(heights, [5])], | |
cut_tree(Z, height=5), rtol=1e-15) | |
xp_assert_close(cutree[:, np.searchsorted(heights, [5, 10])], | |
cut_tree(Z, height=[5, 10]), rtol=1e-15) | |
xp_assert_close(cutree[:, np.searchsorted(heights, [10, 5])], | |
cut_tree(Z, height=[10, 5]), rtol=1e-15) | |
def test_optimal_leaf_ordering(xp): | |
# test with the distance vector y | |
Z = optimal_leaf_ordering(linkage(xp.asarray(hierarchy_test_data.ytdist)), | |
xp.asarray(hierarchy_test_data.ytdist)) | |
expectedZ = hierarchy_test_data.linkage_ytdist_single_olo | |
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-10) | |
# test with the observation matrix X | |
Z = optimal_leaf_ordering(linkage(xp.asarray(hierarchy_test_data.X), 'ward'), | |
xp.asarray(hierarchy_test_data.X)) | |
expectedZ = hierarchy_test_data.linkage_X_ward_olo | |
xp_assert_close(Z, xp.asarray(expectedZ), atol=1e-06) | |
def test_Heap(xp): | |
values = xp.asarray([2, -1, 0, -1.5, 3]) | |
heap = Heap(values) | |
pair = heap.get_min() | |
assert_equal(pair['key'], 3) | |
assert_equal(pair['value'], -1.5) | |
heap.remove_min() | |
pair = heap.get_min() | |
assert_equal(pair['key'], 1) | |
assert_equal(pair['value'], -1) | |
heap.change_value(1, 2.5) | |
pair = heap.get_min() | |
assert_equal(pair['key'], 2) | |
assert_equal(pair['value'], 0) | |
heap.remove_min() | |
heap.remove_min() | |
heap.change_value(1, 10) | |
pair = heap.get_min() | |
assert_equal(pair['key'], 4) | |
assert_equal(pair['value'], 3) | |
heap.remove_min() | |
pair = heap.get_min() | |
assert_equal(pair['key'], 1) | |
assert_equal(pair['value'], 10) | |